Loading...
HomeMy WebLinkAboutCity Council - 2002-123 (3) PARKSIDE ESTATES EIR #97-2 FINAL EIR TECHNICAL APPENDICES VOLUME IIA l • ol J-P1 J J-o y 0 r_.., , 7 Y /.. 3 .0 / i Prepared for: The City of Huntington Beach Planning Department 2000 Main Street Huntington Beach, CA 92648 Prepared by: EDAW, Inc. July 2002 PARKSIDE ESTATES EIR No. 97-2 Volume IIA FINAL EIR TECHNICAL APPENDICES STATE CLEARINGHOUSE NO. 97091051 PREPARED FOR: THE CITY OF HUNTINGTON BEACH PLANNING DEPARTMENT 2000 MAIN STREET HUNTINGTON BEACH,CA 92648 PREPARED BY: EDAW,Inc. July 2002 TECHNICAL APPENDICES This volume presents the technical studies/analyses prepared to support the responses to comments on the Draft EIR and the New Alternatives to the Draft EIR. In addition to the technical appendices included as part of the Parkside Estates Draft EIR and the New Alternatives to the Draft EIR documents and circulated as such, the appendices presented herein provide substantiation (i.e., additional technical support) to the conclusions stated in Volume I, Response to Comments on the Draft EIR and the New Alternatives to the Draft EIR. 1. Revised Transportation Study for Proposed Parkside Estates Residential Development, March 29, 2001 and Traffic Collision History Report for Three Intersections—Appendix B in the Draft/Final EIR 2. Supplemental Information from PSE for the Draft EIR Comments, August 3, 1999 and for the New Alternatives to the Draft EIR Comments, October 12, 2001 and June 13, 2002— Appendix E in the Draft/Final EIR 3. Revised Response to FEMA Comments on February 5, 2001 Request for Conditional Letter of Map Revision: Parkside Estates Tentative Tract Nos. 15377 and 15419 Expanded Watershed Analysis of East Garden Grove-Wintersburg Channel Watershed from Tide Gates to I-405 Freeway, January 30, 2002 (Note: due to the size of this report, it is available on file at the City of Huntington Beach,Department of Public Works, for public review)—Appendix F of the Draft/Final EIR 4. Federal Emergency Management Agency CLOMR Approval Correspondence: June 6, 2002 regarding effects that a proposed project would have on the effective Flood Insurance Rate Map (FIRM) and Flood Insurance Study (FIS) report for Orange County, California and Incorporated Areas (the effective FIRM and FIS report for your community), in accordance with Part of 65 of the National Flood Insurance Program (NFIP) regulations —Appendix F of the Draft/Final EIR 5. Rivertech Water Quality Analysis/Plan, December 1998 and Rivertech Addendum to Urban Runoff Water Quality Analysis and Conceptual Water Quality Control Plan, February 2002 — Appendix F in the Draft/Final EIR 6. City of Huntington Beach, USDA, Corps of Engineers, and Vandermost Correspondence: a) November 10, 1998, regarding prior converted cropland; b) November 20, 1998, regarding prior converted cropland; c) August 11, 1999, regarding Section 10 provisions of the Rivers and Harbors Act; and d) June 29, 2000 Vandermost Consulting Services, Inc., regarding jurisdictional determination of the existing EGGW Channel; e) August 29, 2000 Correspondence, regarding concurrence of the jurisdictional determination of the existing EGGW Channel; and Supplemental EPA wetland and pickleweed location Exhibits — Appendix G in the Draft/Final EIR i TECB NICAL APPENDICES (Cont'd) 7. California Coastal Commission Correspondence: a) June 29, 2001 regarding re-established remnant marshland; b) July 3, 2001, regarding proposed Parkside Estates development and Habitat Analysis, Parkside Estates Tentative Tract No. 15419 (County Parcel), December 8, 2000 - Appendix G in the Draft/Final EIR 8. May 21, 2002 Delineation of Wetlands Subject to U.S. Army Corps of Engineers and California Coastal Commission Regulatory Authority and Composite Resource Map for County Parcel Map, prepared by LSA—Appendix G in the Draft/Final EIR ii 1 1. REVISED TRANSPORTATION STUDY FOR PROPOSED - PARKSIDE ESTATES RESIDENTIAL DEVELOPMENT, MARCH 29, 2001 AND TRAFFIC COLLISION HISTORY REPORT FOR THREE INTERSECTIONS TRAFFIC STUDY for PARKSIDE ESTATES RESIDENTIAL DEVELOPMENT (TM 15377 and TM 15419) Prepared for: HUNSAKER &ASSOCIATES, INC. Prepared by: DARNELL &ASSOCIATES, INC. Tune 27, 1997 Revised March 29, 2001 Darnell & ASSOCIATES, WC TRANSPORTATION PLANNING &TRAFFIC ENGINEERING March 29,2001 Mr.John Michler Hunsaker&Associates, Inc. 3 Hughes Avenue Irvine, CA 92718 D&A Ref.No.: 960404 Subject: Revised Transportation Study for Proposed Parkside Estates Residential Development off Graham Street in the City of Huntington Beach Dear Mr. Michler: In accordance with your authorization, Darnell & Associates, Inc. (D&A)has revised our April 8, 1997, transportation study to assess impacts related to the proposed development of 171 single family residential units in the City of Huntington Beach. This report analyzes the potential traffic impacts associated with the project on the surrounding area, including analysis of existing,short term and future conditions. This iteration includes a reduction in dwelling units from 208 to 171 for the project and inclusion of 350 dwelling units from the Meadowlark residential project to assess cumulative impacts. If you have any questions,please feel free to contact this office. Sincerely, �- Q�pEESSO �E.DAR�yF�I� Bill E. Darnell, P.E. Firm Principal " No.22338 * EXPIRES 9/30/01 BED/bh/bm sl CIV11 960404HBParksideEstatesRPT4.wpd/01-03 9lE OF CAUF�� i 1446 FRONT STREET • THIRD FLOOR • SAN DIEGO, CA 92101 PHONE: 619-233-9373 • FAX: 619-233-4034 E-mail: BD492@aol.com TRAFFIC STUDY for PARKSIDE ESTA TES RESIDENTIAL DEVELOPMENT (TM 15377 and TM 15419) Prepared for: Hunsaker &Associates, Inc. 3 Hughes Avenue Irvine, California 92718 Prepared by: DARNELL &ASSOCIATES, INC. 1446 Front Street Third Floor San Diego, California 92101 619-233-9373 June 27, 1997 Revised March 29, 2001 960404/960404HBParksideEslatesRPT4.wpd/01-03 TABLE OF CONTENTS EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SECTION I -EXISTING CONDITIONS . . . . . . . . . LEVEL OF SERVICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 EXISTING INTERSECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ROADWAY SEGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 SECTION II-PROJECT RELATED CONDITIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 TRIP GENERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 TRIP DISTRIBUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 EXISTING PLUS PROJECT TRAFFIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 OTHER PROJECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 SECTION III-IMPACTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 EXISTING CONDITIONS . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 EXISTING PLUS PROJECT CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 SHORT TERM CUMULATIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PROJECT IMPACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 FUTURE CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . YEAR 2020 DAILY TRAFFIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SECTION IV-ACCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 FULL ACCESS FROM A STREET TO GRAHAM STREET . . . . . . . . . . . . . . . . . . . . . . . . . 22 SIGNAL WARRANT ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SIGHT DISTANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 ACCIDENTDATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 SECTION V- RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 List of Figures Figure I - Vicinity Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 2 Figure 2- Site Plan (TM 15377) 3 Figure 2A- Site Plan(TM 15419) 4 Figure 3 - Existing Intersection Geometrics 6 Figure 4-Existing Traffic Volumes Z� 7 Figure 5 - Project Distribution Percentage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 6-Project Peak Hour Traffic Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 7-Existing Plus Project Traffic Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 8 - Short Term Cumulative Traffic Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 9-Year 2020 Volumes 19 Figure 10 -Year 2020 Geometrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 11 -"A"Street Full Access Project Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 List of Tables Table I - Summary Of Trip Generation Rates& Calculations 8 Table 2 - Summary Of Intersection Level Of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 3 - Summary Of Short Tenn Roadway Capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 4 -Graham Street Residential Project Percentage of Net Traffic Impact on Intersections . . . . . . 17 Table 5 - Summary Of Year 2020 Intersection Level Of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 6- Summary Of Year 2020 Roadway Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 EXECUTIVE SUMMARY ► The proposed Parkside Estates project consists of 171 single family dwelling units located west of Graham Street between Warner and Slater Avenues(TM 15377 and TM 15419). The project will generate approximately 2,052 daily vehicular trips,with 164 occurring in the AM peak hour and 205 in the PM peak hour. ► Existing conditions analysis of six study intersections, including Bolsa Chica/Wamer, Greentree/Warner,Graham/Warner and Springdale/Warner operate at acceptable levels of service without improvements. Existing daily traffic on Warner Avenue and Graham Street also operates within acceptable levels of service. ► The addition of project traffic to the existing volumes does not change the level of service at any of the study intersections. The addition of other project traffic (including Holly-Seacliff area development)does not cause study intersections or street segments to operate at unacceptable levels of service. ► Year 2020 traffic volumes were analyzed at major intersections on Warner Avenue. The intersection of Bolsa Chica/Wamer and Graham/Warner poor experience level of p p service in the peak hour. Recommendations for improvement are made for both intersections. These deficiencies are a product of areawide buildout and are not the result of the proposed project. ► The project proposes full access from A Street onto Graham Street. Analysis of this intersection assuming signal control will operate at acceptable levels of service. Caltrans signal warrant analyses were conducted at A Street/Graham Street for short term cumulative conditions. Daily and peak hourly warrants were satisfied. ► Corner sight distance from A Street onto Graham Street was analyzed at 45 mph and requires a minimum of 500 feet which does not exist at A Street due to topography. ► Recommendations are made to restripe Graham Street to increase safety to/from the project as well as to other side street accesses from Glenstone to Warner. ► Accident history in the area is unremarkable and below Countywide averages. Prepared by: Bill E.Darnell,P.E. Approved by: Thomas Brohard,P.E. Q�pf ESS/o* No.22338 m W � * DMRES 9/30101 CIVIV 9rE0f CAUF�� INTRODUCTION Darnell & Associates, Inc. (D&A), has been retained to prepare this traffic study to assess the impacts associated with the proposed 171 unit single family residential development off of Graham Street in the City of Huntington Beach. The project site is located on the west side of Graham Street,approximately 1,000 feet north of Slater Avenue. The boundaries of the traffic impact assessment (TIA) for the project are Bolsa Chica Street,Warner Avenue,Springdale Street,Slater Avenue and Graham Street. A general vicinity map is presented on Figure 1. The project site was previously owned by the Metropolitan Water District and has been used as farm land for the past 20 years or more. The proposed project is to construct 171 single family residences with lot sizes from 5,000 to 6,000 square feet. An 8 acre neighborhood park site with approximately 3.5 acres usable for recreation activities will also be constructed at the northwest corner of the project site. The site plan is depicted on Figures 2 and 2A. Figure 2 depicts TM 15377 and Figure 2A depicts TM 15377 and TM 15419 (nine lots). The project site is bounded by single family homes to the north,east and the south. The western boundary of the site adjoins currently undeveloped Bolsa Chica mesa property which is proposed to be developed with single family homes. The scope of this TIA will cover the following intersections: ► Warner Avenue/Bolsa Chica Street ► Warner Avenue/Greentree Lane ► Warner Avenue/Graham Street Warner Avenue/Springdale Street ► Graham Street/Slater Avenue ► Graham Street/Glenstone 1 CITY OF HUNTINGT BEACH - OIV 1�L�1C11 ORANGE' (:OUNTY, CALIFORNIA USE OF PROPERTY MAP r —�` WARNER AVE "17 -1- 1 J� j -- - � l 1111-1 l 11_l i_1 V�l.I LLT_L I1.LI1D�r11.i.f 177� .- Jtl M DO t, _ aO4En5 1 _ 1� R a� ... 1 v o i ✓ �ExO!Er(71!t•.. :11L1 i.4'' 4 b• j I% I?"GEEHNOr °. -.. - Rp niEwonrx •� _ rl 11 11rII I I I 1 11 filn, TENTATIVE TRACT ;��y NO. 15377 �/\(\ ,III-1_I CF_E L - m lil.illi�_...� y IT ,: �11 ( � a Wi11 < fES �_-i=fir� : J. MTITI] •\ �' Oil. - -. .. Darnell FIGURE 1 & ASSOCIATES, INC. VICINITY M A P 2 i / -- �) -• ll!•1•:l N(1 Ill l:i:l /f/ � - �s-.•J T, ' LyJI��All -/IIL J i o. �i.•�i --_—_' 1'"_ •i=�.._ -'«i_ 1 _ /-_ �.,/�/. ' ' L •4'..`� � h r.c:_.r�•:�1'._'` la. .�I:,II _���J 1. �:;:T�_..._ I• ,, .� �J I •_.- � .:.—� � . :a , o I;� ,� � ,,o �'�� • p� ,�, t� , _ i {I� I� t� .r J ` + f f] �;.� ;+'S � �r,f "` k �� �� Z K S/IE ❑ ♦ 1 /I 1 I I•I ti I 1' S 11 III r { t r ?yam; I� r s1 r / •}I lil { � ,'�� �j iI{ ��t'{ ��I I It ( {�JII 1�"�� r1�\ , ...p,...� I. 1 i l ili f II� � � i��l;, ��•i+ t.E1 11j. 'I r �rr.y1 1 y .tl 1 �.'•{J.I i 'r �L I { II 1 lr' I^1 /',I'�:l \\' ;� �'/�� r. '�t�� •r'.�'I F. i{ Arl� ,�1 t' ,11.s{� tF ,}; � �.S II ,1 t; 1 .^1 �I �•� 6 i / ��r �=IIi O1 INH Urrl ldl lrlNl __ G Y/ � r>", 1 �i•. 1 r/ 1.. �(�C •�`••'.!' I' 1 �'1`� `^(•� ���t C'r��:11\�� -, ''�.\Cf`f3'?.-`Y ,��k�P. ,�..�5��1� ��� ._:�;j./�.i I' :`I I IN - 1I�, .1-- li ��'y.. �'C 5�ti..�t'��1��3� •,:'4.`�1'� K �1 ��.E 1 A�� ����/ _ �� I \ \ "'/rt 1 Y 1� � � .� .• r III. >.� \•Ir ,� �� r � �2�t� � .Y' � �•�1. Ly � `\y � -�,�, / /tr""`./•. --I I `� ��✓ !• �i r inn.` ! I !; f t1`a` 6 0ol ?t�+'� U i'" �/ LEGEL utclloTnll . O i� !••'l �: 1 STET WW OWIFA O 1 1 lErq USL S-RY � t' 1 /• I :J t'1� I ti S TIPKAt STREET SECTS L •\L,�{r / ao EE S71caf lows SITE PLAN 15377 OE ....�...... _.�__.... �.. H ...�. ........... ' u ' I14 OS LOI TRACT Darnell & ASSOCIATES, INC. IGURE 2 960404GR.DWG JFS 03-07-01 SITE PLAN (TM - 15377) I i _ i I I I I Mall rill 00e1.1 W L ... I I_ 1 J — ,ul r { Q -- -- 1� d 1� I• \ f,/• � �• ��(t�I, f,l f III 1 '•` I f •� II I I I ,+tl ` I.1' I\ v. r'�•�z I,,,� , r,.N .,,, ; '•.�:�•... : � ,lal,�f.� �i"� , I'�r►�,,,I�•;I 1�I:a�l•',��.rl .j�'. I� III ► �;1`f ' ;, Ii.II'll\I •• i� ���' y �`` :Y��,'" II 1 j� i�il II_II? II ,II'.�,(° '`,I•U�w}.II��i•�fll/� �'•°•7l� �� � �I i � 'II II I�. ` .. \` •. "i cV t.�'� `1 I 'i LI }` �1 �al , 11 � ;I!� III. �� t�,-.I I•�•:��i,,i� /. -< ti'� t ! ....,•. ... k:f� .�• � a����'f�• t •� �1 1_•r F rh�!•Il1 f 1\. ;���Cr �lfl.�',�'� �I,'N'. ��mr n vovuvwnv nc[nl - �"S '� f I�• j NUNIr IY Ofu Cl � r y✓- ,�\,� t t\ ' ��� , � Ir�(� �� ice' l.Y r•.� \�� � Il f f � I i l� .i � � �l+r 1',��,..1 s ,1�\�• '� �.�� .. I.rO U[[[UW.NT I 1 r/d. �� tt����' \}�j t) �\ r ✓v1 c1�y � ` __ 1 /i' III / 4 T • t l` j �r��\ a ')o r l[O.L—C ON s--i�l� f aft � � �, �', i - '� .�, ��a� '( ! 1• �, I , ^` �r i}tll \ �I I� ; ,,,f f � �. _ -,:�. ,•: '/��_ f � �..I j{'�\.`'�1_�' ��,^!^�/, [urtr.<rl,wo s t . `+ ✓Y� v,fr ,. � � '� •� �\r\ �-. T � •,'' if:;:p ..�.,.,....,,..a Vie:. 1, ` /l4�ln�y.! ` it ✓' _lo d.,` .� �- ���.'R ���^�\\�- ••vlc[nr 4.f I wl ' � �, r i � � `�' oEu.os for o '."t ^/ �'���<•' lilt - S•�. mruln ra -' NOIEf f .• +' �ICOI IIIIIICS SITE PLAN l ;, NON.N<..roH•AL W1 L.I 0r TRACT 15377 . . . . ............,.u —�___-_.�_ •."-••_ ••"•• - �' •_•...:.:.-' MIIN[l01•1,4�N.1 tIV[41f R.N I 1 FIGURE 2A Darnell & ASSOCIATES, INC. SI TE PLAN TM -- 15377 9604040R.DWG IFS 03-07-01 WI TH 9 LOT ALTERNATIVE TM -- 15 419 SECTION I EXISTING CONDITIONS LEVEL OF SERVICE Level of Service(LOS)is a professional industry standard by which to measure the operating conditions of a given roadway segment or intersection. Level of service is defined on a scale of A to F, where LOS A represents free flowing traffic conditions with no restrictions on maneuvering or operating speeds,low traffic volumes and high speeds;LOS B represents stable flow,more restrictions,operating speeds beginning to be affected by traffic volumes;LOS C represents stable flow,more restrictions,speed and maneuverability more closely controlled by higher traffic volumes;LOS D represents conditions approaching unstable flow,traffic volumes profoundly affect arterials; LOS E represents unstable now, and some stoppages; and LOS F represents forced flow,many stoppages,and low operating speeds. Local agencies encourage operation of LOS D or better at existing intersections and roadway segments. Level of Service analysis was conducted using the Intersection Capacity Utilization(ICU)methodology for signalized intersections. This analysis assumed 1,700 vehicles per lane per hour and added a clearance interval of 0.05 to each calculation. Stop controlled intersections were analyzed with the Highway Capacity Manual (HCM)methodology. Analyses results are detailed in the Impacts section below. EXISTING INTERSECTIONS As noted previously, six(6)intersections were identified for potential project impacts in the vicinity of the project. A field review determined the intersection geometrics which are depicted graphically on Figure 3. As can be seen in Figure 3, the four(4) intersections along Warner Avenue are signalized. The Graham Street intersections are operated by stop sign control. Manual traffic counts (AM/PM peak hours) at intersections were conducted in October of 1996. These traffic volumes are presented on Figure 4. ROADWAY SEGMENTS Daily traffic volumes were collected on Graham Street and on Warner Avenue between Greentree and Graham Street in October 1996. Other daily traffic on Warner Avenue was assembled from the Bolsa Chica Traffic Study and represents 1994 traffic volumes. It should be noted that the October 1996 counts do not demonstrate a significant change from 1994 volumes. Daily traffic volumes are also presented on Figure 4. Graham Street is currently a two lane commuter road which provides 64' of pavement from Warner to the proposed project access. South of this access to Glenstone,the road narrows to 52'due to the overcrossing of the flood control channel. This roadway also provides bikelanes. 5 .... ... ..__.. .............................:.: ... . ....... . ........ .......... ...... ... ......... _ _.. ..._. (N J O M D Z U N Z D (n D D n O = m m Z D m -k r O O WARNER AVE / PENDLETON r KENILWORTH �- � 4 GLENSTONE LEGEND -.4 0 = TRAFFIC SIGNAL •� = STOP SIGN SLATER AVE T � = APPROACH LANES Darnell & ASSOCIATES, INC. FIGURE 3 EXISTING INTERSECTION GEOMETRICS o cn W ti m a J D Z 2 x C) 0 r- (A0 WNm N v 30/143 w 193/188O 0 m Z 83/90357/340 984/1252 w N41 � voo o 624/866 2/7 -0 704/1118 T- 598/922 r 42/97 � 41/70 I 84/195 V I 30,000 i go 28,300 0 30,000 0 25,000 WARNS AVE 4 ✓ 78/88 J � ( o/24 f 0' 7/31 984 1058 133/168 f 734/781 N 1216/1321 '`' / w r�i 921/930 —� N cn 11/30 N g/3B tic,, c, 189/233 o cn N 90/171 N rn W 00 N m O cD cD PENDLETON �1 KENILWORTH o �, a' 196/209 J N 150/33 0/4 7 200 cn � 26/44 � 3 /8 1 N 15/14 N 2/0 LEGEND 10/14 E4CA N o = TRAFFIC SIGNAL GLENSTONE XX/YY = AM/PM PEAK TRAFFIC SLATER AVE ZZZ = DAILY TRAFFIC Darnell & ASSOCIATES, INC. FIGURE 4 EXISTING TRAFFIC VOLUMES SECTION II PROJECT RELATED CONDITIONS TRIP GENERATION Trip generation for the proposed land use was obtained from the San Diego Association of Governments (SANDAG)Traffic Generators. This publication is based on the Institute of Transportation Engineers(ITE) Trip Generation Manual. Daily and peak hour generation was approved by the City of Huntington Beach prior to developing this traffic study. The rates and calculations for the site are summarized on Table 1. As can be seen in Table 1, the project has the potential to generate 2,052 daily vehicular trips. During the morning peak hour, the site will generate 164 trips and 205 peak hour trips are expected to occur in the evening peak hour. The project also proposes a small park(3.5 acres of usable area)within the development. For the purposes of this analysis, it was assumed that trips generated by the project include use of the park. Although there may be some outside attraction to the park,these trips would be considered insignificant to traffic flow. It should also be noted that park trips generally occur outside of the peak hour and therefore would have little effect on the intersection analyses. Table 1 Summar Of Tri Generation Rates&Calculations Trip Generation Rates' Single Family Daily: 12 trips per unit AM Peak: /°° 8 of daily split 30:70(inbound:o utbound) PM Peak: 10°/o of daily slit 70:30(inbound:outbound) Average AM Peak Hour PM Peak Hour Daily Land Use DensityTraffic In Out Tot In Out Tot Single Family 171 Units 2,052 49 115 164 144 61 1 205 'Rates 2er SANDAG Traffic Generators 8 TRIP DISTRIBUTION Trip distribution for the project was estimated using likely travel routes and destinations, as well as access and proximity to traffic generators,such as freeways,shopping centers,etc. This project proposes one access point onto Graham Street at"A" Street. Trip distribution patterns were approved by the City of Huntington Beach prior to development of this traffic study. Trip distribution for the project is depicted on Figure 5. Traffic volumes associated with the distribution percentages were assigned to the study intersections. These volumes are presented on Figure 6. EXISTING PLUS PROJECT TRAFFIC The traffic volumes presented in Figure 6 were added to the existing traffic volumes to provide the condition of existing plus project traffic. These volumes are presented on Figure 7. OTHER PROJECTS Research ofthe study area and following discussions with the City of Huntington Beach planning department determined that other projects traffic which will influence the study area for short term traffic conditions is the Holly-Seacliff area development and the residential portion of Meadowlark development. A breakdown of dwelling units was provided by the City,which at buildout will consist of approximately 2,580 units plus 350 from Meadowlark. To provide a worst case short term analysis, it was assumed these units were completed at the time the proposed project is completed. A percentage ofthe cumulative traffic was assigned to Slater, Graham and Warner to provide additional analysis. This traffic was added to the existing plus project scenario. The short term cumulative traffic volumes are depicted on Figure 8. 9 _....... . .............................................. . .......... _......-.. _.__ _. ..... ......... a) G o X r ri = z D z D G7 C7 U S 5 m _ -�'i m J r O Cn 5% o 17% -.— 25% 20% 0 O '— 8% 0 WARNER AVE O '"J 0 °o °0 30% o° °o 25%—.- 107 Wo o No 10% —am- moq PENDLETON KENILWORTH o --- - A STREET (PROJECT ACCESS) PROJECT SITE GLENSTONE V) o z 0 LEGEND cn w '4 35% = TRAFFIC SIGNAL SLATER AVE H000 XX% = PROJECT DISTRIBUTION Darnell & nssociATEs, INC. FIGURE 5 PROJECT DISTRIBUTION PERCENTAGE 350 0 105 m 205 A Lu Z D 205 o 00 D -I N rn I--, U q 6/3 vri 20/10 -.— 29/15 10/29 4' =-- 5/14 165 �— o =— 9/5 101 615 0 4-10 ..J 0 0 0 0 4/12 -- # 515 12/36—► WARNER AVE 15/� � --� ? �-- 11/6 205 � jw 11/6 PENDLETON \� 01) N KENILWORTH 1230 A STREET (PROJECT ACCESS) PROJECT SITE 820 N J P Q 4 GLENSTONE o N O LEGEND 0) a °D W 720 g TRAFFIC SIGNAL »/50 XX/YY = AM/PM PEAK TRAFFIC �" SLATER AVE ZZZ = AVERAGE DAILY TRAFFIC 1051 .� co Darnell & ASSOCIATES, INC. FIGURE 6 960404GR.DWG 02-08-01 DLL PROJECT DAILY AND PEAK HOUR TRAFFIC VOLUMES W W r0 C) W D Q J D m DNJ } U z p co c) O Ul N D N O\ v \\ '- z v co W�i� t o M 00 83 90 w m 193/188 � 377/350 ,�,o 36/14G v �,, / o �,, �,, _-603 936 o 0 � �--- 633/871 1013/1267 J 51/9 118 84 95 42/97 r 2/7 -• ►- 51/99 �•- / o / 30,515 (0l 28,915 1po- 030,4-10 0 25,205 WARNER AVE p -.r • 10 •— 379/244 I � 7/31 1 � 78/88 1 �` 144/174 + �` 738/793-T- � N cc 1228/1357T r �� �20�/276 O0� 932/936 - w o 11/30 \ \ 13/6� C4 CA \��„ 90/171 c,, cD N00 -(p N N O N N W d N 0 PENDLETON KENILWORTH 8,430 _ N a0 213/259 o N 26/44 N �_ 1 05/4 33 --------- A STREET rn J rn N 33/8 cn 15/14 J 8,045 0 LEGEND 2/0 --J c) 10/14 w N � GLENSTONE n000 = TRAFFIC SIGNAL .1 XX/YY = AM/PM PEAK TRAFFIC SLATER AVE ZZZ = AVERAGE DAILY TRAFFIC Darnell & ASSOCIATES, INC. FIGURE EXISTING PLUS PROJECT TRAFFIC 960404GR.DWG 02-08-01 DLL c v N D u D i TTi D W i N O Cb Q ((.n N w �> N p {' \\ P -4 \\\ n U �I pp D \\� rn \ 377/350 N a w 36/14 G o a 103/149 (A a � 193/188 -.—641 1026 0 0 � -+— 739/927 w 1117/1322 °" -.— 762/1149 a w N / -.J n (� 42/97 "'J 2/7 -.� �•- 51/99 -..J �.. 84/195 O / 32,355 0l 30,755 0 32,280 0 (27,075 0 0I • 0 0 WARNER AVE I O OJJ _ _ O O 379/244 J � I (— 7/31 j 1 91 126 f r' 144/174 f 738/909 p, 12 71/14$5—►- N N 1009�130—= P 984/1033—= N cn 11/30 3 36 w w 210/914 \ �' "' 90/171 � w � � w\00 / N � P W O N N w 00 N O PENDLETON C° `° _ KENILWORTH 11 ,095 N J 22r�267 w V\ o N 26 44 0/433 A STREET 33/8 1 15/14 10,710 c 2/0 b LEGEND 10/14 G'w GLENSTONE 001,11 = TRAFFIC SIGNAL XX/YY = AM/PM PEAK TRAFFIC SLATER AVE ZZ_Z = AVERAGE DAILY TRAFFIC Darnell & ASSOCIATES, INC. FIGURE 8 SHORT TERM CUMULATIVE TRAFFIC 960404GR.DWG 02-08-01 DLL SECTION III IMPACTS EXISTING CONDITIONS Existing conditions analyses at study intersections are summarized in Table 2. As can be see n in Table 2 all intersections will operate at LOS C or better for both peak period with existing traffic volumes. No improvements are required. ICU and HCS worksheets are included in the appendix to this report. A daily traffic volume analysis was conducted by comparing daily traffic to volume thresholds for roadway classifications. Thresholds for roadway classifications are published in the City of Huntington Beach's Traffic Impact Assessment Preparation Guidelines. The results are presented in Table 3. As can be seen in Table 3, all segments on Warner Avenue and Graham Street currently operate within acceptable levels of service. EXISTING PLUS PROJECT CONDITIONS Review of Table 2 shows that with the addition of project traffic, all study intersections will continue to operate at acceptable levels of service. No intersection improvements are required as a result of project traffic. ICU and HCS worksheets are included in the appendix to this report. The addition of project relate p � d daily traffic to roadway segments. Y y g is does not cause a level of service defici ency as evidenced in the roadway capacity summary on Table 3. SHORT TERM CUMULATIVE With the addition of the other project development to existing plus project conditions,analyzed intersections and street segments will continue to operate at acceptable levels of service as summarized in Tables 2 and 3. Worksheets for this condition are provided in the appendix. PROJECT IMPACT Table 4 was developed in accordance with City of Huntington Beach Traffic Impact Analyses Guidelines to determine the project's share of total intersection impact. Table 4 shows project impacts at all study intersections during the morning and evening peak hours. 14 Table 2 Summary Of Intersection Level Of Service Existing Plus Project Short Term Cumulative Existing Conditions Conditions Conditions Intersection AM Peak PM Peak AM Peak PM Peak AM Peak PM Peak ICU LOS ICU I LOS ICU LOS ICU LOS ICU LOS ICU LOS Bolsa Chica/Wamer 0.62 B 0.62 B 0.63 B 0.63 B 0.65 B 0.65 B Greentree/Warner 0.31 A 0.41 A 0.31 A 0.43 A 0.32 A 0.44 A Graham/Warner 0.55 A 0.61 B 0.59 A 0.67 B 0.62 B 0.70 B Springdale/Warner 0.61 B 0.74 C 0.61 B 0.75 C 0.62 B 0.77 C Graham/Glenstone(stop) N/A B N/A A N/A C N/A B N/A D N/A B Graham/Slater(stop) N/A A N/A A N/A A N/A B N/A A N/A B to LOS=Level of Service defined using ICU methodology for signalized intersections Stop controlled intersections were analyzed with HCM methodology Table 3 Summary Of Short Term Roadway Capacity Exist+ Short LOS D Exist Project Term Segment Class Capacity ADT V/C LOS ADT V/C LOS ADT V/C LOS Warner Avenue ► Bolsa Chica/Greentree 6 Major 48,600 30,000 0.62 A 30,515 0.63 A 32,355 0.67 B ► Greentree/Warner 6 Major 48,600 28,300 0.58 A 28,915 0.59 A 30,755 0.63 A ► Warner/Springdale 6 Major 48,600 30,000 0.62 A 30,410 0.63 A 32,280 0.66 B ► East of Springdale 6 Major 48,600 25,000 0.51 1 A 25,205 0.52 1 A 27,075 0.56 1 A Graham Street ► Glenstone/"A"Street 2 Commuter 11,700 7,200 0.62 A 8,045 0.69 B 10,710 0.92 D ► "A"Street/Warner 2 Commuter 11,700 7,200 0.62 A 8,430 0.72 B 11,095 0.95 D LOS=Level of Service Capacity per City of Huntington Beach TIA Guidelines ADT=Average Daily Traffic V/C=Volume to capacity LOS D ratio Table 4 Parkside Estates Residential Project Percentage of Net Traffic Impact on Intersections Intersections Traffic Volumes AM Peak Calculation Net Traffic Impact EB/WB Street NB/SB Street Vp Ve Vc=Vp+Ve+Vsht 100*VpNc-Ve I(%) Warner Bolsa Chica 41 3020 3209 100*41/(3209-3020) 21.69 Warner Greentree 49 2294 2491 100*49/(2491-2294) 24.87 Warner Graham 98 2770 3173 100*98/(3173-2770) 24.32 Warner Springdale 32 3480 3622 100*32/(3622-3480) 22.54 Slater Graham 66 578 672 100*66(/672-578) 70.21 Glenstone Graham 66 794 888 100*66/(888-794) 70.21 Intersections Traffic Volumes PM Peak Calculation Net Traffic Impact EB/WB Street NB/SB Street Vp Ve Ve=Vp+Ve+Vsht 100*VpNc-Ve I(%) Warner Bolsa Chica 51 3633 3853 100*51/(3853-3633) 23.18 Warner Greentree 61 2974 3219 100*61/(3219-2974) 24.90 Warner Graham 122 3354 3752 100*122(/3752-3354) 30.65 Warner Springdale 40 4223 4450 100*40/(4450-4223) 17.62 Slater Graham 82 672 789 100*82/(789-672) 70.09 Glenstone Graham 82 734 861 100*82/(861-734) 64.57 Vp=Project traffic volume; Vc=Cumulative traffic volume for the short term study period; Ve=Existing traffic volume Vsht=Other projects traffic volume; Vc=Vp+Ve+Vsht; Vc-Ve=Vp+Vsht Source: Section 30.1.07.02-Percentage of Net Traffic Impact,City of Huntington Beach FUTURE CONDITIONS A future conditions analysis was also conducted for the year 2020 traffic conditions. Traffic volume data for this forecast year was obtained from the Bolsa Chica Project Traffic Impact Analysis,August 16, 1994. These traffic volumes were approved for our use by the City of Huntington Beach. Traffic volumes were projected for the major intersections on Warner Avenue, including Bolsa Chica, Graham Street and Springdale Street. Projections were also made for Graham Street/Slater Avenue with the assumption of a traffic signal. These traffic volumes are presented on Figure 9. The improvements identified in the Bolsa Chica report for intersection modifications are represented by the lane geometry depicted on Figure 10. The ICU calculation summaries with the assumed lane geometries are presented in Table 5. As can seen in Table 5, the intersection of Bolsa Chica/Warner Avenue will operate at LOS E for both peak periods. The intersection of Graham Street/Wamer will also operate at LOS E. These deficiencies were documented in the Bolsa Chica traffic study,however,no improvements were recommended in the study. ► Bolsa Chica/Wamer Avenue - Existing configuration cannot accommodate future demand. Minimum improvements to this intersection to obtain adequate level of service consist of restriping the intersection to provide dual left turns for east/west with two through lanes and exclusive right turns(or three throughs with optional right). This can be accommodated within existing pavement width. Both restriping alternatives will achieve LOS D operation for both peak periods as well as maintain bikelanes. ► Graham Street/Wamer Avenue - The existing lane geometrics at this intersection cannot accommodate the projected peak hour demand for year 2020. Improvements to this intersection to obtain adequate PM peak hour level of service consists of an exclusive southbound right turn lane from Graham to Warner. These additional lane geometrics are also presented on Figure 10. YEAR 2020 DAILY TRAFFIC A summary of daily traffic impact on roadway segments is presented on Table 6, assuming roadways constructed to their ultimate classifications. As can be seen in Table 6, all roadways will operate within acceptable levels of service for projected year 2020 traffic volumes. 18 L4 o < NSW S N —. Z (� C4W > D p Ul Lo G7 z ccoo m cn " k— 439/378 w\ N -' � ccn � 229 j198 v n-•— 641/901 (D co 174/261 G' -P' cn ..— 588/1105 r 790/1346 .� � �.�. 39/142 185/519 37 800 39 800 19 j67 36 100 33,200 o o I� WARNER AVE O o O 525/430 "� Z �"' 1 303/99� f ('` 1261143 + �" 734 j896 �, U, 1 00/1305—► N 1023/1012—= ry o> rn ry Q, Oo 136/359 .A cam\ 00 -A rn 34/112`1 CDrn t� \�o, 127/363 00 cfl\ 1 \\N cn �"� W\P CIS W cD cn —+ W (A cn �J cfl cp J N 10,700 00o ry -,I �179/236 CA cnn) ('40/113 1 p r SLATER AVE O 1 LEGEND N g = TRAFFIC SIGNAL 00 c XX/YY = AM/PM PEAK TRAFFIC ZZZ = AVERAGE DAILY TRAFFIC Darnell & ASSOCIATES, INC. FIGURE 9 YEAR 2020 VOLUMES c> W O D J r- 2 z U D (10 D WARNER AVE o ils-0 0 0 0 N o + � LEGEND p SLATER AVE o , °o = TRAFFIC SIGNAL 1 = APPROACH LANES - - = RECOMMENDED IMPROVEMENTS I I I FIGURE 10 Darnell & ASSOCIATES, INC. YEAR 2020 GEOMETRICS Table 5 Summa Of Year 2020 Intersection Level Of Service Year 2020 Conditions Intersection AM Peak PM Peak ICU LOS ICU LOS Bolsa Chica/Warner 0.98 E 0.97 E ► Mitigated(dual left EB/WB,2 thru,excl rot) 0.80 D 0.87 D ► Mitigated(dual left EB/WB,3 thru,opt rat) 0.82 D 0.84 D Graham/Warner 0.69 B 0.92 E ► Mitigated(exclusive SBR) 0.64 B 0.69 B Springdale/Warner 0.54 A 0.77 EAJ Graham/Slater 0.30 A 0.37 LOS=Level of Service defined using ICU methodolo Table 6 Summa Of Year 2020 Roadway Ca aci LOS D 2020 Segment Class Capacity ADT V/C LOS Warner Avenue ► West of Bolsa Chica 6 Major 48,600 37,800 0.70 B ► Bolsa Chica/Graham 6 Major 48,600 39,800 0.74 C ► Graham/Springdale 6 Major 48,600 36,100 0.67 B ► East of Springdale 6 Major 1 48,600 33,200 1 0.61 1 B Graham Street ► Warner/Glenstone Second 25,200 10,700 0.38 A LOS=Level of Service Capacity per City of Huntington Beach TIA Guidelines ADT=Average Daily Traffic V/C=Volume to capacity(LOS E)ratio 21 SECTION IV ACCESS FULL ACCESS FROM A STREET TO GRAHAM STREET The project proposes unrestricted access at the intersection of A Street (new project street) and Graham Street. This intersection was analyzed for existing plus project conditions, assuming one lane for exiting vehicles and a left turn pocket for northbound Graham Street. The analysis was performed with stop control on A Street. Project traffic volumes for this scenario are depicted on Figure 11. For both the morning and evening peaks,north/south movement on Graham Street operates at LOS A. The eastbound left/right operates at LOS C. SIGNAL WARRANT ANALYSIS Caltrans traffic signalization warrants were conducted for the intersection of Graham Street/A Street with the project and cumulative projects. The following traffic warrants were satisfied: ► Interruption of continuous flow ► AM peak hour ► PM peak hour Traffic signal warrant worksheets are included in the appendix to this report. SIGHT DISTANCE Corner sight distance based on prevailing speeds was measured in the field to determine the ability of motorists traveling northbound on Graham Street and eastbound on"A" Street to see each other. Based on City provided speed surveys taken in 1994,the 85th percentile speed on Graham Street between Warner Avenue and Slater Avenue is 45 mph and the posted speed limit is 40 mph. Because our sight distance analysis was performed for northbound traffic only and since there is a stop sign on Graham at Glenstone approximately 700 feet south of the proposed "A" Street,a new speed survey was conducted to determine if the stop sign on Graham Street at Glenstone had a significant effect on prevailing speeds for northbound traffic just south of"A"Street. The results for the northbound direction of travel shows that the 85th percentile speed is 40 mph. Based on City comments,we calculated corner sight distance based on 45 mph. 22 M z Z) WARNER AVE Fr' z co ni D T D El- DORADO D J n N _T_ —{ Q � � Y 00� PENDLETON P Z n z GLENROY r*i N W KENILWORTH 00 (O 2052 A STREET (PROJECT ACCESS) 0 LEGEND 69/37 No XX/YY = AM/PM PEAK PROJECT ONLY TRAFFIC 46/24 00 Z ZZ = PROJECT ONLY DAILY TRAFFIC Darnell & ASSOCIATES, INC. FIGURE 11 "A" STREET NO LEFT TURN OUT TRAFFIC 960404GR.DWG 02-08-01 DLL Using the Caltrans Highway Design Manual, Table 405.1A, corner sight distance for a 45 mph road is approximately 500 feet. This distance is measured from a 3.5' height at the location of the driver on the minor road to a 4.25'object height in the center of the approaching lane of the major road. Based on existing topography,we were unable to attain 500'of corner site distance at "A" Street. Signalization of Graham Street/A Street would eliminate left turn safety concerns at this location. .Alternative options may include secondary access through residential neighborhoods combined with left turn prohibition at the Graham Street/A Street access. To further enhance safety at the project access, it is recommended to improve operation on Graham Street from Glenstone to Warner Avenue by restriping the roadway within existing pavement widths. The restriping would preserve 7' bikelanes and incorporate a 14' two-way left turning median along this span. In front of the project south to Glenstone,one 12'travel lane in each direction can be accommodated. From the "A" Street north to Warner, one 18'travel lane in each direction can be accommodated. The two-way left turn median will allow left turning vehicles at all access points along Graham to take refuge while waiting for appropriate gaps in the traffic stream. The median also allows vehicles exiting the side streets a safety zone and an acceleration lane. By maintaining the median all the way to Warner Avenue,other side street accesses can benefit from this safety improvement. ACCIDENT DATA As required in the City of Huntington Beach's Traffic Impact Analyses Guidelines, a review of accident history in the project area was performed. Over a 2-1/2 year period,traffic collisions on the 1/2 mile segment of Graham Street from Warner to Slater resulted in one (1) incident with no report of injury. This rate calculates to 0.25 collisions per one million vehicle miles(mvm)traveled. It should be noted that this one accident was vehicle/fixed object and the cause was attributable to driving under the influence. According to the Countywide averages for accident history for Orange County on two lane roadways,the average is 1.5 accidents/mvm. Based on the proposed project and recommended safety mitigation to include a traffic signal and roadway modifications,the introduction of the proposed project is not expected to raise the incident rate on Graham Street. Accidents at involved intersections on Graham Street over the same 2-1/2 year period are summarized as follows: ► Graham/Pendleton-One vehicle/vehicle collision; no injury ► Graham/Glenstone-One vehicle/bicycle collision; injury ► Graham/Slater-One vehicle/fixed object collision;no injury ► Graham/Warner-Nine incidents with nine reported injuries The incident rate on Graham Street near the project are insignificant. A higher incident rate occurs at the intersection of Graham/Wamer with approximately 3.6 collisions occurring each year. Although higher traffic density does not necessarily correlate to increased accident rates,the proposed project's contribution of traffic at this intersection is 3.75%of the short term total.. In an effort to quantify this added demand in terms of accident potential,a calculation was performed that equates to an increase 0.135 incidents per year (3.6+3.75%=3.735)or one accident every 7.4 years. This potential is considered insignificant. 24 SECTION V RECOMMENDATIONS The development of 171 single family residential units on the subject property does not have a significant traffic impact on the existing roadway system. Based on year 2020 analysis of the roadway system,the following are recommended improvements to the intersections analyzed in this study: 1• Bolsa Chica Street/Warner Avenue-reconfigure intersection for east/west traffic to provide dual left turns and either three throughs or two throughs and an exclusive right turn lane. This deficiency is a product of cumulative growth and not a direct result of the proposed project. This project should contribute its fair share to improvement of this intersection. 2. Graham Street/Warner Avenue-reconfigure intersection to provide an exclusive southbound right turn lane from Graham Street to Warner Avenue. This deficiency is a product of cumulative growth and not a direct result of the proposed project. This project should contribute its fair share to improvement of this intersection. The project's fair share of improvements to the arterial street system should be covered by traffic impact fees paid by the project. The traffic impact fees for this project would equate to $153,900 based on the City's existing fee ordinance(171 units x 12 trips/unit x$75.00 per trip). Access to/from the project should be provided at "A" Street at Graham Street with a traffic signal. The project should be responsible for restriping Graham Street from Glenstone to the project access("A" Street)as follows: Two 7 foot bikelanes;one 12'through lane in each direction,and a 14'two-way left turning median. If desired, from "A" Street to Warner Avenue, provide the following striping: ► Two 7 foot bikelanes,one 18'through lane in each direction,and a 14'two-way left turning median. 25 I, APPENDIX SOUTHLAND CAR COUNTERS VEHICLE AND MANUAL COUNTS N-S STREET: PLAZA/ DATE: 10/24/96 CITY: HUNTINGTON GREENTREE BEACH E-W STREET: WARNER DAY: THURSDAY PROJECT# 0281001A NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND NL NT NR SL ST SR EL ET ER WL WT WR TOTAL LANES: 1 1 0 1 1 1 1 2 0 1 2 0 ----------------------------------------------------------------------------- 6:00 AM 15 AM 30 AM 45 AM 7:00 AM 7 0 1 2 0 1 2 249 0 1 259 3 525 15 AM 3 1 0 4 0 1 2 268 2 0 234 5 520 30 AM 6 0 2 7 0 0 0 355 0 0 250 11 631 45 AM 5 1 4 8 0 0 3 344 1 1 241 11 619 8:00 AM 2 0 2 10 0 2 2 254 2 0 211 8 4-93 15 AM 9 0 3 10 0 0 2 264 3 0 230 7 528 30 AM 4 0 1 8 1 1 1 256 1 2 189 19 483 45 AM 6 0 1 6 1 3 1 299 2 1 195 14 529 9:00 AM 15 AM 30 AM 45 AM 10:00 AM 15 AM 30 AM 45 AM ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- TOTAL NL NT NR SL ST SR EL ET ER WL WT WR TOTAL VOLUMES = 42 2 14 55 2 8 13 2289 11 5 1809 78 4328 AM Peak Hr Begins at 700 AM PEAK VOLUMES = 21 2 7 21 0 2 7 1216 3 2 984 30 2295 ADDITIONS:SIGNALIZED SOUTHLAND CAR COUNTERS VEHICLE .AND MANUAL COUNTS N-S STREET: PLAZA/ DATE: 10/24/96 CITY: HUNTINGTON GREENTREE BEACH E-W STREET: WARNER DAY: THURSDAY PROJECT# 0281001P NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND NL NT NR SL ST SR EL ET ER WL WT WR TOTAL LANES: 1 1 0 1 1 1 1 2 0 1 2 0 - ----------------------------------------------------------------------------- 2:00 PM 15 PM 30 PM 45 PM 3:00 PM 15 PM 30 PM 45 PM 4:00 PM 7 0 0 27 4 6 3 238 3 1 219 32 540 15 PM 0 U 5 26 1 3 4 287 4 0 222 41 593 30 PM 2 0 1 30 1 3 3 290 9 1 264 37 641 45 PM 3 2 0 28 3 2 8 310 9 0 260 39 664 5:00 PM 1 1 0 31 5 6 8 301 5 1 290 36 685 15 PM 4 1 1 23 3 11 12 333 11 1 337 27 764 30 PM 2 1 2 35 1 6 6 318 12 3 296 33 715 45 PM 5 0 0 35 1 9 5 369 8 2 329 47 810 6:00 PM 15 PM 30 PM 45 PM TOTAL NL NT NR SL ST SR EL ET ER WL WT WR TOTAL VOLUMES = 24 5 9 235 19 46 49 2446 61 9 2217 292 5412 PM Peak Hr Begins at 500 PM PEAK VOLUMES = 12 3 3 124 10 32 31 1321 36 7 1252 143 2974 ADDITIONS:SIGNALIZED SOUTHLAND CAR COUNTERS VEHICLE AND MANUAL COUNTS N-S STREET: GRAHAM DATE: 10/24/96 CITY: HUNTINGTON BEACH E-W STREET: WARNER DAY: THURSDAY PROJECT# 0281002A NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND NL NT NR SL ST SR EL ET ER WL WT WR TOTAL LANES: 1 1 1 1 1 0 1 3 0 1 3 0 6:00 AM 15 AM 30 AM 45 AM 7:00 AM 83 31 11 8 10 10 12 218 34 5 178 9 609 15 AM 69 39 9 11 18 9 12 243 36 10 181 22 659 30 AM 83 46 21 12 40 7 15 227 84 17 161 25 738 45 AM 58 54 11 16 18 17 33 296 35 9 184 27 758 8:00 AM 41 25 15 17 11 13 29 233 24 4 161 28 601 15 AM 49 34 10 14 23 18 19 224 19 4 162 31 607 30 AM 51 30 5 13 27 17 24 288 30 8 174 17 685 45 AM 41 20 11 11 20 12 9 177 27 10 110 10 458 9:00 AM 15 AM 30 AM 45 AM 10:00 AM 15 AM 30 AM 45 AM TOTAL NL NT NR SL ST SR EL ET ER WL WT WR TOTAL VOLUMES = 475 279 94 102 167 103 153 1906 289 67 1311 169 5115 AM Peak Hr Begins at 700 AM PEAK VOLUMES = 293 170 52 47 86 43 72 984 189 41 704 83 2764 ADDITIONS:SIGNALIZED � 3 SOUTHLAND CAR COUNTERS VEHICLE AND MANUAL COUNTS N-S STREET: GRAHAM DATE: 10/24/96 CITY: HUNTINGTON BEACH E-W STREET: WARNER DAY: THURSDAY PROJECT# 0281002P NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND NL NT NR SL ST SR EL ET ER WL WT WR TOTAL LANES: 1 1 1 1 1 0 1 3 0 1 3 0 ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- 2:00 PM 15 PM 30 PM 45 PM 3:00 PM 15 PM 30 PM 45 PM 4:00 PM 43 28 8 23 31 24 13 199 51 14 167 18 619 15 PM 46 32 15 29 55 22 15 257 59 15 217 29 791 30 PM 46 16 16 28 46 11 20 242 59 15 236 19 754 45 PM 36 36 10 28 44 35 17 264 63 14 229 16 792 5:00 PM 54 23 14 20 30 34 26 219 55 11 247 19 752 15 PM 64 25 18 20 36 29 22 299 54 24 298 25 914 30 PM 48 19 12 25 45 23 17 249 57 17 279 28 819 45 PM 42 27 15 18 42 21 23 291 67 18 294 18 876 6:00 PM 15 PM 30 PM 45 PM TOTAL NL NT NR SL ST SR EL ET ER WL WT WR TOTAL VOLUMES = 379 206 108 191 329 199 153 2020 465 128 1967 172 6317 PM Peak Hr Begins at 500 PM PEAK VOLUMES = 208 94 59 83 153 107 88 1058 233 70 1118 90 3361 ADDITIONS:SIGNALIZED i SOUTHLAND CAR COUNTERS VEHICLE AND MANUAL COUNTS N-S STREET: BOLSA DATE: 10/24/96 CITY: HUNTINGTON CHICA BEACH E-W STREET: WARNER DAY: THURSDAY PROJECT# 0281003A NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND NL NT NR SL ST SR EL ET ER WL WT WR TOTAL LANES: 1 2 0 2 1 2 1 3 0 1 3 0 6:00 AM 15 AM 30 AM 45 AM 7:00 AM 10 28 15 92 6 48 100 152 2 4 165 90 712 15 AM 13 41 34 102 4 73 101 191 4 7 162 101 833 30 AM 10 29 16 91 4 58 82 179 1 18 132 85 705 45 AM 12 23 24 48 14 78 96 212 4 13 165 81 770 8:00 AM 11 21 20 49 12 68 109 156 4 7 129 83 669 15 AM 8 27 26 92 12 74 87 182 3 11 133 98 753 30 AM 8 25 20 114 10 61 75 146 3 11 96 71 640 45 AM 10 19 28 89 10 55 62 164 2 9 103 73 624 9:00 AM 15 AM 30 AM 45 AM 10:00 AM 15 AM 30 AM 45 AM -------------------------- TOTAL NL NT NR SL ST SR EL ET ER WL WT WR TOTAL VOLUMES = 82 213 183 677 72 515 712 1382 23 80 1085 682 5706 AM Peak Hr Begins at 700 AM PEAK VOLUMES = 45 121 89 333 28 257 379 734 11 42 624 357 3020 ADDITIONS:SIGNALIZED SOUTHLAND CAR COUNTERS VEHICLE AND MANUAL COUNTS N-S STREET: BOLSA DATE: 10/24/96 CITY: HUNTINGTON CHICA BEACH E-W STREET: WARNER DAY: THURSDAY PROJECT# 0281003P NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND NL NT NR SL ST SR EL ET ER WL WT WR TOTAL LANES: 1 2 0 2 1 2 1 3 0 1 3 0 ---------------------------------------------------- 2:00 PM 15 PM 30 PM 45 PM 3:00 PM 15 PM 30 PM 45 PM 4:00 PM 3 27 20 114 26 88 60 133 13 13 145 62 704 15 PM 8 17 22 124 31 99 65 190 9 24 164 68 821 30 PM 9 16 19 102 32 95 57 176 8 30 148 83 775 45 PM 6 13 20 140 38 94 61 198 6 20 174 84 854 5:00 PM 8 9 23 123 39 95 55 173 7 18 198 85 833 15 PM 6 13 24 139 41 115 74 227 9 36 248 106 1038 30 PM 11 19 16 119 33 124 61 175 7 19 193 74 851 45 PM 7 22 21 130 32 106 54 206 7 24 227 75 911 6:00 PM 15 PM 30 PM 45 PM TOTAL NL NT NR SL ST SR EL ET ER WL WT WR TOTAL VOLUMES = 58 136 165 991 272 816 487 1478 66 184 1497 637 6787 PM Peak Hr Begins at 500 PM PEAK VOLUMES = 32 63 84 511 145 440 244 781 30 97 866 340 3633 ADDITIONS:SIGNALIZED SOUTHLAND CAR COUNTERS VEHICLE AND MANUAL COUNTS N-S STREET: GRAHAM DATE: 10/23/96 CITY: HUNTINGTON BEACH E-W STREET: SLATER DAY: WEDNESDAY PROJECT# 0281004A NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND NL NT NR SL ST SR EL ET ER WL WT WR TOTAL LANES: 1 0 0 1 1 1 0 6:00 AM 15 AM 30 AM 45 AM 7:00 AM 28 13 20 5 3 44 113 15 AM 28 12 24 7 3 40 114 30 AM 33 23 47 19 5 58 185 45 AM 21 19 33 10 9 57 149 8:00 AM 27 11 37 5 9 41 130 15 AM 23 9 28 5 11 37 113 30 AM 14 7 38 14 3 28 104 45 AM 19 12 28 8 5 38 110 9:00 AM 15 AM 30 AM 45 AM 10:00 AM 15 AM 30 AM 45 AM TOTAL NL NT NR SL ST SR EL ET ER WL WT WR TOTAL VOLUMES = 0 193 106 255 73 0 0 0 0 48 0 343 1018 AM Peak Hr Begins at 715 AM PEAK VOLUMES 0 109 65 141 41 0 0 0 0 26 0 196 578 ADDITIONS:3-WAY STOP N/S/E SOUTHLAND CAR COUNTERS VEHICLE AND MANUAL COUNTS N-S STREET: GRAHAM DATE: 10/23/96 CITY: HUNTINGTON BEACH E-W STREET: SLATER DAY: WEDNESDAY PROJECT# 0281004P NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND NL NT Nit SL ST SR EL ET ER WL WT WR TOTAL LANES: 1 0 0 1 1 1 0 2:00 PM 15 PM 30 PM 45 PM 3 :00 PM 15 PM 30 PM 45 PM 4:00 PM 11 8 38 28 8 35 128 15 PM 11 4 41 17 13 34 120 30 PM 15 7 57 28 11 37 155 45 PM 19 7 51 26 10 45 158 5:00 PM 19 7 56 20 9 48 159 15 PM 13 5 57 29 15 68 187 30 PM 12 13 55 37 9 39 165 45 PM 8 2 57 29 11 54 161 6:00 PM 15 PM 30 PM 45 PM TOTAL NL NT NR SL ST SR EL ET ER WL WT WR TOTAL VOLUMES = 0 108 53 412 214 0 0 0 0 86 0 360 1233 PM Peak Hr Begins at 500 PM PEAK VOLUMES = 0 52 27 225 115 0 0 0 0 44 0 209 672 ADDITIONS:3-WAY STOP N/S/E SOUTHLAND CAR COUNTERS VEHICLE AND MANUAL COUNTS N-S STREET: GRAHAM DATE: 10/23/96 CITY: HUNTINGTON BEACH E-W STREET: GLENSTONE DAY: WEDNESDAY PROJECT# 0281005A NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND NL NT NR SL ST SR EL ET ER WL WT WR TOTAL LANES: 0 1 0 0 1 0 0 1 0 0 1 0 6:00 AM 15 AM 30 AM 45 AM 7:00 AM 0 70 2 7 26 1 7 1 0 0 0 14 128 15 AM 0 62 7 32 29 2 0 0 1 4 0 25 162 30 AM 1 62 24 91 43 2 7 2 2 19 0 91 344 45 AM 2 69 5 6 31 1 6 0 3 8 0 23 154 8:00 AM 0 61 4 11 37 2 2 0 4 2 0 11 134 15 AM 1 71 1 2 30 0 2 0 1 2 0 4 114 30 AM 0 44 0 2 48 3 0 0 3 1 0 2 103 45 AM 1 46 0 6 37 3 2 0 2 0 0 6 103 9:00 AM 15 AM 30 AM 45 AM 10:00 AM 15 AM 30 AM 45 AM TOTAL NL NT NR SL ST SR EL ET ER WL WT WR TOTAL VOLUMES = 5 485 43 157 281 14 26 3 16 36 0 176 1242 AM 'Peak Hr Begins at 715 AM PEAK VOLUMES = 3 254 40 140 140 7 15 2 10 33 0 150 794 ADDITIONS:4-WAY STOP SOUTHLAND CAR COUNTERS VEHICLE AND MANUAL COUNTS N-S STREET: GRAHAM DATE: 10/23/96 CITY: HUNTINGTON BEACH E-W STREET: GLENSTONE DAY: WEDNESDAY PROJECT# 0281005P NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND NL NT NR SL ST SR EL ET ER WL WT WR TOTAL LANES: 0 1 0 0 1 0 0 1 0 0 1 0 2:00 PM 15 PM 30 PM 45 PM 3:00 PM 15 PM 30 PM 45 PM 4:00 PM 1 37 3 12 60 2 1 0 0 0 0 4 120 15 PM 1 44 2 11 61 3 4 1 1 2 1 6 137 30 PM 0 49 2 10 89 4 0 1 1 2 0 6 164 45 PM 2 51 7 13 71 6 2 0 1 2 0 5 160 5:00 PM 5 56 10 16 70 3 3 0 5 1 2 9 180 15 PM 1 68 4 14 73 6 5 0 4 1 1 8 185 30 PM 5 51 3 15 94 1 4 0 1 3 1 7 185 45 PM 2 61 2 17 80 4 2 0 4 3 0 9 184 6:00 PM 15 PM 30 PM 45 PM ------------------------------ TOTAL NL NT NR SL ST SR EL ET ER WL WT WR TOTAL VOLUMES = 17 417 33 108 598 29 21 2 17 14 5 54 1315 PM Peak Hr Begins at 500 PM PEAK VOLUMES = 13 236 19 62 317 14 14 0 14 8 4 33 734 ADDITIONS:4-WAY STOP (U SOUTHLAND CAR COUNTERS VEHICLE AND MANUAL COUNTS N-S STREET: SPRINGDALE DATE: 10/29/96 CITY: HUNTINGTON BEACH E-W STREET: WARNER DAY: TUESDAY PROJECT# 0281006A ----------------------------------------------------------------------------- NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND NL NT NR SL ST SR EL ET ER WL WT WR TOTAL LANES: 1 2 0 1 2 0 1 3 0 1 3 0 ----------------------------------------------------------------------------- 6:00 AM 15 AM 30 AM 45 AM 7:00 AM 60 109 22 48 55 14 25 208 26 23 152 42 784 15 AM 49 132 18 32 64 6 22 225 24 13 154 50 789 30 AM 52 142 25 43 80 11 34 230 15 18 131 48 829 45 AM 72 186 38 63 107 33 52 258 25 30 161 53 1078 8:00 AM 50 101 20 59 37 19 36 227 16 22 144 45 776 15 AM 47 101 14 47 30 22 52 182 16 20 141 40 712 30 AM 33 97 12 44 48 19 28 176 26 6 114 33 636 45 AM 29 58 15 33 37 15 25 182 15 21 114 27 571 9:00 AM 15 AM 30 AM 45 AM 10:00 AM 15 AM 30 AM 45 AM TOTAL NL NT NR SL ST SR EL ET ER WL WT WR TOTAL VOLUMES = 392 926 164 369 458 139 274 1688 163 153 1111 338 6175 AM Peak Hr Begins at 700 AM PEAK VOLUMES = 233 569 103 186 306 64 133 921 90 84 598 193 3480 ADpITIONS:SIGNALIZED SOUTHLAND CAR COUNTERS VEHICLE AND MANUAL COUNTS N-S STREET: SPRINGDALE DATE: 10/29/96 CITY: HUNTINGTON BEACH E-W STREET: WARNER DAY: TUESDAY PROJECT# 0281006P NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND NL NT NR SL ST SR EL ET ER WL WT WR TOTAL LANES: 1 2 0 1 2 0 1 3 0 1 3 0 --------------------------- 2:00 PM 15 PM 30 PM 45 PM 3 :00 PM 15 PM 30 PM 45 PM 4:00 PM 51 88 16 58 112 28 38 206 38 33 182 33 883 15 PM 52 69 28 53 142 27 35 192 51 39 231 50 969 30 PM 48 82 17 69 135 23 29 203 46 31 171 45 899 45 PM 34 86 22 70 141 32 32 200 57 32 177 55 938 5:00 PM 60 86 17 77 178 30 32 235 65 41 238 58 1117 15 PM 55 100 26 57 165 38 36 223 42 43 209 43 1037 30 PM 66 40 26 85 155 21 63 276 29 66 253 48 1128 45 PM 48 43 21 63 165 27 37 196 35 45 222 39 941 6:00 PM 15 PM 30 PM 45 PM --------------- TOTAL NL NT NR SL ST SR EL ET ER WL WT WR TOTAL VOLUMES = 414 594 173 532 1193 226 302 1731 363 330 1683 371 7912 PM Peak Hr Begins at 500 PM PEAK VOLUMES = 229 269 90 282 663 116 168 930 171 195 922 188 4223 ADDITIONS:SIGNALIZED I Lucation_Graham siu hAnilworth _ Huntington B Volumes fur Thursiay 10 24!19%)6_ 0 S20002 AM Period NB SB Pbl Period NB SB 12:00-12:15 7 9 12:00-12:15 45 51 12:15—12:30 7 8 12:15—12:30 45 48 12:30-12:45 3 9 12:30-12:45 39 37 12:45—1:00 3 20 7 33 53 12:45—1:00 48 177 65 201 378 1:00-1:15 3 1 1:00-1:15 61 60 1:15-1:30 3 3 1:15-1:30 55 49 1:30-1:45 0 1 1:10-1:45 50 38 1:45-2:00 2 S 3 8 16 1:45-2:00 49 215 39 186 401 2:00-2:15 1 3 100-2:15 50 90 2:15-2:30 4 2 2:15-2:30 64 65 2:30-2:452 0 2:30-2:45 45 51 2:45-3:00 1 8 3 8 16 2:45-3:00 60 219 50 256 475 3:00-3:15 2 3 3:00-3:15 62 71 3:15-3.30 3 1 3:15-3:30 45 53 3:30-3:45 4 1 3:30-3:45 71 83 _):45—4:00 1 10 1 6 16 3:45—4:00 67 245 82 289 534 4:00-4:15 1 1 4:00-4:15 53 80 4:15-4:30 6 4 4:15-4:30 65 90 4:30-4:45 6 0 4:30-4:45 51 100 4:45-5:00 12 25 4 9 34 4:45-5:00 46 '_15 95 365 580 5:00-5:15 11 3 5:00-5:15 82 81 5:15-5:30 19 3 5:15—i:30 81 95 5:30-5:45 30 3 5:'-0-5.45 53 96 5:45-6:00 24 84 9 18 102 71 29_ 104 376 668 o:UU-6:15 44 10 6:00-6:15 73 89 6:15-6:30 48 8 6:15-6:30 93 77 6:30-6:45 53 17 6:30-6:45 62 33 6:45—7:00 85 2 35 29 64 299 6:45—7:00 67 295 69 318 613 7:00-7:15 87 34 7:00-7:15 51 68 7:15-7:;t1 36 76 7:15-7:30 39 56 7:30-7:45 162 126 7:30-7:45 36 46 7:45-8:00 87 422 35 271 693 7:45-8:00 _ 25 151 38 208 359 8:00-8:15 75 50 8:00-8:15 20 28 8:15-8:30 70 38 8:15—S:30 29 38 3:30-8:45 49 46 8:30-8:45 22 29 8:45-9:00 61 255 43 1812 437 3:45-9:00 26 97 38 133 230 9:00-9:15 41 31 9:00-9:15 20 44 9:15-9:30 3 �q 9:15-9:30 32 24 9:30-9:45 36 44 9:30-9:45 19 28 9:45-10:00 45 154 38 142 296 9:45-10:00 21 92 27 123 215 10:00-10:15 49 28 10:00-10:15 22 16 10:15-10:30 48 44 10:15-10:30 7 14 10:30—10:45 -3 35 10:30-10:45 5 18 10:45—11:00 35 165 32 139 304 10:45—11:00 6 40 8 56 96 11:00-11:15 37 42 11:00-11:15 W 7 11:15—11:30 43 39 l l:15--11:30 3 9 11:30-11:45 44 35 11:30-11:45 11 11 11:45—_12:00 38 162 41 157 319 11:45-12:00 10_ 34 12 39 73 Total Volumes 1548 1037 2585 2072 2550 4622 Daily Totals 3620 3587 7207 .. .. _..:,.:... �"•'4- ..,..,�a..c.h,��:...,:..�_3.f.._3 .�._..._...���...._.__..�. ..'. _ _ .._ ..__.._ . . :.gym ..... Lo-ation:Kenilworth w/o Graham Huntington B Volumes for Thursday 10/24/1996 02820001 _ AM Period EB WB PM Period EB WB 12:00-12:15 0 0 12:00-12.15 11 4 12:15-12:30 0 1 12:15-12:30 12 6 12:30-12:45 0 0 12:30-12:45 9 2 12:45—1:00 0 0 0 1 1 12:45—1:00 8 40 6 18 58 1:00-1:15 0 0 1:00-1:15 10 8 1:15-1:30 0 0 1:15-1:30 11 9 1:30-1:45 0 0 1:30-1:45 10 7 1:45-2:00 0 0 0 0 0 1:45-2:00 7 38 3 27 65 2:00-2:15 1 1 2:00-2:15 11 2 2:15-2:30 0 0 2:15-2:30 7 9 2:30-2:45 0 0 2:30-2:45 6 1 2:45—3:00 0 1 0 1 2 2:45-3:00 4 28 3 15 43 3:00—3:15 2 1 3:00-3:15 8 3 3:15-3:30 0 0 3:15—3:30 9 7 3:30-3:45 0 0 3:30-3:45 5 5 3.45-4:00 1 3 0 1 4 3:45-4:00 2 24 12 27 51 4:00-4:15 0 0 4:00-4:15 4 9 4:15-4:30 0 0 4:15-4:30 0 9 4:30-4:45 0 1 4:30-4:45 5 9 4:45-5:00 1 1 1 2 3 4:45-5:00 3 12 11 38 50 5:00-5:15 5 1 5:00-5:15 6 9 5:15-5:30 6 2 5:15-5:30 10 6 5:30-5:45 1 0 5:30-5:45 9 12 5:45-6:00 1 13 2 5 18 5:45-6:00 11 336 11 38 74 6:00-6:15 3 1 6:00-6:15 1 14 6:15-6:30 4 0 6:15-6:30 8 6 6:30-6:45 9 1 6:30-6:45 7 7 6:45—7:00 8 24 1 3 27 6:45—7:00 4 20 7 34 54 7:00-7:15 6 4 7:00-7:15 5 4 7:15-7:30 12 4 7:15-7:30 0 7 7:30-7:45 14 2 7:30-7:45 9 4 7:45-8:00 10 42 1 11 53 7:45-8:00 1 15 2 17 32 8:00-8:15 15 8 8:00-8:15 0 7 8:15-8:30 6 6 8:15-8:30 2 3 8:30-8:45 6 3 8:30-8:45 2 8 8:45-9:00 9 36 7 24 60 8:45-9:00 2 6 1 19 25 9:00-9:15 7 0 9:00-9:15 0 2 9:15-9:30 8 4 9:15-9:30 1 3 9:30-9:45 4 3 9:30-9:45 2 3 9:45—10:00 6 25 5 12 37 9:45—10:00 0 3 5 13 16 10:00-10:15 1 3 10:00-10:15 2 2 10:15-10:30 4 5 10:15-10:30 2 5 10:30-10:45 5 5 10:30-10:45 0 1 10:45—11:00 2 12 1 14 26 10:45—11:00 0 4 3 11 15 11:00-11:15 4 4 11:00-11:15 0 0 11:15-11:30 4 2 11:15-11:30 3 2 11:30-11:45 3 3 11:30-11.45 0 3 11:45-12:00 4 15 2 11 26 11:45-12:00 1 4 1 6 10 Total Volumes 172 85 257 230 263 493 Daily"Totals 402 348 750 7;7 La:ation:Pendleton w/o Graliam Huntington B Volumes for Thursday 10/24/96 02820005 AM Period EB WB PM Period EB WB 12:00-12:15 0 1 12:00-12:15 3 6 12:15-12:30 1 0 12:15-12:30 2 4 12:30-12:45 0 0 12:30-12:45 5 2 12:45—1:00 1 2 1 2 4 12:45—1:00 5 15 2 14 29 1:00—1:15 0 1 1:00—1:15 3 4 1:1.5-1:30 1 1 1:15-1:30 3 4 1:30-1:45 0 1 1:30-1:45 4 3 1:45-2:00 0 1 1 4 5 1:45-2:00 3 13 8 19 32 2:00-2:15 0 0 2:00-2:15 3 1 2.15-2:30 1 1 2:15-2:30 5 5 2:30-2:45 0 0 2:30-2:45 4 4 2.45-3:00 0 1 1 2 3 2:45-3:00 1 13 3 13 26 3:00-3:15 1 1 3:00-3:15 6 10 3.15-3:30 0 0 3:15-3:30 3 3 3:30-3:45 0 0 3:30-3:45 3 4 3:45-4:00 0 1 0 1 2 3:45-4:00 6 18 5 22 40 4:00-4:15 0 0 4:00-4:15 6 4 4:15-4:30 2 0 4:15-4:30 5 9 4:30-4:45 0 0 4:30-4:45 6 7 4:45-5:00 0 2 0 0 2 4:45-5:00 7 24 12 32 56 5:00-5:15 0 2 5:00-5:15 5 10 5:1S-5:30 2 0 5:15-5:30 3 8 5:30-5:45 3 1 5:30-5:45 10 9 5:45-6:00 2 7 2 5 12 5:45-6:00 8 26 11 38 64 6:00-6:15 5 2 6:00-6:15 6 10 6:15-6:30 4 2 6:15-6:30 10 7 6:30-6:45 7 1 6:30-6:45 6 14 6:45-7:00 8 24 4 9 33 6:45-7:00 3 25 6 37 62 7:00-7:15 10 4 7:00-7:15 6 5 7:15-7:30 10 6 7:15-7:30 8 10 7:30-7:45 13 7 7:30-7:45 4 5 7:45-8:00 10 43 9 26 69 7:45-8:00 4 22 6 26 48 8:00-8:15 7 5 8:00-8:15 3 3 8:15-8:30 8 4 8:15-8:30 5 7 8:30-8:45 6 4 8:30-8:45 0 8 8:45—9:00 10 31 2 15 46 8:45—9:00 1 9 2 20 29 9:00-9:15 6 3 9:00-9:15 6 4 9:15-9:30 7 3 9:15-9:30 3 4 9:30-9:45 7 5 9:30-9:45 1 6 9:45—10:00 10 30 6 17 47 9:45—10:00 6 16 3 17 33 10:00-10:15 4 2 10:00-10:15 3 2 10:15-10:30 0 3 10:15-10:30 2 1 10:30-10:45 8 3 10:30-10:45 1 0 10:45—11:00 5 17 3 11 28 10:45—11:00 1 7 3 6 13 11:00-11:15 3 3 11:00-11:15 0 0 11:15-11:30 4 6 11:15-11:30 1 1 11:30-11:45 5 3 11:30-11:45 0 1 11:45—12:00 5 17 5 17 34 11:45—12:00 6 7 0 2 9 Total Volumes 176 109 285 195 246 441 Dailv Totals I 371 355 F 726 4 - l-ocation:Warner bm Graham & Greentree Huntington B Volumes Cur Thursday 10/24i96 0282009 AM Period EB WB PM Period EB WB 12:00-12:15 25 45 12:00-12:15 183 184 12:15—12:30 28 34 12:15—12:30 182 179 12.30-12:45 27 33 12:30-12:45 177 189 12:45—1:00 21 101 27 139 240 12:45—1:00 174 716 174 726 1442 1:00-1:15 15 16 1:00-1:15 128 209 1:15—1:30 13 22 1:15—1:30 116 195 1:30-1:45 10 15 1:30-1:45 132 203 1:45-2:00 20 58 13 66 124 1:45-2:00 155 531 185 792 1323 2:00-2:15 14 16 2:00-2:15 148 258 2:15-2:30 6 8 2:15-2:30 172 211 2:30-2:45 13 9 2:30-2:45 204 209 2:45-3:00 16 49 14 47 96 2:45-3:00 172 696 218 896 1592 3:00-3:15 14 9 3:00-3:15 174 249 3:15—3:30 10 9 3:15—3:30 181 224 3:30-3:45 4 8 3:30-3:45 187 238 3:45-4:00 8 36 16 42 78 3:45-4:00 193 735 274 985 1720 4:00-4:15 7 12 4:00-4:15 285 305 4:15-4:30 11 14 4:15-4:30 286 286 4:30-4:45 10 22 4:30-4:45 315 289 4:45-5:00 16 44 24 72 116 4:45-5:00 325 1211 293 1173 2384 5:00-5:15 22 39 5:00-5:15 330 333 5:15-5:30 26 41 5:15-5:30 356 337 5:30-5:45 35 60 5:30-5:45 368 335 5:45-6:00 49 132 72 212 344 5:45-6:00 351 1405 335 1340 2745 6:00-6:15 60 105 6:00-6:15 299 347 6:15-6:30 52 117 6:15-6:30 288 281 6:30-6:45 120 191 6:30-6:45 227 245 6:45-7:00 126 358 200 613 971 6:45-7:00 192 1006 288 1161 2167 7:00-7:15 205 238 7:00-7:15 205 230 7:15-7:30 267 238 7:15-7:30 193 211 7:30-7:45 293 249 7:30-7:45 152 220 7:45-8:00 324 1089 269 994 2083 7:45-8:00 139 689 168 829 1518 8:00-8:15 315 231 8:00-8:15 121 178 8:15-8:30 312 247 8:15-8:30 122 154 8:30-8:45 298 198 8:30-8:45 128 151 8:45-9:00 278 1203 193 869 2072 8:45-9:00 124 495 169 652 1147 9:00-9:15 201 170 9:00-9:15 101 143 9:15-9:30 172 176 9:15-9:30 89 148 9:30-9:45 177 172 9:30-9:45 109 119 9:45—10:00 181 731 155 673 1404 9:45—10:00 92 391 126 536 927 10:00-10:15 180 187 10:00-10:15 87 105 10:15—1030 141 184 10:15—10:30 74 91 10:30-10:45 173 181 10:30-10:45 72 86 10:45-11:00 171 665 171 723 1388 10:45—11:00 64 297 68 350 647 11:00-11:15 190 197 11:00-11:15 39 54 11:15—11:30 186 187 11:15—11:30 58 •55 11:30-11:45 172 174 11:30-11:45 49 48 11:45—12:00 181 729 172 730 1459 11:45—12:00 30 176 32 189 365 Total Volumes 5195 5180 10375 8348 9629 17977 Daily Totals 13543 14809 F28312 j .. .... ...... .. .....—.__'... ..._.....A..__... .. _L..L.Ai...i« ..r�a`t...�.3._K.4 YYn.r...n..._. :..4a.�_�.i....._�...f:L'.. ._.J....uti.,._�_..... -uc ':Iilrti! _.. .. Location:Grecntree s,,o Warner -- -- - ---- Huntutaton B N"Oluntcs for Thursday 0?3'0004 ANl Period NB SB PM Period NB S13 12:00-12:15 0 0 12:00-12:15 2 2 12:15-12:30 1 0 12:15-12:30 1 2 12:30-12:45 0 0 1230-12:45 3 5 12:45-1.00 0 1 1 1 2 12:45-1:00 1 7 0 9 16 1:00-1:15 0 0 1:00-1:15 3 5 1:15-1:30 0 0 1:15-1:30 2 3 1:30-1:45 0 0 1:30-1:45 1 4 1:45-2:00 1 1 0 0 1 1:45-2:00 3 S? 4 16 25 2:00-2:15 0 0 2:00-2:15 3 5 115-2:30 0 0 2.15-2.30 4 6 2:30-2:45 0 0 2:30-2:45 7 10 145-3:00 U 0 0 0 0 2:45—3:00 6 20 7 23 48 3:00-3:15 0 2 3:00-3:15 4 8 3.15-3:30 0 0 3:15-3:30 1 6 3:3 0-3:45 U 0 3:30-3:45 4 5 3:45-4:00 1 1 U 2 3 3.45-4:00 7 16 7 26 42 4:00-4:15 0 0 4:00-4:15 5 11 4:15-4:30 0 0 4:15-4:30 4 9 4:30-4:45 1 0 4:30-4:45 4 10 4:45-5:00 2 3 1 1 4 4:45-5:00 5 18 10 40 58 5:00-5:15 5 0 5:00-5:15 5 10 5:15-5:30 4 0 5:15-5:3U 5 11 5:31)-5:45 6 S:30-5:45 5 15 5:45-6:00 4 19 1 3 12 5:45-0:00 6 -11 11 47 68 6:00-6:15 4 0 6:00-6:15 9 1 6:15-6:30 7 0 6:15-6:30 7 16 6:30-6:45 12 2 6:30-6:45 4 7 6:45—7:00 8 31 4 35 6:45—7:00 4 24 6 30 54 7:00-7:15 11 1 7:00-7:15 6 3 7:15-7:30 7:15-7:30 10 4 U-7:45 7 7:30-7:45 4 45-8:00 10 32 2 8 40 7:45-8:UU _ 5 29 ' 13 4_1 8:uO-8:15 - 3 2 8:00-8:15 6 _ 3 8:15-8:30 1_' 4 8:15-3:30 1 1 3:30-8:45 3 5 8:30-8:45 4 5 3:45-9:00 9 32 2 13 45 8:45-9:00 1 1' 3 1' 24 9:00-9:15 6 2 9:00-9-.15 3 1 9:15-9:30 5 5 9:15-9:30 3 2 9::U-9:45 11 6 9:_0—`?:45 i 9:45—10.00 0 12 3 16 38 9:45—.10:00 3 14 2 7 21 10:00-10:15 7 5 10:00-10:15 3 2 10:15-10:30 5 3 10:15-10:30 2 1 10:30-10:45 9 5 10:30-10:45 1 1 10:45—11:jJU24 5 18 42 10:45—11:UU U 6 1 5 11 11:00-11:15 8 10 11:W-11:15 2 4 11:15-11:30 4 7 11:15-11:30 4 4 11:30-11:45 1 _' 11:30-11:45 2 1 11:45-12:QU 2 15 3 22 37 1_1:45-12:00 1 '? 0 9 13 Total Volumes 181 88 269 .185 242 427 Daily Totals 1-7 366 330 I 696 I INTERSECTION CAPACITY UTILIZATION INTERSECTION CAPACITY UTILIZATION WORKSHEET WORKSHEET INTERSECTION: BOLSA CHICA/WARNER INTERSECTION: BOLSA CHICA/WARNER DATE: 10/24/96 DATE: 10/24/96 TIME: AM PEAK HOUR TIME: PM PEAK HOUR --------------------- --------------------- (BOLWARN.WK1/11-25-96) (BOLWARN.WK1/11-25-96) EXISTING EXISTING ------------------------- ------------------------- No. AM Peak 0.00 Crit. No. PM Peak 0.00 Crit. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. ----- ----- ------- ----- ---- ---- ------- ----- ----- NL 1 1700 45 0.03 0.03 0 NL 1 1700 32 0.02 0.02 0 NR 0 10000 0 0.00 0.00 0 NR 0 10000 0 0.00 0.00 0 NT 2 3400 210 0.06 0.06 1 NT 2 3400 147 0.04 0.04 1 SL 2 3400 333 0.10 0.10 1 SL 2 3400 511 0.15 0.15 1 SR 2 3400 257 0.08 0.08 0 SR 2 3400 440 0.13 0.13 0 ST 1 1700 28 0.02 0.02 0 ST 1 1700 145 0.09 0.09 0 EL 1 1700 379 0.22 0.22 1 EL 1 1700 244 0.14 0.14 1 ER 0 10000 0 0.00 0.00 0 ER 0 10000 0 0.00 0.00 0 ET 3 5100 745 0.15 0.15 0 ET 3 5100 811 0.16 0.16 0 WL 1 1700 42 0.02 0.02 0 WL 1 1700 97 0.06 0.06 0 WR 0 10000 0 0.00 0.00 0 WR 0 10000 0 0.00 0.00 0 WT 3 5100 981 0.19 0.19 1 WT 3 5100 1206 0.24 0.24 1 N/S component 0.16 N/S component 0.19 E/W component 0.41 E/W component 0.38 Lost Time 0.05 Lost Time 0.05 ICU 0.62 ICU 0.62 Critical movement identified by a 1. Critical movement identified by a 1. Ten lanes for a right turn indicates free movement. Ten lanes for a right turn indicates free movement. NA - Not Applicable NA - Not Applicable [ S INTERSECTION CAPACITY UTILIZATION INTERSECTION CAPACITY UTILIZATION WORKSHEET WORKSHEET INTERSECTION: GREENTREE/WARNER INTERSECTION: GREENTREE/WARNER DATE: 10/24/96 DATE: 10/24/96 TIME: AM PEAK HOUR TIME: PM PEAK HOUR --------------------- --------------------- (GRNWARN.WKI/11-25-96) (GRNWARN WK1/11-25-96) EXISTING EXISTING ------------------------- ------------------------- No. AM Peak 0.00 Crit. No. PM Peak 0.00 Crit. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. ------- ----- ---- ---- ------- ----- ----- ------- ----- ---- ---- ------- ----- ----- NL 1 1700 21 0.01 0.01 0 NL 1 1700' 12 0.01 0.01 0 NR 0 10000 0 0.00 0.00 0 NR 0 10000 0 0.00 0.00 0 NT 1 1700 9 0.01 0.01 1 NT 1 1700 6 0.00 0.00 1 SL 1 1700 21 0.01 0.01 1 SL 1 1700 124 0.07 0.07 1 SR 1 1700 2 0.00 0.00 0 SR 1 1700 32 0.02 0.02 0 ST 1 1700 0 0.00 0.00 0 ST 1 1700 10 0.01 0.01 0 EL 1 1700 7 0.00 0.00 0 EL 1 1700 31 0.02 0.02 1 ER 0 10000 0 0.00 0.00 0 ER 0 10000 0 0.00 0.00 0 ET 3 5100 1219 0.24 0.24 1 ET 3 5100 1357 0.27 0.27 0 WL 1 1700 2 0.00 0.00 1 WL 1 1700 7 0.00 0.00 0 WR 0 10000 0 0.00 0.00 0 WR 0 10000 0 0.00 0.00 0 WT 3 5100 1014 0.20 0.20 0 WT 3 5100 1395 0.27 0.27 • 1 N/S component 0.02 N/S component 0.07 E/W component 0.24 E/W component 0.29 Lost Time 0.05 Lost Time 0.05 ICU 0.31 ICU 0.41 Critical movement identified by a 1. Critical movement identified by a 1. Ten lanes for a right turn indicates free movement. Ten lanes for a right turn indicates free movement. NA - Not Applicable NA - Not Applicable INTERSECTION CAPACITY UTILIZATION INTERSECTION CAPACITY UTILIZATION WORKSHEET WORKSHEET INTERSECTION: GRAHAM/WARNER INTERSECTION: GRAHAM/WARNER DATE: 10/24/96 DATE: 10/24/96 TIME: AM PEAK HOUR TIME: PM PEAK HOUR --------------------- --------------------- (GRAMWARN.WKI/11-25-96) (GRAMWARN.WKI/11-25-96) EXISTING EXISTING ------------------------- No. AM Peak 0.00 Crit. No. PM Peak 0.00 Crit. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. ------- ----- ---- ---- ------- ----- ----- ------- ----- ---- ---- ------- ----- ----- NL 1 1700 293 0.17 0.17 1 NL 1 1700 208 0.12 0.12 1 NR 1 1700 52 0.03 0.03 0 NR 1 1700 52 0.03 0.03 0 NT 1 1700 170 0.10 0.10 0 NT 1 1700 94 0.06 0.06 0 SL 1 1700 47 0.03 0.03 0 SL 1 1700 83 0.05 0.05 0 SR 0 10000 0 0.00 0.00 0 SR 0 10000 0 0.00 0.00 0 ST 1 1700 129 0.08 0.08 1 ST 1 1700 260 0.15 0.15 1 EL 1 1700 78 0.05 0.05 0 EL 1 1700 88 0.05 0.05 0 ER 0 10000 0 0.00 0.00 0 ER 0 10000 0 0.00 0.00 0 ET 3 5100 1173 0.23 0.23 1 ET 3 5100 1291 0.25 0.25 1 WL 1 1700 41 0.02 0.02 1 WL 1 1700 70 0.04 0.04 1 WR 0 10000 0 0.00 0.00 0 WR 0 10000 0 0.00 0.00 0 WT 3 5100 787 0.15 0.15 0 WT 3 5100 1208 0.24 0.24 0 N/S component 0.25 N/S component 0.27 E/W component 0.25 E/W component 0.29 Lost Time 0.05 Lost Time 0.05 ICU 0.55 ICU 0.61 Critical movement identified by a 1. Critical movement identified by a 1. Ten lanes for a right turn indicates free movement. Ten lanes for a right turn indicates free movement. NA - Not Applicable NA - Not Applicable _ i INTERSECTION CAPACITY UTILIZATION INTERSECTION CAPACITY UTILIZATION WORKSHEET WORKSHEET INTERSECTION: SPRINGDALE/WARNER INTERSECTION: SPRINGDALE/WARNER DATE: 10/24/96 DATE: 10/24/96 TIME: AM PEAK HOUR TIME: PM PEAK HOUR --------------------- --------------------- (SPRWARN.WKl/11-25-96) (SPRWARN.WK1/11-25-96) EXISTING EXISTING ------------------------- No. AM Peak 0.00 Crit. No. PM Peak 0.00 Crit. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. --- ---- ------- ----- ----- ------- ----- ---- ---- ------- ----- ----- NL 1 1700 233 0.14 0.14 0 NL 1 1700 229 0.13 0.13 1 NR 0 10000 0 0.00 0.00 0 NR 0 10000 0 0.00 0.00 0 NT 2 3400 672 0.20 0.20 1 NT 2 3400 359 0.11 0.11 0 SL 1 1700 186 0.11 0.11 1 SL 1 1700 282 0.17 0.17 0 SR 0 10000 0 0.00 0.00 0 SR 0 10000 0 0.00 0.00 0 ST 2 3400 370 0.11 0.11 0 ST 2 3400 779 0.23 0.23 1 EL 1 1700 133 0.08 0.08 0 EL 1 1700 168 0.10 0.10 0 ER 0 10000 0 0.00 0.00 0 ER 0 10000 0 0.00 0.00 0 ET 3 5100 1011 0.20 0.20 1 ET 3 5100 1101 0.22 0.22 1 WL 1 1700 84 0.05 0.05 1 WL 1 1700 195 0.11 0.11 1 WR 0 10000 0 0.00 0.00 0 WR 0 10000 0 0.00 0.00 0 WT 3 5100 791 0.16 0.16 0 WT 3 5100 1110 0.22 0.22 0 N/S component 0.31 N/S component 0.36 E/W component 0.25 E/W component 0.33 Lost Time 0.05 Lost Time 0.05 ICU 0.61 ICU 0.74 Critical movement identified by a 1. Critical movement identified by a 1. Ten lanes for a right turn indicates free movement. Ten lanes for a right turn indicates free movement. NA - Not Applicable NA - Not Applicable Z.1 INTERSECTION CAPACITY UTILIZATION (ICU) Intersection: Bolsa Chica/Wamer Date: 2-01 Condition: Existing+project Lane Capacity: 1700 Number AM PEAK PM PEAK Of Lane Movement Lanes Capacity Volume V/C Volume V/C NL 1 1700 45 0.026 - 32 0.019 - NT 2 3400 210 0.062 * 147 0.043 * NR 0 0 0 0.000 0 0.000 SL 2 3400 341 0.100 * 535 0.157 * ST 1 1700 28 0.016 - 145 0.085 - SR 2 3400 257 0.076 440 0.129 EL 1 1700 379 0.223 * 244 0.144 ET 3 5100 749 0.147 - 823 0.161 - ER 0 0 0 0.000 0 0.000 WL 1 1700 42 0.025 - 97 0.057 - WT 3 5100 1010 0.198 * 1221 0.239 WR 0 0 0 0.000 0 0.000 N+S Critical Move 0.162 0.201 E+W Critical Move 0.421 0.383 Lost Time 0.050 0.050 NB Right Turn Comp. 0.000 0.000 SB Right Turn Comp. 0.000 0.000 EB Right Turn Comp. 0.000 0.000 WB Right Turn Comp. 0.000 0.000 ICU 0.633 0.634 LOS B B icustand INTERSECTION CAPACITY UTILIZATION (ICU) Intersection: Wamer/Greentree Date: 2-01 Condition: Existing+project Lane Capacity: 1700 Number AM PEAK PM PEAK of Lane Movement Lanes Capacity Volume V/C Volume V/C NL 1 1700 21 0.012 - 12 0.007 - NT 1 1700 9 0.005 * 6 0.004 * NR 0 0 0 0.000 0 0.000 SL 1 1700 23 0.014 * 131 0.077 * ST 1 1700 1 0.001 - 10 0.006 - SR 1 1700 2 0.001 32 0.019 EL 1 1700 7 0.004 - 31 0.018 ET 3 5100 1231 0.241 * 1393 0.273 - ER 0 0 0 0.000 0 0.000 WL 1 1700 2 0.001 * 7 0.004 - WT 3 5100 1049 0.206 - 1413 0.277 * WR 0 0 0 0.000 0 0.000 N+S Critical Move 0.019 0.081 E+W Critical Move 0.243 0.295 Lost Time 0.050 0.050 NB Right Turn Comp. 0.000 0.000 SB Right Turn Comp. 0.000 0.000 EB Right Turn Comp. 0.000 0.000 WB Right Turn Comp. 0.000 0.000 ICU 0.311 0.426 LOS A A 23 icustand INTERSECTION CAPACITY UTILIZATION (ICU) Intersection: Graham/Wamer Date: 2-01 Condition: Existing+project Lane Capacity: 1700 Number AM PEAK PM PEAK of Lane Movement Lanes Capacity Volume V/C Volume V/C NL 1 1700 327 0.192 * 226 0.133 NT 1 1700 181 0.106 - 100 0.059 - NR 1 1700 75 0.044 64 0.038 SL 1 1700 47 0.028 - 83 0.049 - ST 1 1700 134 0.079 * 274 0.161 SR 0 0 0 0.000 0 0.000 EL 1 1700 78 0.046 - 88 0.052 - ET 3 5100 1188 0.233 * 1334 0.262 * ER 0 0 0 0.000 0 0.000 WL 1 1700 51 0.030 * 99 0.058 * WT 3 5100 787 0.154 - 1208 0.237 - WR 0 01 0 0.000 0 0.000 N+S Critical Move 0.271 0.294 E+W Critical Move 0.263 0.320 Lost Time 0.050 0.050 NB Right Turn Comp. 0.000 0.000 SIB Right Turn Comp. 0.000 0.000 EB Right Turn Comp. 0.000 0.000 WB Right Turn Comp. 0.000 0.000 ICU 0.584 0.664 LOS A B icustand INTERSECTION CAPACITY UTILIZATION (ICU) Intersection: Springdale/Wamer Date: 2-01 Condition: Existing+project Lane Capacity: 1700 Number AM PEAK PM PEAK of Lane Movement Lanes Capacity Volume V/C Volume V/C NL 1 1700 233 0.137 - 229 0.135 NT 2 3400 672 0.198 * 359 0.106 - NR 0 0 0 0.000 0 0.000 SL 1 1700 186 0.109 * 282 0.166 - ST 2 3400 373 0.110 - 793 0.233 SR 0 0 0 0.000 0 0.000 EL 1 1700 144 0.085 - 174 0.102 - ET 3 5100 1022 0.200 * 1107 0.217 * ER 0 0 0 0.000 0 0.000 WL 1 1700 84 0.049 * 195 0.115 * WT 3 5100 796 0.156 - 1124 0.220 - WR 0 0 0 0.000 0 0.000 N+S Critical Move 0.307 0.368 E+W Critical Move 0.250 0.332 Lost Time 0.050 0.050 NB Right Turn Comp. 0.000 0.000 SIB Right Turn Comp. 0.000 0.000 EB Right Turn Comp. 0.000 0.000 WB Right Turn Comp. 0.000 0.000 ICU 0.607 0.750 LOS B C Z icustand HCS: Unsignalized Intersections Release 3.2 Hartshorn Phone: Fax: E-Mail: ALL-WAY STOP CONTROL(AWSC) ANALYSIS Intersection: Graham/Glenstone City/State: HB, CA Analyst: Darnell/bh Project No. : 960404 Time period Analyzed: AM - Project Date: 2/01 East/West Street: Glenstone North/South Street: Graham Worksheet 2 - Volume Adjustments and Site Characteristics I Eastbound 1 westbound I Northbound I Southbound I I L T R I L T R 1 L T R 1 L T R I ! I I I Volume 115 2 10 133 0 150 13 274 40 1140 186 341 I % Thrus Left Lane Eastbound Westbound Northbound Southbound Ll L2 L1 L2 Ll L2 L1 L2 Configuration LTR LTR LTR LTR PHF 1.00 1.00 1.00 1.00 Flow Rate 27 183 317 667 Heavy Veh 0 0 0 0 No. Lanes 1 1 1 1 Opposing-Lanes 1 1 1 1 Conflicting-lanes 1 1 1 1 Geometry group 1 1 1 1 Duration, T 1.00 hrs. Worksheet 3 - Saturazicn Headway Adjustment Worksheet Eastbound Westbound Northbound Southbound L1 L2 Ll L2 L1 L2 L1 L2 Flow Rates: Total in Lane 27 163 317 667 Left-Turn 15 33 3 140 Right-Turn 10 150 40 341 Prop. Left-Turns 0.6 0.2 0.0 0.2 Prop. Right-Turns 0.4 0.8 0.1 0.5 Prop. Heavy Vehicle0.0 0.0 0.0 0.0 Geometry Group 1 1 1 1 Adjustments Table 10-40: hLT-adj 0.2 0.2 0.2 0.2 hRT-adj -0.6 -0.6 -0.6 -0.6 hHV-adj 1.7 1.7 1.7 1.7 hadj, computed -0.1 -0.5 -0.1 -0.3 Worksheet 4 - Departure Headway and Service Time Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 Flow rate 27 183 317 667 hd, initial value 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 x, initial 0.02 0.16 0.28 0.59 hd, final value 6.38 5.67 t.lL 5.22 4.66 x, final value 0.05 0.29 0.46 0.66 Move-up time, m 2.0 2.0 2.0 2.0 Service Time 4.4 3.7 3.2 2.7 • Worksheet 5 - Capacity and Level of Service Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 Flow Rate 27 183 317 667 Service Time 4.4 3.7 3.2 2.7 Utilization, x 0'.05 0.29 0.46 0.86 Dep. headway, hd 6.38 5.67 5.22 4.66 Capacity 277 433 567 766 Delay 9.70 10.96 12.64 34.36 LOS A B B D Approach: Delay 9.70 10.96 12.64 34.36 LOS A B B D Intersection Delay 24.45 Intersection LOS C i i HCS: Unsignalized Intersections Release 3.2 Hartshorn Phone: Fax: E-Mail: ALL-WAY STOP CONTROL(AWSC) ANALYSIS Intersection: Graham/Glenstone City/State: Hg, CA Analyst: Darnell/bh Project No. : 960404 Time period Analyzed: PM - Project Date: 1 2/01 -- East/West Street: Glenstone North/South Street: Graham Worksheet 2 - Volume Adjustments and Site Characteristics I Eastbound 1 Westbound Northbound 1 Southbound 1 I L T R I L T R I L T R I L T R 1 I i i I I Volume 114 0 14 18 4 33 113 294 19 162 341 14 1 Thrus Left Lane Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 Configuration LTR LTR LTR LTR PHF 1.00 1.00 1.00 1.00 Flow Rate 28 45 326 417 % Heavy Veh 0 0 0 0 No. Lanes 1 1 1 1 Opposing-Lanes 1 1 1 1 Conflicting-lanes 1 1 1 1 Geometry group 1 1 1 1 Duration, T 1.00 hrs. Worksheet 3 - Saturation Headway Adjustment Worksheet Eastbound Westbound Northbound Southbound L1 L2 Ll L2 Ll L2 L1 L2 Flow Rates: Total in Lane 28 45 326 417 Left-Turn 14 0 13 62 Right-Turn 14 33 19 14 Prop. Left-Turns 0.5 0.2 0.0 0.1 Prop. Right-Turns 0.5 0.7 0.1 0.0 Prop. Heavy Vehicle0.0 0.0 0.0 0.0 Geometry Group 1 1 1 1 Adjustments Table 10-40: hLT-adj 0.2 0.2 0.2 0.2 hRT-adj -0.6 -0.6 -0.6 -0.6 hHV-adj 1.7 1.7 1.7 1.7 hadj, computed -0.2 -0.4 - 0.0 0.0 Worksheet 4 - Departure Headway and Service Time Eastbound Westbound Northbound Southbound L1 L2 L1 L2 Ll L2 L1 L2 Flow rate 28 45 326 417 hd, initial value 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 x, initial 0.02 0.04 0.29 0.37 hd, final value 5.32 5.09 4.49 4.44 x, final value 0.04 0.06 0.41 0.51 Move-up time, m 2.0 2.0 2.0 2.0 Service Time 3.3 3.1 2.5 2.4 Worksheet 5 - Capacity and Level of Service Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 Ll L2 Flow Rate 28 45 326 417 Service Time 3.3 3.1 2.5 2.4 Utilization, x 0.04 0.06 0.41 0.51 Dep. headway, hd 5.32 5.09 4.49 4.44 Capacity 278 295 576 667 Delay 8.55 8.44 10.56 12.11 LOS A A B B Approach: Delay 8.55 8.44 10.56 12.11 LOS A A B B Intersection Delay 11.16 Intersection LOS B HCS: Unsignalized Intersections Release 3.2 Hartshorn . Phone: Fax: E-Mail: ALL-WAY STOP CONTROL(AWSC) ANALYSIS Intersection: Graham/Slater City/State: HB, CA Analyst: Darnell/bh Project No. : 960404 Time period Analyzed: AM - Project Date: 02/01 East/West Street: Slater North/South Street: Graham Worksheet 2 - Volume Adjustments and Site Characteristics Eastbound I Westbound I Northbound I 1 L T R 1 L T R I Southbound L T R 1 I I I L T R 1 I I I Volume 10 0 0 126 0 213 10 112 65 1181 47 0 i Thrus Left Lane Eastbound Westbound Northbound Southbound L1 L2 Ll L2 L1 L2 L1 L2 Configuration L R TR LT PHF 1.00 1.00 1.00 1.00 Flow Rate 26 213 177 228 % Heavy Veh 0 0 0 0 No. Lanes 2 1 1 Opposing-Lanes 0 1 1 Conflicting-lanes 1 2 2 Geometry group 1 1 2 2 Duration, T 1.00 hrs. Worksheet 3 - Saturation Headway Adjustment Worksheet Eastbound Westbound Northbound Southbound L1 L2 Ll L2 L1 L2 Ll L2 Flow Rates: Total in Lane 26 213 177 228 Left-Turn 26 0 0 181 Right-Turn 0 213 65 0 Prop. Left-Turns 1.0 0.0 0.0 0.8 Prop. Right-Turns 0.0 1.0 0.4 0.0 Prop. Heavy Vehicle 0.0 0.0 0.0 0.0 Geometry Group 1 1 2 2 Adjustments Table 10-40: hLT-adj 0.2 0.2 0.2 hRT-adj -0.6 -0.6 -0.6 hHV-adj 1 7 1.7 1.7 hadj, computed 0.2 -0.6 -0.2 0.2 Worksheet 4 - Departure Headway 'and Service Time Eastbound Westbound Northbound Southbound L1 L2 Ll L2 Ll L2 Ll L2 Flow rate 26 213 177 228 hd, initial value 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 x, initial 0.02 0.19 0.16 0.20 hd, final value 4.99 4.19 4.45 4.76 30 x, final value 0.04 0.25 0.22 0.30 Move-up time, m 2.0 2.0 2.0 Service Time 3.0 2.2 2.5 2.8 ' . Worksheet 5 - Capacity and Level of Service Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 Flow Rate 26 213 177 228 Service Time 3.0 2.2 2.5 2.8 Utilization, x 0.04 0.25 0.22 0.30 Dep. headway, hd 4.99 4.19 4.45 4.76 Capacity 276 463 427 478 Delay 8.17 8.57 8.70 9.81 LOS A A A A Approach: Delay 8.53 8.70 9.81 LOS A A A Intersection Delay 9.03 Intersection LOS A V HCS: Unsignalized Intersections Release 3.2 Hartshorn Phone: Fax: E-Mail: ALL-WAY STOP CONTROL(AWSC) ANALYSIS Intersection: Graham/Slater City/State: Hg, CA Analyst: Darnell/bh Project No. : 960404 Time period Analyzed: PM - Project Date: 02/01 East/West Street: Slater North/South Street: Graham Worksheet 2 - Volume Adjustments and Site Characteristics I Eastbound I Westbound I Northbound ) Southbound ) I L T R I L T R I L T R I L T R I I I I Volume i 10 0 0 144 0 259 10 60 27 1246 118 0 i Thrus Left Lane Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 Configuration L R TR LT PHF 1.00 1.00 1.00 1.00 Flow Rate 44 259 87 364 Heavy Veh 0 0 0 0 No. Lanes 2 1 1 Opposing-Lanes 0 1 1 Conflicting-lanes 1 2 2 Geometry group 1 1 2 2 Duration, T 1.00 hrs. Worksheet 3 - Saturation Headway Adjustment Worksheet Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 _ . Flow Rates: Total in Lane e4 259 87 364 Left-Turn 44 0 0 246 Right-Turn 0 259 27 0 Prop. Left-Turns 1.0 0.0 0.0 0.7 Prop. Right-Turns 0.0 1.0 0.3 0.0 Prop. Heavy Vehicle 0.0 0.0 0.0 0.0 Geometry Group 1 1 2 2 Adjustments Table 10-40: hLT-adj 0.2 0.2 0.2 hRT-adj -0.6 -0.6 -0.6 hHV-adj 1.7 1.7 1.7 hadj, computed 0.2 -0.6 -0.2 0.1 Worksheet 4 - Departure Headway and Service Time Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 Flow rate 44 259 87 364 hd, initial value 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 x, initial 0.04 0.23 0.08 0.32 hd, final value 5.14 4.35 4.81 4.80 3� x, final value 0.06 0.31 0.12 0.49 Move-up time, m 2.0 2.0 2.0 Service Time 3.1 2.3 2.8 2.8 Worksheet 5 - Capacity and Level of Service Eastbound Westbound Northbound Southbound L1 L2 L1 L2 Ll L2 L1 L2 Flow Rate 44 259 87 364 Service Time 3.1 2.3 2.8 2.8 Utilization, x 0.06 0.31 0.12 0.49 Dep. headway, hd 5.14 4.35 4.81 4.80 Capacity 294 509 337 614 Delay 8.49 9.32 8.44 12.30 LOS A A A B Approach: Delay 9.20 8.44 12.30 LOS A A B Intersection Delay 10.61 Intersection LOS B 33 INTERSECTION CAPACITY UTILIZATION (ICU) Intersection: Warner/Greentree Date: 2-01 Condition: Cumulative Lane Capacity: 1700 Number AM PEAK PM PEAK of Lane Movement Lanes Capacity Volume V/C Volume V/C NL 1 1700 21 0.012 - 12 0.007 - NT 1 1700 9 0.005 * 6 0.004 * NR 0 0 0 0.000 0 0.000 SL 1 1700 23 0.014 * 131 0.077 * ST 1 1700 1 0.001 - 10 0.006 - SR 1 1700 2 0.001 32 0.019 EL 1 1700 7 0.004 - 31 0.018 ET 3 5100 1274 0.250 * 1521 0.298 - ER 0 0 0 0.000 0 0.000 WL 1 1700 2 0.001 * 7 0.004 - WT 3 5100 1153 0.226 - 1468 0.288 WR 0 01 0 0.000 0 0.000 N+S Critical Move 0.019 0.081 E+W Critical Move 0.251 0.306 Lost Time 0.050 0.050 NB Right Turn Comp. 0.000 0.000 SB Right Turn Comp. 0.000 0.000 EB Right Turn Comp. 0.000 0.000 WB Right Turn Comp. 0.000 0.000 ICU 0.320 0.437 LOS A A J icustand INTERSECTION CAPACITY UTILIZATION (ICU) Intersection: Graham/Wamer Date: 2-01 Condition: Cu mulative umulafive Lane Capacity: 1700 Number AM PEAK PM PEAK of Lane Movement Lanes Capacity Volume V/C Volume V/C NL 1 1700 342 0.201 * 234 0.138 NT 1 1700 186 0.109 - 108 0.064 - NR 1 1700 75 0.044 64 0.038 SL 1 1700 94 0.055 - 108 0.064 - ST 1 1700 170 0.100 * 293 0.172 SR 0 0 0 0.000 0 0.000 EL 1 1700 91 0.054 - 126 0.074 - ET 3 5100 1219 0.239 * 1424 0.279 * ER 0 0 0 0.000 0 0.000 WL 1 1700 51 0.030 * 99 0.058 * WT 3 5100 865 0.170 - 1298 0.255 - WR 0 01 0 0.000 0 0.000 N+S Critical Move 0.301 0.310 E+W Critical Move 0.269 0.337 Lost Time 0.050 0.050 NB Right Turn Comp. 0.000 0.000 SB Right Turn Comp. 0.000 0.000 EB Right Turn Comp. 0.000 0.000 WB Right Turn Comp. 0.000 0.000 ICU 0.620 0.697 LOS B B 35 icustand INTERSECTION CAPACITY UTILIZATION (ICU) Intersection: Bolsa Chica/Wamer Date: 2-01 Condition: Cumulative Lane Capacity: 1700 Number AM PEAK PM PEAK of Lane Movement Lanes Capacity Volume V/C Volume V/C NL 1 1700 45 0.026 - 32 0.019 - NT 2 3400 210 0.062 * 147 0.043 * NR 0 0 0 0.000 0 0.000 SL 2 3400 341 0.100 * 535 0.157 * ST 1 1700 28 0.016 - 145 0.085 - SR 2 3400 257 0.076 440 0.129 EL 1 1700 379 0.223 ' 244 0.144 ET 3 5100 794 0.156 - 939 0.184 - ER 0 0 0 0.000 0 0.000 WL 1 1700 42 0.025 - 97 0.057 - WT 3 5100 1116 0.219 * 1277 0.250 WR 0 0 0 0.000 0 0.000 N+S Critical Move 0.162 0.201 E+W Critical Move 0.442 0.394 Lost Time 0.050 0.050 NB Right Turn Comp. 0.000 0.000 SB Right Turn Comp. 0.000 0.000 EB Right Turn Comp. 0.000 0.000 WB Right Turn Comp. 0.000 0.000 ICU 0.654 0.645 LOS B B 2JG icustand INTERSECTION CAPACITY UTILIZATION (ICU) Intersection: S rin dale/Wamer p 9 Date: 2-01 Condition: Cumulative Lane Capacity: 1700 Number AM PEAK PM PEAK of Lane Movement Lanes Capacity Volume V/C Volume V/C NL 1 1700 233 0.137 - 229 0.135 NT 2 3400 672 0.198 * 359 0.106 - NR 0 0 0 0.000 0 0.000 SL 1 1700 186 0.109 * 282 0.166 - ST 2 3400 375 0.110 - 793 0.233 SR 0 0 0 0.000 0 0.000 EL 1 1700 144 0.085 - 174 0.102 - ET 3 5100 1074 0.211 * 1204 0.236 * ER 0 0 0 0.000 0 0.000 WL 1 1700 84 0.049 * 195 0.115 * WT 3 5100 834 0.164 - 1214 0.238 - WR 0 01 0 0.000 0 0.000 N+S Critical Move 0.307 0.368 E+W Critical Move 0.260 0.351 Lost Time 0.050 0.050 NB Right Turn Comp. 0.000 0.000 SB Right Turn Comp. 0.000 0.000 EB Right Turn Comp. 0.000 0.000 WB Right Turn Comp. 0.000 0.000 ICU 0.617 0.769 LOS L B EC icustand HCS: Unsignalized Intersections Release 3.2 Hartshorn Phone: Fax: E-Mail: ALL-WAY STOP CONTROL(AWSC) ANALYSIS Intersection: Graham/Glenstone City/State: HB, CA Analyst: Darnell/bh Project No. : 960404 Time period Analyzed: AM - Cumlt Date: 2/01 East/West Street: Glenstone North/South Street: Graham Worksheet 2 - Volume Adjustments and Site Characteristics I Eastbound I Westbound I Northbound I Southbound 1 I L T R L I T R L T R I I L T R I i I I I I Volume 115 2 10 133 0 150 13 291 40 1140 197 362 1 Thrus Left Lane Eastbound Westbound Northbound Southbound L1 L2 L1 L2 Ll L2 L1 L2 Configuration LTR LTR LTR LTR PHF 1.00 1.00 1.00 1.00 Flow Rate 27 183 334 699 Heavy Veh 0 0 0 0 No. Lanes 1 1 1 1 Opposing-Lanes 1 1 1 1 Conflicting-lanes 1 1 1 1 Geometry group 1 1 1 1 Duration, T 1.00 hrs. Worksheet 3 - Saturation Headway Adjustment Worksheet Eastbound Westbound Northbound Southbound L1 L2 Ll L2 L1 L2 L1 L2 Flow Rates: Total in Lane 27 183 334 699 Left-Turn 15 33 3 140 Right-Turn 10 150 40 362 Prop. Left-Turns 0.6 0.2 0.0 0.2 Prop. Right-Turns 0.4 0.8 0.1 0.5 Prop. Heavy Vehicle0.0 0.0 0.0 0.0 Geometry Group 1 1 1 1 Adjustments Table 10-40: hLT-adj 0.2 0.2 0.2 0.2 hRT-adj -0.6 -0.6 -0.6 -0.6 hHV-adj 1.7 1.7 1.7 1.7 hadj, computed -0.1 -0.5 -0.1 -0.3 Worksheet 4 - Departure Headway and Service Time Eastbound Westbound Northbound Southbound L1 L2 Ll L2 L1 L2 L1 L2 Flow rate 27 183 334 699 hd, initial value 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3. x, initial 0.02 0.16 0.30 0.62 hd, final value 6.52 5.78 5.28 4.70 x, final value 0.05 0.29 0.49 0.91 Move-up time, m 2.0 2.0 2.0 2.0 Service Time 4.5 3.8 3.3 2.7 Worksheet 5 - Capacity and Level of Service Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 Flow Rate 27 183 334 699 Service Time 4.5 3.8 3.3 2.7 Utilization, x 0.05 0.29 0.49 0.91 Dep. headway, hd 6.52 5.78 5.28 4.70 Capacity 277 433 584 763 Delay 9.85 11.18 13.33 46.81 LOS A B B E Approach: Delay 9.85 11.18 13.33 46.81 LOS A B B E Intersection Delay 31.76 Intersection LOS D HCS: Unsignalized Intersections Release 3.2 Hartshorn Phone: Fax: E-Mail: ALL-WAY STOP CONTROL(AWSC) ANALYSIS Intersection: Graham/Glenstone City/State: HB, CA Analyst: Darnell/bh Project No. : 960404 Time period Analyzed: PM - Cumlt Date: 2/01 East/West Street: Glenstone North/South Street: Graham Worksheet 2 - Volume Adjustments and Site Characteristics I Eastbound I Westbound I Northbound I Southbound 1 I L T R I L T R I L T R 1 L T R I i I I I I Volume 114 0 14 18 4 33 113 314 19 162 362 14 Thrus Left Lane Eastbound Westbound Northbound Southbound L1 L2 L1 L2 Ll L2 Ll L2 Configuration LTR LTR LTR LTR PHF 1.00 1.00 1.00 1.00 Flow Rate 28 45 346 438 Heavy Veh 0 0 0 0 No. Lanes 1 1 1 1 Opposing-Lanes 1 1 1 1 Conflicting-lanes 1 1 1 1 Geometry group 1 1 1 1 Duration, T 1.00 hrs. Worksheet 3 - Saturation Headway Adjustment Worksheet Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 Flow Rates: Total in Lane 28 45 346 438 Left-Turn 14 8 13 62 Right-Turn 14 33 19 14 Prop. Left-Turns 0.5 0.2 0.0 0.1 Prop. Right-Turns 0.5 0.7 0.1 0.0 Prop. Heavy Vehicle0.0 0.0 0.0 0.0 Geometry Group 1 1 1 1 Adjustments Table 10-40: hLT-adj 0.2 0.2 0.2 0.2 hRT-adj -0.6 -0.6 -0.6 -0.6 hHV-adj 1.7 1.7 1.7 1.7 hadj, computed -0.2 -0.4 -0.0 0.0 Worksheet 4 - Departure Headway and Service Time Eastbound Westbound Northbound Southbound L1 L2 Ll L2 L1 L2 L1 L2 Flow rate 28 45 346 438 hd, initial value 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 x, initial 0.02 0.04 0.31 0.39 hd, final value 5.42 5.18 4.52 4.46 x, final value 0.04 0.06 0.43 0.54 Move-up time, m 2.0 2.0 2.0 2.0 Service Time 3.4 3.2 2.5 2.5 Worksheet 5 - Capacity and Level of Service Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 Flow Rate 28 45 346 438 Service Time 3.4 3.2 2.5 2.5 Utilization, x 0.04 0.06 0.43 0.54 Dep. headway, hd 5.42 5.18 4.52 4.46 Capacity 278 295 596 688 Delay 8.65 8.54 10.98 12.74 LOS A A B B Approach: Delay 8.65 8.54 10.98 12.74 LOS A A B B Intersection Delay 11.67 Intersection LOS B HCS: Unsignalized Intersections Release 3.2 Hartshorn Phone: Fax: E-Mail: ALL-WAY STOP CONTROL(AWSC) ANALYSIS Intersection: Graham/Slater City/State: HB, CA Analyst: Darnell/bh Project No. : 960404 Time period Analyzed: AM - Cumlt Date: 02/01 East/West Street: Slater North/South Street: Graham Worksheet 2 - Volume Adjustments and Site Characteristics 1 Eastbound I Westbound I Northbound I Southbound i I L T R I L T R I L T R I L T R I I I i I Volume 10 0 0 126 0 228 10 114 65 1187 52 0 1 Thrus Left Lane Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 Configuration L R TR LT PHF 1.00 1.00 1.00 1.00 Flow Rate 26 228 179 239 % Heavy Veh 0 0 0 0 No. Lanes 2 1 1 Opposing-Lanes 0 1 1 Conflicting-lanes 1 2 2 Geometry group 1 1 2 2 Duration, T 1.00 hrs. Worksheet 3 - Saturation Headway Adjustment Worksheet Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 Flow Rates: Total in Lane 26 228 179 239 Left-Turn 26 0 0 187 Right-Turn 0 228 65 0 Prop. Left-Turns 1.0 0.0 0.0 0.8 Prop. Right-Turns 0.0 1.0 0.4 0.0 Prop. Heavy Vehicle 0.0 0.0 0.0 0.0 Geometry Group 1 1 2 2 Adjustments Table 10-40: hLT-adj 0.2 0.2 0.2 hRT-adj -0.6 -0.6 -0.6 hHV-adj 1.7 1.7 1.7 hadj, computed 0.2 -0.6 -0.2 0.2 Worksheet 4 - Departure Headway and Service Time Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 Flow rate 26 228 179 239 hd, initial value 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 x, initial 0.02 0.20 0.16 0.21 hd, final value 5.02 4.23 4.51 4.80 ( .L x, final value 0.04 0.27 0.22 0.32 Move-up time, m 2.0 2.0 2.0 Seviice Time 3.0 2.2 2.5 2.8 Worksheet 5. - Capacity and Level of Service Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 Flow Rate 26 228 179 239 Service Time 3.0 2.2 2.5 2.8 Utilization, x 0.04 0.27 0.22 0.32 Dep. headway, hd 5.02 4.23 4.51 4.80 Capacity 276 478 429 489 Delay 8.21 8.77 8.81 10.04 LOS A A A B Approach: Delay 8.71 8.81 10.04 LOS A A B Intersection Delay 9.21 Intersection LOS A J HCS: Unsignalized Intersections Release 3.2 Hartshorn Phone: Fax: E-Mail: ALL-WAY STOP CONTROL(AWSC) ANALYSIS Intersection: Graham/Slater City/State: Hg, CA Analyst: Darnell/bh Project No. : 960404 Time period Analyzed: PM - Cumlt Date: 02/01 East/West Street: Slater North/South Street: Graham Worksheet 2 - Volume Adjustments and Site Characteristics I Eastbound I Westbound Northbound 1 Southbound 1 I L T R I L T R I L T R I L T R 1 I I I I I Volume 10 0 0 144 0 267 10 66 27 1264 121 0 1 % Thrus Left Lane Eastbound Westbound Northbound Southbound Ll L2 Li L2 L1 L2 L1 L2 Configuration L R TR LT PHF 1.00 1.00 1.00 1.00 Flow Rate 44 267 93 385 % Heavy Veh 0 0 0 0 No. Lanes 2 1 1 Opposing-Lanes 0 1 1 Conflicting-lanes 1 2 2 Geometry group 1 1 2 2 Duration, T 1.00 hrs. Worksheet 3 - Saturation Headway Adjustment Worksheet Eastbound Westbound Northbound Southbound Ll L2 L1 L2 L1 L2 L1 L2 Flow Rates: Total in Lane 44 267 93 385 Left-Turn 44 0 0 264 Right-Turn 0 267 27 0 Prop. Left-Turns 1.0 0.0 0.0 0.7 Prop. Right-Turns 0.0 1.0 0.3 0.0 Prop. Heavy Vehicle 0.0 0.0 0.0 0.0 Geometry Group 1 1 2 2 Adjustments Table 10-40: hLT-adj 0.2 0.2 0.2 hRT-adj -0.6 -0.6 -0.6 hHV-adj 1.7 1.7 1.7 hadj, computed 0.2 -0.6 -0.2 0.1 Worksheet 4 - Departure Headway and Service Time Eastbound Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 Flow rate 44 267 93 385 hd, initial value 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 x, initial 0.04 0.24 0.08 0.34 hd, final value 5.21 4.41 4.88 4.84 t1 1 x, final value 0.06 0.33 0.13 0.52 Move-up time, m 2.0 2.0 2.0 Service Time 3.2 2.4 2.9 2.8 Worksheet 5 - Capacity and Level of Service Eastbo und Westbound Northbound Southbound L1 L2 L1 L2 L1 L2 L1 L2 Flow Rate 44 67 2 93 385 Service Time 3.2 2.4 2.9 2.8 Utilization, x 0.06 0.33 0.13 0.52 Dep. headway, hd 5.21 4.41 4.88 4.84 Capacity 294 517 343 635 Delay 8.56 9.56 8.58 12.99 LOS A A A B Approach: Delay 9.42 8.58 12.99 LOS A A B Intersection Delay 11.06 Intersection LOS B INTERSECTION CAPACITY UTILIZATION INTERSECTION CAPACITY UTILIZATION WORKSHEET WORKSHEET INTERSECTION: BOLSA CHICA/WARNER INTERSECTION: BOLSA CHICA/WARNER DATE: (DATE COUNTS TAKEN) DATE: (DATE COUNTS TAKEN) TIME: AM PEAK HOUR TIME: PM PEAK HOUR --------------------- --------------------- (BOLWAR2.WK1/12-30-96) (BOLWAR2.WK1/12-30-96) YEAR 2020 YEAR 2020 ------------------------- ------------------------- No. AM Peak 0.00 Crit. No. PM Peak 0.00 Crit. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. ------- ----- ---- ---- ------- ----- ----- ------- ----- ---- ---- ------- ----- ----- NL 1 1700 120 0.07 0.07 0 NL 1 1700 137 0.08 0.08 1 NR 0 10000 0 0.00 0.00 0 NR 0 10000 0 0.00 0.00 0 NT 2 3400 1050 0.31 0.31 1 NT 2 3400 458 0.13 0.13 0 SL 2 3400 337 0.10 0.10 1 SL 2 3400 567 0.17 0.17 0 SR 2 3400 227 0.07 0.07 0 SR 2 3400 528 0.16 0.16 0 ST 1 1700 137 0.08 0.08 0 ST 1 1700 560 0.33 0.33 1 EL 1 1700 525 0.31 0.31 1 EL 1 1700 430 0.25 0.25 0 ER 0 10000 0 0.00 0.00 0 ER 0 10000 0 0.00 0.00 0 ET 3 5100 768 0.15 0.15 0 ET 3 5100 1008 0.20 0.20 1 WL 1 1700 185 0.11 0.11 0 WL 1 1700 519 0.31 0.31 1 WR 0 10000 0 0.00 0.00 0 WR 0 10000 0 0.00 0.00 0 WT 3 5100 1080 0.21 0.21 1 WT 3 5100 1279 0.25 0.25 0 N/S component 0.41 N/S component 0.41 E/W component 0.52 E/W component 0.51 Clearance 0.05 Clearance 0.05 ICU 0.98 ICU 0.97 Critical movement identified by a 1. Critical movement identified by a 1. Ten lanes for a right turn indicates free movement. Ten lanes for a right turn indicates free movement. NA - Not Applicable NA - Not Applicable 7 W INTERSECTION CAPACITY UTILIZATION INTERSECTION CAPACITY UTILIZATION WORKSHEET WORKSHEET INTERSECTION: BOLSA CHICA/WARNER INTERSECTION: BOLSA CHICA/WARNER DATE: (DATE COUNTS TAKEN) DATE: (DATE COUNTS TAKEN) TIME: AM PEAK HOUR TIME: PM PEAK HOUR --------------------- --------------------- (BOLWAR2.WK1/12-30-96) (BOLWAR2.WK1/12-30-96) mrn� �D MM&*Te" o YEAR 2020 YEAR 2020 No. AM Peak 0.00 Crit. No. PM Peak 0.00 Crit Movemnt Lanes Cap. Vol. V/C Min. Mvmt. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. ------- ----- ---- ---- ------- ----- ----- ------- ----- ---- ---- ------- ----- ----- NL 1 1700 120 0.07 0.07 0 NL 1 1700 137 0.08 0.08 1 NR 0 10000 0 0.00 0.00 0 NR 0 10000 0 0.00 0.00 0 NT 2 3400 1050 0.31 0.31 1 NT 2 3400 458 0.13 0.13 0 SL 2 3400 337 0.10 0.10 1 SL 2 3400 567 0.17 0.17 0 SR 2 3400 227 0.07 0.07 0 SR 2 3400 528 0.16 0.16 0 ST 1 1700 137 0.08 0.08 0 ST 1 1700 560 0.33 0.33 1 EL 2 3400 525 0.15 0.15 1 EL 2 3400 430 0.13 0.13 0 ER 1 1700 34 0.02 0.02 0 ER 1 1700 112 0.07 0.07 0 ET 2 3400 734 0.22 0.22 0 ET 2 3400 896 0.26 0.26 1 WL 2 3400 185 0.05 0.05 0 WL 2 3400 519 0.15 0.15 1 WR 1 1700 439 0.26 0.26 0 WR 1 1700 378 0.22 0.22 0 WT 2 3400 641 0.19 0.19 1 WT 2 3400 901 0.27 0.27 0 N/S component 0.41 N/S component 0.41 E/W component 0.34 E/W component 0.41 Clearance 0.05 Clearance 0.05 ICU 0.80 ICU 0.87 Critical movement identified by a 1. Critical movement identified by a 1. Ten lanes for a right turn indicates free movement. Ten lanes for a right turn indicates free movement. NA - Not Applicable NA - Not Applicable �fl 7 INTERSECTION CAPACITY UTILIZATION INTERSECTION CAPACITY UTILIZATION WORKSHEET WORKSHEET INTERSECTION: BOLSA CHICA/WARNER INTERSECTION: BOLSA CHICA/WARNER DATE: (DATE COUNTS TAKEN) DATE: (DATE COUNTS TAKEN) TIME: AM PEAK HOUR TIME: PM PEAK HOUR (BOLWAR2.WK1/12-30-96) (BOLWAR2.WK1/12-30-96) YEAR 2020 YEAR 2020 ------------------------- ------------------------- No. AM Peak 0.00 Crit. No. PM Peak 0.00 Crit. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. ------- ----- ---- ---- ------- ----- ----- ------- ----- ---- ---- ------- ----- ----- NL 1 1700 120 0.07 0.07 0 NL 1 1700 137 0.08 0.08 1 NR 0 10000 0 0.00 0.00 0 NR 0 10000 0 0.00 0.00 0 NT 2 3400 1050 0.31 0.31 1 NT 2 3400 458 0.13 0.13 0 SL 2 3400 337 0.10 0.10 1 SL 2 3400 567 0.17 0.17 0 SR 2 3400 227 0.07 0.07 0 SR 2 3400 526 0.16 0.16 0 ST 1 1700 137 0.08 0.08 0 ST 1 1700 560 0.33 0.33 1 EL 2 3400 525 0.15 0.15 1 EL 2 3400 430 0.13 0.13 1 ER 0 10000 0 0.00 0.00 0 ER 0 10000 0 0.00 0.00 0 ET 3 5100 768 0.15 0.15 0 ET 3 5100 1008 0.20 0.20 0 WL 2 3400 185 0.05 0.05 0 WL 2 3400 519 0.15 0.15 0 WR 0 10000 0 0.00 0.00 0 WR 0 10000 0 0.00 0.00 0 WT 3 5100 1080 0.21 0.21 1 WT 3 5100 1279 0.25 0.25 1 N/S component 0.41 N/S component 0.41 E/W component 0.36 E/W component 0.38 Clearance 0.05 Clearance 0.05 ICU 0.82 ICU 0.84 Critical movement identified by a 1. Critical movement identified by a 1. Ten lanes for a right turn indicates free movement. Ten lanes for a right turn indicates free movement. NA - Not Applicable NA - Not Applicable Cf� v INTERSECTION CAPACITY UTILIZATION INTERSECTION CAPACITY UTILIZATION WORKSHEET WORKSHEET INTERSECTION: GRAHAM/WARNER INTERSECTION: GRAHAM/WARNER DATE: (DATE COUNTS TAKEN) DATE: (DATE COUNTS TAKEN) TIME: AM PEAK HOUR TIME: PM PEAK HOUR --------------------- (GRMWAR2.WK1/12-30-96) (GRMWAR2.WK1/12-30-96) YEAR 2020 YEAR 2020 ------------------------- ------------------------- No. AM Peak 0.00 Crit. No. PM Peak 0.00 Crit. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. ------- ----- ---- ---- ------- ----- ----- ------- ----- ---- ---- ------- ----- ----- NL 1 1700 324 0.19 0.19 1 NL 1 1700 251 0.15 0.15 1 NR 1 1700 54 0.03 0.03 0 NR 1 1700 61 0.04 0.04 0 NT 1 1700 153 0.09 0.09 0 NT 1 1700 133 0.08 0.08 0 SL 1 1700 74 0.04 0.04 0 SL 1 1700 279 0.16 0.16 0 SR 0 10000 0 0.00 0.00 0 SR 0 10000 0 0.00 0.00 0 ST 1 1700 137 0.08 0.08 1 ST 1 1700 575 0.34 0.34 1 EL 1 1700 303 0.18 0.18 1 EL 1 1700 99 0.06 0.06 1 ER 0 10000 0 0.00 0.00 0 ER 0 10000 0 0.00 0.00 0 ET 3 5100 1236 0.24 0.24 0 ET 3 5100 1664 0.33 0.33 0 WL 1 1700 19 0.01 0.01 0 WL 1 1700 67 0.04 0.04 0 WR 0 10000 0 0.00 0.00 0 WR 0 10000 0 0.00 0.00 0 WT 3 5100 964 0.19 0.19 1 WT 3 5100 1607 0.32 0.32 1 N/S ccmponent 0.27 N/S component 0.49 E/W component 0.37 E/W component 0.38 Clearance 0.05 Clearance 0.05 ICU 0.69 ICU 0.92 Critical movement identified by a 1. Critical movement identified by a 1. Ten lanes for a right turn indicates free movement. Ten lanes for a right turn indicates free movement. NA - Not Applicable NA - Not Applicable INTERSECTION CAPACITY UTILIZATION INTERSECTION CAPACITY UTILIZATION WORKSHEET WORKSHEET INTERSECTION: GRAHAM/WARNER INTERSECTION: GRAHAM/WARNER DATE: (DATE COUNTS TAKEN) DATE: (DATE COUNTS TAKEN) TIME: AM PEAK HOUR TIME: PM PEAK HOUR --------------------- --------------------- (GRMWAR3.WKI/12-30-96) (GRMWAR3.WK1/12-30-96) YEAR 2020 YEAR 2020 ------------------------- ------------------------- No. AM Peak 0.00 Crit. No. PM Peak 0.00 Crit. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. ------- ----- ---- ---- ------- ----- ----- ------- ----- ---- ---- ------- ----- ----- NL 1 1700 324 0.19 0.19 1 NL 1 1700 251 0.15 0.15 1 NR 1 1700 54 0.03 0.03 0 NR 1 1700 61 0.04 0.04 0 NT 1 1700 153 0.09 0.09 0 NT 1 1700 133 0.08 0.08 0 SL 1 1700 74 0.04 0.04 0 SL 1 1700 279 0.16 0.16 0 SR 1 1700 79 0.05 0.05 0 SR 1 1700 395 0.23 0.23 1 ST 1 1700 58 0.03 0.03 1 ST 1 1700 180 0.11 0.11 1 EL 1 1700 303 0.18 0.18 1 EL 1 1700 99 0.06 0.06 1 ER 0 10000 0 0.00 0.00 0 ER 0 10000 0 0.00 0.00 0 ET 3 5100 1236 0.24 0.24 0 ET 3 5100 1664 0.33 0.33 0 WL 1 1700 19 0.01 0.01 0 WL 1 1700 67 0.04 0.04 0 WR 0 10000 0 0.00 0.00 0 WR 0 10000 0 0.00 0.00 0 WT 3 5100 964 0.19 0.19 1 WT 3 5100 1607 0.32 0.32 1 N/S component 0.22 N/S component 0.26 E/W component 0.37 E/W component 0.38 Clearance 0.05 Clearance 0.05 ICU 0.64 ICU 0.69 Critical movement identified by a 1. Critical movement identified by a 1. Ten lanes for a right turn indicates free movement. Ten lanes for a right turn indicates free movement. NA - Not Applicable NA - Not Applicable SB 2. INTERSECTION CAPACITY UTILIZATION INTERSECTION CAPACITY UTILIZATION WORKSHEET WORKSHEET INTERSECTION: GRAHAM/SLATER INTERSECTION: GRAHAM/SLATER DATE: (DATE COUNTS TAKEN) DATE: (DATE COUNTS TAKEN) TIME: AM PEAK HOUR TIME: PM PEAK HOUR --------------------- --------------------- (GRMSLT2.WKI/12-30-96) (GRMSLT2.WK1/12-30-96) YEAR 2020 YEAR 2020 ------------------------- ------------------------- No. AM Peak 0.00 Crit. No. PM Peak 0.00 Crit. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. ------- ----- ---- ---- ------- ----- ----- ------- ----- ---- ---- ------- ----- ----- NL 0 10000 0 0.00 0.00 0 NL 0 10000 0 0.00 0.00 0 NR 1 1700 118 0.07 0.07 0 NR 1 1700 48 0.03 0.03 0 NT 1 1700 272 0.16 0.16 1 NT 1 1700 187 0.11 0.11 1 SL 1 1700 120 0.07 0.07 1 SL 1 1700 232 0.14 0.14 1 SR 0 10000 0 0.00 0.00 0 SR 0 10000 0 0.00 0.00 0 ST 1 1700 98 0.06 0.06 0 ST 1 1700 325 0.19 0.19 0 EL 0 10000 0 0.00 0.00 0 EL 0 10000 0 0.00 0.00 0 ER 0 10000 0 0.00 0.00 0 ER 0 10000 0 0.00 0.00 0 ET 0 10000 0 0.00 0.00 1 ET 0 10000 0 0.00 0.00 1 WL 1 1700 40 0.02 0.02 1 WL 1 1700 113 0.07 0.07 1 WR 1 1700 179 0.11 0.11 1 WR 1 1700 236 0.14 0.14 0 WT 0 10000 0 0.00 0.00 0 WT 0 10000 0 0.00 0.00 0 N/S component 0.23 N/S component 0.25 E/W component 0.02 E/W component 0.07 Clearance 0.05 Clearance 0.05 ICU 0.30 ICU 0.37 Critical movement identified by a 1. Critical movement identified by a 1. Ten lanes for a right turn indicates free movement. Ten lanes for a right turn indicates free movement. NA - Not Applicable NA - Not Applicable S INTERSECTION CAPACITY UTILIZATION INTERSECTION CAPACITY UTILIZATION WORKSHEET WORKSHEET INTERSECTION: SPRINGDALE/WARNER INTERSECTION: SPRINGDALE/WARNER DATE: (DATE COUNTS TAKEN) DATE: (DATE COUNTS TAKEN) TIME: AM PEAK HOUR TIME: PM PEAK HOUR --------------------- --------------------- (SPRWAR2.WK1/12-30-96) (SPRWAR2.WK1/12-30-96) YEAR 2020 YEAR 2020 ------------------------- ------------------------- No• AM Peak 0.00 Crit. No. PM Peak 0.00 Crit. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. Movemnt Lanes Cap. Vol. V/C Min. Mvmt. ---- ------- ----- ----- ------- ----- ---- ---- ------- ----- ----- NL 1 1700 288 0.17 0.17 0 NL 1 1700 337 0.20 0.20 1 NR 1 1700 66 0.04 0.04 0 NR 1 1700 95 0.06 0.06 0 NT 2 3400 649 0.19 0.19 1 NT 2 3400 452 0.13 0.13 0 SL 1 1700 139 0.08 0.08 1 SL 1 1700 345 0.20 0.20 0 SR 1 1700 47 0.03 0.03 0 SR 1 1700 143 0.08 0.08 0 ST 2 3400 259 0.08 0.08 0 ST 2 3400 754 0.22 0.22 1 EL 1 1700 126 0.07 0.07 0 EL 1 1700 143 0.08 0.08 1 ER 1 1700 127 0.07 0.07 0 ER 1 1700 363 0.21 0.21 0 ET 3 5100 1023 0.20 0.20 1 ET 3 5100 1012 0.20 0.20 0 WL 1 1700 39 0.02 0.02 1 WL 1 1700 142 0.08 0.08 0 WR 1 1700 229 0.13 0.13 0 WR 1 1700 198 0.12 0.12 0 WT 3 5100 588 0.12 0.12 0 WT 3 5100 1105 0.22 0.22 1 N/S component 0.27 N/S component 0.42 E/W component 0.22 E/W component 0.30 Clearance 0.05 Clearance 0.05 ICU 0.54 ICU 0.77 Critical movement identified by a 1. Critical movement identified by a 1. Ten lanes for a right turn indicates free movement. Ten lanes for a right turn indicates free movement. NA - Not Applicable NA - Not Applicable Sa Center For Microcomputers In Transportation HCS: Unsignalized Intersection Release 2.1 Page 1 File Name ................ Streets: (N-S) GRAHAM STREET (E-W) A STREET Major Street Direction.... NS Length of Time Analyzed... 60 (min) Analyst................... DARNELL BH Date of Analysis.......... 12/31/96 Other Information......... EXISTING PLUS PROJECT - FULL ACCESS AM PEAK Two-way Stop-controlled Intersection --------------- Northbound .1 Southbound Eastbound I Westbound L T RI L T RI L T RI L T R �---- ---- ----I---- ---- ----I---- ---- ----I---- ---- ---- No. Lanes 1 1 1 01 0 1< 01 0> 0c 01 0 0 0 Stop/Yield I NJ NJ Volumes 1 24 515 1 316 241 56 561 PHF 1 _95 .95 1 .95 .951 .95 .951 Grade 1 0 1 0 1 0 1 0 MC's ('s) 1 0 0 1 0 01 0 01 SU/RV's MI 0 0 1 0 01 0 01 Cv's (o) 1 0 0 0 01 0 01 PCE's ------------------------------------------------------------------------ Adjustment Factors Vehicle Critical Follow-up Maneuver Gap (tg) Time (tf) ------------------------------------------------------------------ Left Turn Major Road 5.00 2.10 Right Turn Minor Road 5.50 2.60 Through Traffic Minor Road 6.00 3.30 Left Turn Minor Road 6.50 3.40 S3 Center For Microcomputers In Transportation HCS: Unsignalized Intersection Release 2.1 Page 2 workSheet for TWSC Intersection -------------------------------------------------------- Step 1: RT from Minor Street WB EB -------------------------------------------------------- Conflicting Flows: (vph) 328 Potential Capacity: (pcph) 944 Movement Capacity: (pcph) 944 Prob. of Queue-free State: 0.93 -------------------------------------------------------- Step 2: LT from Major Street SB NB -------------------------------------------------------- Conflicting Flows: (vph) 340 Potential Capacity: (pcph) 1181 Movement Capacity: (pcph) 1181 Prob. of Queue-free State: 0.98 -------------------------------------------------------- Step 4: LT from Minor Street WB EB -------------------------------------------------------- Con£licting Flows: (vph) 867 Potential Capacity: (pcph) 333 Major LT, Minor TH Impedance Factor: 0.98 Adjusted Impedance Factor: 0_98 Capacity Adjustment Factor due to Impeding Movements 0.98 Movement Capacity: (pcph) 325 -------------------------------------------------------- ++ Center For Microcomputers In Transportation HCS: Unsignalized Intersection Release 2.1 Page 3 Intersection Performance Summary F1owRate MoveCap SharedCap Avg.Total Delay Movement v(pcph) Cm(pcph) Csh(pcph) Delay LOS By App -------- ------ ------ ------ ------------ ------ --------- EB L 65 325 > > > 484 10.2 C 10.2 EB R 65 944 > > > NB L 28 1181 3.1 A 0.1 Intersection Delay = 1.2 Center For Microcomputers In Transportation HCS: Unsignalized Intersection Release 2.1 Page 1 File Name ......... ....... Streets: (N-S) GRAHAM STREET (E-W) A STREET Major Street Direction.... NS Length of Time Analyzed... 60 (min) Analyst............... .... DARNELL BH Date of Analysis.......... 12/31/96 Other Information.. ....... EXISTING PLUS PROJECT - FULL ACCESS PM PEAK Two-way Stop-controlled Intersection ------------------- Northbound I Southbound Eastbound I Westbound L T RI L T RI L T RI L T R �---- ---- ----I---- ---- ----I---- ---- ----I---- ---- ---- No. Lanes 1 1 1 01 0 l< 01 0> 0< 01 0 0 0 Stop/Yield I NJ NJ Volumes 1 70 354 1 456 701 30 301 PHF 1 .95 .95 1 .95 .951 .95 .951 Grade 1 0 1 0 1 0 1 0 MC's M 1 0 0 1 0 01 0 01 SU/RV's (e) 1 0 0 1 0 01 0 01 CV's (o) 0 0 1 0 01 0 01 PCE's 1.1 1.1 1 1.1 1.11 1.1 1.11 -----------------------—----------------------------------------------- Adjustment Factors Vehicle Critical Follow-up Maneuver Gap (tg) Time (tf) ------------------------------------------------------------------ Left Turn Major Road 5.00 2.10 Right Turn Minor Road 5.50 2.60 Through Traffic Minor Road 6.00 3.30 Left Turn Minor Road 6.50 3.40 L� .... Center For Microcomputers In Transportation HCS: Unsignalized Intersection Release 2.1 Page 2 WorkSheet for TWSC Intersection -------------------------------------------------------- Step 1: RT from Minor Street WB EB -------------------------------------------------------- Conflicting Flows: (vph) 491 Potential Capacity: (pcph) 781 Movement Capacity: (pcph) 781 Prob. of Queue-free State 0.96 -------------------------------------------------------- Step 2: LT from Major Street SB NB -------------------------------------------------------- Conflicting Flows: (vph) 526 Potential Capacity: (pcph) 963 Movement Capacity: (pcph) 963 Prob. of Queue-free State: 0.92 -------------------------------------------------------- Step 4: LT from Minor Street WB EB -------------------------------------------------------- Conflicting Flows: (vph) 915 Potential Capacity: (pcph) 313 Major LT, Minor TH Impedance Factor: 0.92 Adjusted Impedance Factor: 0.92 Capacity Adjustment Factor due to Impeding Movements 0.92 Movement Capacity: (pcph) 287 -------------------------------------------------------- S7 I Center For Microcomputers In Transportation RCS: Unsignalized Intersection Release 2.1 Page 3 +x+x+++x++xxx+xx+++x++++++x+x+x+++x++x+++x++x+++x+++++x++x+x++x+ Intersection Performance Summary F1owRate MoveCap SharedCap Avg.Total Delay Movement v(pcph) Cm(pcph) Csh(pcph) Delay LOS By App -------- ------ ------ ------ ------------ ------ --------- EB L 35 287 > > > 420 10.3 C 10.3 EB R 35 781 > > > NB L 81 963 4.1 A 0.7 Intersection Delay = 0.9 Traffic Manual TRAFFIC SIGNALS AND LIGHTING 9-9 1-1992 Figure 9-4 TRAFFIC SIGNAL WARRANTS (Based on Estimated Average Daily Traffic - See Note) Minimum Requirements URBAN ......................... RURAL ............................. EADT 1. Minimum Vehicular Vehicles per day on Vehicles per day on Satisfied Not Satisfied major street (total of higher-volume minor both approaches) street approach (one direction only Number of lanes for moving traffic on each approach ( tuo f il d Major Street Minor Street Urban Rural Urban Rural 1...........................X 1 ...................?.................. 8,000 5 600 2,400 1 80 2 or more ........................ 1 ...................................... 9,600 6,720 2,400 1,680 2 or more ........................ 2 or more ......................... 9,600 6,720 3,200 2,240 1 ..................................... 2 or more ......................... 8,000 5,600 3,200 2,240 2. Inieruplion of Continuous Traffic Vehicles per day on Vehicles per day on major street (total of higher-volume minor Satisfied Not Satisfied both approaches) street approach (one �gd direction only) �D Number of lanes for moving traffic on each approach Major Street Minor Street Urban RuL21 Urban 1...................................... 1 ....................................... 12,000 1,200 2 or more ........................ 1 ...................................... 14,400 10,080 1,200 850 2 or more ........................ 2 or more ......................... 14,400 10,080 1,600 1,120 1 ..................................... 2 or more ......................... 12,000 8,400 1,600 1,120 3. Combination Satisfied Not Satisfied 2 Warrants 2 Warrants No one warrant satisfied, but following warrants fulfilled 80%or more ......... 1 2 NOTE: To be used only for NEW INTERSECTIONS or other locations where actual traffic volumes cannot be counted. l t�`l G Figure 9-1 C TRAFFIC SIGNAL WARRANTS �WARRANT 11 — Peak Hour Volume SATISFIED' YES NO Qs 2 or Approach Lanes One more Am Hour 8cth Approaches , maicr Street I QO Highest Aooraaches MinarStreet I t� Figure 9-9 PEAK HOUR VOLUME WARRANT (Rural Areas) Soo 2 OR MORE LANES(MAJOR)6 2 OR MORE LANES(MINOR) a > 400 2 OR MORE LANES (MAJOR)3 1 LANE(MINOR) U OR 1 LANE(MAJOR)S 2 OR MORE LANES(MINOR) t- d w 300 1 Q o_ a 07 d x w z M 200 0 100 1 LANE(MAJOR)3 1 LANE(MINOR) a 1 300 400 Soo 600 700 800 900 1000 1100 1200 1300 MAJOR STREET-TOTAL OF BOTH APPROACHES-VPH 'E"' :PH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET OACH WITH TWO OR MORE LANES AND 7S VPH APPLIES AS THE LOWERSHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE_ SATISFIED' YES NO Q 2 or Approach Lanes One more P Hour Both Approaches MajorStreec volo( Highest Approaches )dinar Street (7 �A Sr 5 T6v2-^ • CITY OF HUNTINGTON BEACH INTERDEPARTMENTAL COMMUNICATION TO: Mary Beth Broeren, Senior Planner FROM: Robert Righetti, Project Manager �V SUBJECT: Traffic Collision History Report for Three Intersections Parkside Estates DATE: November 14, 2001 In response to questions raised about the addition of new traffic from the proposed Parkside Estates development, we have reviewed the attached Traffic Collision History Report for the past ten years for the intersections of Graham Street and Warner Avenue, Graham Street and Glenstone Drive, and Graham Street and Kenilworth Drive. A review of all collision reports for the Graham Street at the noted intersections indicates that no fatalities have occurred along this reach of Graham due to traffic related incidents.The data does indicate that the majority of collisions occurred due to unsafe speed, right-of-way violations, unsafe lane changes, unsafe passing, driving under the influence and improper turning movements. There is no evidence to support the contention that the addition of new traffic at these intersections will result in unsafe conditions or unmitigated levels of service that would result in additional traffic hazards. If you have any questions mmlizom, please feel free to contact me at 374-1731. cc: file 1 City of Huntington Beach Police Department Traffic Collision History Report 09/12101 Page 1 Location: Graham Street/Warner Avenue Date Range Reported: 1/1/91 - 9112101 Type of Motor Veh. Direct.of Movement Direct.of Movement Date Time Dist. Dir. Collision Involved With Travel 1 Prec.Coll. 1 Travel 2 Prec. Coll. 2 PCF Inj. Kil 5/5/91 07:50 60 East Rear-End Other Motor West Proceeding West Stopped in Unsafe Speed 0 0 Vehicle Straight Road 7/2/91 23:27 0 In Int. Head-On Other Motor North Making Left South Proceeding Auto R/W 0 0 Vehicle Turn Straight Violation 7/12/91 10:29 0 In Int. Other Bicycle West Making Left North Proceeding Improper Turning 1 0 Turn Straight 9/3/91 13:52 120 East Rear-End Other Motor West. Proceeding West Stopped in Unsafe Speed 0 0 Vehicle Straight Road 12/6/91 15:18 0 In Int. Broadside Other Motor West Proceeding South Proceeding Traffic Signals 0 0 Vehicle Straight Straight and Signs 4/2/92 12:43 0 In Int. Head-On Other Motor North Making Left South Proceeding Auto R/W 0 0 Vehicle Turn Straight Violation 4/28/92 18:09 0 In Int. Head-On Other Motor North Proceeding South Proceeding Wrong Side of 2 0 Vehicle Straight Straight Road 6/27/92 10:54 34 West Sideswipe Other Motor East Changing East Proceeding Improper Turning 0 0 Vehicle Lanes Straight 8/11/92 13:56 0 In Int. Hit Object Fixed Object West Proceeding West Not Stated Auto R/W 0 0 Straight Violation 8/18/92 14:39 0 In Int. Rear-End Other Motor West Proceeding West Stopped in Unsafe Speed 0 0 Vehicle Straight Road 9/3/92 19:21 0 In Int. Broadside Other Motor East Making Left West Proceeding Driving Under 1 0 Vehicle Turn Straight Influence 11/9/92 13:45 0 In Int. Broadside Other Motor West Proceeding East Making Left Auto R/W 0 0 Vehicle Straight Turn Violation 2/13/93 15:30 175 West Rear-End Other Motor East Proceeding East Stopped in Unsafe Speed 0 0 Vehicle Straight Road 2/17/93 14:46 214 South Sideswipe Other Motor North Changing North Proceeding Unsafe Lane 0 0 Vehicle Lanes Straight Change 3/18/93 17:20 12 South Other Bicycle West Making Left East Proceeding Auto R/W 1 0 Turn Straight Violation City of Huntington Beach Police Department Traffic Collision History Report 09/12/01 Page 2 Location: Graham Street I Warner Avenue Date Range Reported: 1/1/91 - 9/12/01 Type of Motor Veh. Direct.of Movement Direct. of Movement Date Time Dist. Dir. Collision Involved With Travel 1 Prec. Coll. 1 Travel 2 Prec. Coll.2 PCF Inj. Kil 4/25/93 15:18 0 In Int. Broadside Other Motor West Making Left Not Proceeding Auto R/W 2 0 Vehicle Turn Stated Straight Violation 6/11/93 16:53 19 East Broadside Other Motor East Proceeding North Making Right Unknown 0 0 Vehicle Straight Turn 5/19/94 22:45 0 In Int. Broadside Other Motor East Proceeding West Making U Turn Traffic Signals 0 0 Vehicle Straight and Signs 7/8/94 06:14 162 South Hit Object Fixed Object South Making Right Improper Turning 0 0 Turn 8/13/94 11:15 35 East Rear-End Other Motor West Slowing/Stoppi West Stopped in Unsafe Speed 1 0 Vehicle ng Road 9/19/94 16:37 0 In Int. Head-On Other Motor North Making Left West Proceeding Auto R/W 3 0 Vehicle Turn Straight Violation 10/31/94 07:40 0 In Int. Broadside Other Motor East Proceeding North Proceeding Traffic Signals 2 0 Vehicle Straight Straight and Signs 11/26/94 17:10 0 In Int. Broadside Other Motor West Making Left East Proceeding Auto R/W 0 0 Vehicle Turn Straight Violation 1/15/95 10:27 0 In Int. Broadside Other Motor East Proceeding South Proceeding Traffic Signals 1 0 Vehicle Straight Straight and Signs 5/20/95 10:31 0 In Int. Broadside Other Motor North Making Left West Proceeding Auto R/W 0 0 Vehicle Turn Straight Violation 8/7/95 09:37 0 In Int. Broadside Other Motor East Making Left West Proceeding Unknown 1 0 Vehicle Turn Straight 8/15/95 07:10 35 West Rear-End Parked Motor East Proceeding East Parked Unsafe Speed 0 0 Vehicle Straight 9/7/95 09:38 0 In Int. Rear-End Other Motor North Proceeding North Proceeding Unsafe Speed 2 0 Vehicle Straight Straight 3/24/96 15:41 44 West Rear-End Other Motor East Proceeding East Stopped In Unsafe Speed 3 0 Vehicle Straight Roadway 4/2/96 06:44 0 In Int. Broadside Other Motor East Proceeding South Proceeding Traffic Signals 0 0 Vehicle Straight Straight and Signs City of Huntington Beach Police Department Traffic Collision History Report 09/12/01 Page 3 Location: Graham Street/Warner Avenue Date Range Reported: 1/1191 - 9112101 Type of Motor Veh. Direct. of Movement Direct. of Movement Date Time Dist. Dir. Collision Involved With Travel 1 Prec.Coll. 1 Travel 2 Prec.Coll.2 PCF Inj. Kil 6/20/96 21:31 0 In Int. Broadside Other Motor West Proceeding South Proceeding Traffic Signals 2 0 Vehicle Straight Straight and Signs 9/10/96 16:32 0 In Int. Broadside Other Motor West Proceeding East Making Left Traffic Signals 0 0 Vehicle Straight Turn and Signs 1/11/97 08:00 0 In Int. Broadside Other Motor East Making Left West Proceeding Auto R/W 1 0 Vehicle Turn Straight Violation 3/4/97 17:09 0 In Int. Broadside Other Motor West Proceeding East Making Left Unknown 1 0 Vehicle Straight Turn 3/14/97 18:32 0 In Int. Broadside Other Motor East Proceeding East Making Right Unknown 1 0 Vehicle Straight Turn 4/24/97 18:06 0 In Int. Rear-End Other Motor North Proceeding North Stopped In Unsafe Speed 0 0 Vehicle Straight Roadway 5/25/97 02:10 0 In Int. Sideswipe Fixed Object West Proceeding Unknown 0 0 Straight 5/27/97 07:24 0 In Int. Rear-End Other Motor East Proceeding East Stopped In Unsafe Speed 0 0 Vehicle Straight Roadway 6/23/97 14:06 0 In Int. Broadside Other Motor East Making Left West Proceeding Auto R/W 0 0 Vehicle Turn Straight Violation 7/27/97 21:05 25 West Head-On Fixed Object West Making Left Improper Turning 0 0 Turn 9/10/97 07:13 0 In Int. Broadside Other Motor East Proceeding North Proceeding Traffic Signals 1 0 Vehicle Straight Straight and Signs 4/15/98 16:13 0 In Int. Broadside Other Motor North Making Left East Proceeding Traffic Signals 2 0 Vehicle Turn Straight and Signs 5/2/98 14:25 25 South Rear-End Other Motor North Backing North Stopped In Unsafe Starting 0 0 Vehicle Road or Backing 6/19/98 18:28 120 East Rear-End Other Motor West Proceeding West Proceeding Unsafe Speed 0 0 Vehicle Straight Straight 7/6/98 15:17 32 West Rear-End Other Motor East Proceeding East Slowing/Stoppi Unsafe Speed 0 0 Vehicle Straight ng City of Huntington Beach Police Department Traffic Collision History Report 09/12101 Page 4 Location: Graham Street I Warner Avenue Date Range Reported: 1/1/91 - 9/12/01 Type of Motor Veh. Direct.of Movement Direct.of Movement Date Time Dist. Dir. Collision Involved With Travel 1 Prec. Coll. 1 Travel 2 Prec.Coll.2 PCF Inj. Kil 10/8/98 09:55 55 West Rear-End Other Motor East Slowing/Stoppi East Stopped In Other Than Driver 2 0 Vehicle ng Road or Ped 10/28/98 20:11 75 East Rear-End Other Motor West Proceeding West Stopped In Driving Under 0 0 Vehicle Straight Road Influence 12/4/98 18:22 66 West Rear-End Other Motor East Changing East Stopped In Unsafe Lane 1 0 Vehicle Lanes Road Change 1/17/99 22:21 0 In Int. Broadside Other Motor South Making Left West Proceeding Auto R/W 2 0 Vehicle Turn Straight Violation 10/30/99 16:47 0 In Int. Rear-End Other Motor East Proceeding East Stopped In Unsafe Speed 0 0 Vehicle Straight Road 12/23/99 10:22 0 In Int. Broadside Other Motor West Making Left East Proceeding Auto R/W 1 0 Vehicle Turn Straight Violation 12/31/99 23:45 114 East Hit Object Fixed Object East Proceeding Unsafe Speed 0 0 Straight 3/3/00 23:42 105 South Head-On Other Motor South Making Right North Changing Driving Under 0 0 Vehicle Turn Lanes Influence 5/6/00 00:35 0 In Int. Head-On Other Motor East Making Left West Proceeding Auto R/W 1 0 Vehicle Turn Straight Violation 6/30/00 18:53 0 In Int. Rear-End Other Motor South Making Right South Making Right Unsafe Speed 0 0 Vehicle Turn Turn 7/24/00 21:44 0 In Int. Broadside Other Motor North Making Left West Proceeding Auto R/W 0 0 Vehicle Turn Straight Violation 7/27/00 08:57 0 In Int. Broadside, Other Motor North Proceeding East Proceeding Traffic Signals 0 0 Vehicle Straight Straight and Signs 7/31/00 14:20 26 West Sideswipe Other Motor West Changing West Changing Unsafe Lane 0 0 Vehicle Lanes Lanes Change 9/25/00 17:27 0 In Int. Broadside Other Motor South Making Left East Proceeding Auto R/W 2 0 Vehicle Turn Straight Violation 10/28/00 11:41 0 In Int. Head-On Other Motor North Making Left South Proceeding Auto R/W 0 0 Vehicle Turn Straight Violation City of Huntington Beach Police Department Traffic Collision History Report 09/12/01 Page 5 Location: Graham Street 1 Warner Avenue Date Range Reported: 1/1/91 - 9112/01 Date Time Dist. Dir. Type of Motor Veh. Direct.of Movement Direct. of Movement PCF Inj. Kil Collision Involved With Travel 1 Prec. Coll. 1 Travel 2 Prec. Coll. 2 11/9/00 18:31 0 In Int. Broadside Other Motor West Making Left East Proceeding Auto R/W 0 0 Vehicle Turn Straight Violation 12/29/00 13:43 22 West Rear-End Motor Vehicle East Proceeding East Stopped In Unsafe Speed 0 0 on Other Straight Road 1/5/01 10:05 0 In Int. Broadside Other Motor North Making Left West Proceeding Unknown 0 0 Vehicle Turn Straight 1/20/01 11:41 0 In Int. Broadside Other Motor South Making Left East Proceeding Auto R/W 0 0 Vehicle Turn Straight Violation 4/4/01 02:33 105 West Overturne Fixed Object East Proceeding Unsafe Speed 1 0 d Straight 5/26/01 15:37 0 In Int. Broadside Other Motor East Proceeding East Proceeding Traffic Signals 0 0 Vehicle Straight Straight and Signs 7/6/01 12:26 0 In Int. Broadside Other Motor South Proceeding West Making Left Traffic Signals 1 0 Vehicle Straight Turn and Signs City of Huntington Beach Police Department Traffic Collision History Report 09/12/01 Page 6 Location: Graham Street I Warner Avenue Date Range Reported: 1/1/91 - 9/12101 Type of Motor Veh. Direct.of Movement Direct.of Movement Date Time Dist. Dir. Collision Involved With Travel 1 Prec. Coll. 1 Travel 2 Prec. Coll.2 PCF Inj. Kil Total Number of Collisions: 67 Settings Used For Query Parameter Setting Street Name 'Graham Street' Cross Street 'Warner Avenue' Starting Date 01/01/91 Ending Date 09/12/2001 Distance from Intersection <=300'for non rear-end collisions <=300'for rear-end collisions City of Huntington Beach Police Department Traffic Collision History Report 09/12/01 Page 1 Location: Graham Street/Glenstone Drive Date Range Reported: 1/1/91 - 9/12/01 Type of Motor Veh. Direct.of Movement Direct. of Movement Date Time Dist. Dir. Collision Involved With Travel 1 Prec.Coll. 1 Travel 2 Prec.Coll. 2 PCF Inj. Kil 11/16/93 13:41 0 In Int. Rear-End Other Motor North Proceeding North Proceeding Traffic Signals 2 0 Vehicle Straight Straight and Signs 7/29/95 19:49 18 North Other Bicycle South Proceeding West Making Right Wrong Side of 1 0 Straight Turn Road 10/28/99 19:46 5 South Rear-End Other Motor North Proceeding North Proceeding Unsafe Speed 0 0 Vehicle Straight Straight 12/13/00 16:01 0 In Int. Broadside Other Motor North Proceeding South Making Left Unknown 1 0 Vehicle Straight Turn City of Huntington Beach Police Department Traffic Collision History Report 09/12/01 Page 2 Location: Graham Street/Glenstone Drive Date Range Reported: 1/1/91 - 9/12/01 Type of Motor Veh. Direct.of Movement Direct. of Movement Date Time Dist. Dir. Collision Involved With Travel 1 Prec.Coll. 1 Travel 2 Prec.Coll.2 PCF Inj. Kil Total Number of Collisions: 4 Settings Used For Query Parameter Setting Street Name 'Graham Street' Cross Street 'Glenstone Drive' Starting Date 01/01/91 Ending Date 09/12/2001 Distance from Intersection <=300' for non rear-end collisions <=300'for rear-end collisions City of Huntington Beach Police Department Traffic Collision History Report 11/09/2001 Page 1 Location: Graham Street/Kenilworth Drive Date Range Reported: 111/91 - 11/8/01 Type of Motor Veh. Direct.of Movement Direct.of Movement Date Time Dist. Dir. Collision Involved With Travel 1 Prec.Coll. 1 Travel 2 Prec.Coil.2 PCF Inj. Kit 8/19/92 14:05 0 In Int. Other Non-Collision South Proceeding Unknown 1 0 Straight Total Number of Collisions: 1 Settings Used For Query Parameter Setting Street Name 'Graham Street' Cross Street 'Kenilworth Drive' Starting Date 01/01/1991 Ending Date 11/08/2001 Distance from Intersection <=300'for non rear-end collisions <=300'for rear-end collisions Collision Diagram North/South Street: GRAHAM STREET From: 01/01/1991 TO: 11/08/2001 Cross Street: KENILWORTH DRIVE Date Prepared: 11/9/2001 A0 O8I19/92 Unknown Number of Collisions Legend Right Turn �j Pedestrian .0— Moving Vehicle ® Fixed Object 0 Property Damage Only � Stopped Vehicle Left Turn 1 Injury Collisions Backin Vehicle Bicycle Fatal Collisions g Sideswipe DUI 0 _ .®...� Ran Off Road 1 Total Collisions a— Day O Injury _ _____ Movement Unknown .14 Night (p Fatal Color Legend - Highest Degree of Injury Maroon=Fatal Purple=Severe Injury Green=Other Visible Injury Teal=Complaint of Pain Dark Blue=Property Damage Only Settings Used For Query Parameter Setting Street Name 'Graham Street' Cross Street 'Kenilworth Drive' Starting Date O1/O1/1991 Ending Date 11/08/2001 Distance from Intersection <=300'for non rear-end collisions <=300'for rear-end collisions 1 21 • 2. SUPPLEMENTAL INFORMATION FROM PSE FOR THE DRAFT EIR COMMENTS, AUGUST 3, 19" AND FOR THE NEW ALTERNATIVES TO THE DRAFT EIR COMMENTS, OCTOBER 129 2001 & JUNE 13, 2002 PACIFIC SOILS ENGINEERING, INC. 0 10653 PROGRESS WAY, P.O. BOX 2249,CYPRESS,CALIFORNIA 90630 TELEPHONE: (714)220-0770, FAX:(714)220-9589 (Corporate Headquarters) SHEA HOMES August 3, 1999 603 S. Valancia Avenue Work Order 102300 Brea, CA 92822 Attention: Mr. Ron Metzler Subject: SUPPLEMENTAL INFORMATION Used for the July 29, 1999 Response to Comments #97-2 Draft Environmental Impact Report Tentative Tract 15377 CITY OF HUNTINGTON BEACH,CALIFORNIA Reference: See Appendix I Gentlemen: At the request of EDAW, Inc.,Pacific Soils Engineering,Inc. (PSE) submits this letter that spells out the sources of information used to prepare our response to public comment on the subject DEIR(PSE, 1999). For reference,Appendix I,herein, lists the documents used for PSE studies. Most of the information that forms the basis of the 1999 PSE response is taken or synthesized from data contained in(or from references cited in) a 1998 geotechnical report (PSE, 1998)that was used to prepare the#97-2 DEIR. The information is used to support PSE 1998 conclusions about the California Department of Water Resources (CDWR, 1968)Bolsa-Fairview fault(B-F), as well as to respond directly to public comment about various geotechnical aspects of the DEIR. For example, the Cone Penetrometer Correlation Lines A-A' through C-C' (PSE, 1999),which demonstrate continuity of sediment beds across the previously mapped B-F,were constructed from the boring logs and cone penetrometer data in the 1998 PSE report, although the correlation lines did not appear in that report. The figures that accompany the 1999 PSE response were not included(with the exception of Figure 7) in the 1998 PSE report. However,Figures 1, 3, 4 and 5 were taken from CDWR (1968),which was referred to in the 1998 text but was inadvertently left from the reference list. Similarly, Figure 2 from the City of Huntington Beach Draft Environmental Impact Report was taken from a document that was referenced in 1998. Figure 6 was likewise taken from a publication noted in the 1998 report; and is included in the 1999 response to illustrate the subsurface geology along the inferred trend of the B-F northwest of the study site. Table A,which was prepared to illustrate vertical distribution of peat beds, is based solely on the boring logs in the 1998 report; and thus is not new information. Table B has been added to the 1999 response; and is from a document(City of Huntington Beach, 1995)referred to in 1998. It is a copy of a widely published earthquake intensity scale. Table I is from the 1998 report. LOS ANGELES COUNTY RIVERSIDE COUNTY SAN DIEGO COUNTY SOUTH ORANGE COUNTY TEL:(310)325-7272 or(323)775-6771 TEL:(909)676-8195 TEL:(858)560-1713 TEL:(714)730-2122 FAX:(714)220-9589 FAX:(909)676-1879 FAX:(858)560-0380 FAX:(714)730.5191 August 3, 1999 Page 2 Work Order 102300 The geotechnical map (Plate I) accompanying the 1999 response is a slightly modified version of the 1998 geotechnical map. That is, the locations of the cone penetrometer correlation lines, contours on top of the Bolsa Aquifer, and the CDWR 1968 inferred trace of the B-F have been added. The first two additions are based solely on logs/data submitted in 1998 by this firm. The inferred trace of the B-F(taken from CDWR, 1968)is shown to purely illustrate the mapped trace so that the reviewer can compare that mapped trace to the"unbroken"stratigraphy depicted on the cone penetrometer correlation lines(PSE, 1999). The PSE(1997a)document regarding three test pits placed to observe both ground water conditions related to tidal influence and recharge time after pumping were not part of an original geotechnical report(PSE, 1997b)or the 1998 geotechnical report. The reference is now given in Appendix I. A copy of the report is attached as Appendix II. In sum, except as noted above, the information presented herein is derived from either data previously reported, or from references cited in our 1998 geotechnical report. The information is contained in the 1999 response to further support the conclusions set forth in the PSE 1998 report,which-remain unchanged. If you have any questions about this or other geotechnical aspects of the project,please contact this office. Respectfully submitted, PACIFIC SOILS ENGINEERING, INC. Reviewed by: B Y CHAEL F. MILLS C&ODORE M. WOLFE Geologist/CEG 994 CEG 1626/Reg. Exp.: 4-30-00 Reg. Exp.: 2-2 8-00 Manager of Geological Services Q�DFESSIGA, '��. J S BY-ASTLE, :� e492 1-00 CE 30280/Reg. Exp. )- - 0 Chief Operations Offices,,;;°F16TEC STF OF C NO' Distr.: (2) Addressee (2) EDAW—Attn:Jayna Morgan (1) Hunsaker&Associates—Attn:Fred Graylee MFM:TMW:JBC/m1-23000012 PACIFIC SOILS ENGINEERING, INC. August 3, 1999 Page 3 Work Order 102300 APPENDIX I REFERENCES Bryant,W.A., 1985, Southern Newport-Inglewood fault zone, southern Los Angeles and northern Orange counties: Calif. Div. Mines and Geol. Fault Evaluation Rpt. FER-172,21p. California Division of Mines and Geology, 1997, Guidelines for evaluation and mitigating seismic hazards in California: Calif. Div. Mines and Geol. Spec. Pub. 117, 74 p. California Department of Water Resources(CDWR), 1968, Sea-water intrusion: Bolsa-Sunset area, Orange County: Bull. 63-2. California Department of Water Resources(CDWR), 1966, Santa Ana gap salinity barrier Orange County, California: Bull. 147-1, 177p. California Division of Oil and Gas(CDOG), 1991, California oil and gas fields,Volume H, southern,central coastal and offshore California, third edition: Div. Oil and Gas Pub. TR-12, unpaginated. City of Huntington Beach,Department of Community Development, 1995,Draft Environmental impact report,Huntington Beach draft general plan: Eviron. Assess.No. 94-9. EDAW,Inc., 1998,Parkside Estates,EIR#97-2,Draft Environmental Impact Report: SCH #97091051, April 17, 1998. Freeman, S.T.,Heath, E.G., Guptill,P.D., and Waggoner,J.T., 1992, Seismic hazard assessment, Newport-Inglewood fault zone, in Pipkin,B.W., and Proctor, R.J.,gdL, Engineering Geology Practice in Southern California: Assoc. Eng. Geol. Spec. Pub. 4, Star Publishing Co., Belmont, California,P. 211-231. Grant, L.B., Waggoner,J.T., and Von Stein, C.R., 1995,Paleoseismicity of the North Branch of the Newport-Inglewood fault in Huntington Beach, California; Amer. Geophys. Union Abstracts with Program, December 11-15, 1995, San Francisco, California,p. 362. Hart, E.W., and Bryant W.A., 1997,Fault-rupture hazards zones in California Alquist Priolo earthquake fault zone act with index to earthquake fault zones maps: Calif. Div. Mines and Geol. Spec. Pub. 42, 38p. Ishihara,K., 1985, "Stability of Natural Deposits During Earthquakes", Proceedings, 1 lth International Conference on Soil Mechanics and Foundation Engineering, Vol. 1,pp. 321 376. PACIFIC SOILS ENGINEERING, INC. August 3, 1999 Page 4 Work Order 102300 Law/Crandall, Inc., 1994,Report of fault rupture hazard investigation, Waste Water Treatment Plant No. 2,Huntington Beach, California, for the County Sanitation Districts of Orange County, Vols. I and H: Consultant's Report Technical,Los Angeles, California, June 13, 1994, 37p. Leroy Crandall and Associates, 1988,Report of preliminary geotechnical investigation,Bolsa Chica Property,Huntington Beach, California, for the Metropolitan Water District of Southern California: Consultants Technical Report, dated August 1988,Job No.AEF-88234. Pacific Soils Engineering, Inc., 1999,Response to comments pertaining to Parkside Estates EIR #97-2 draft environmental impact report, Tentative Tract 15377, City of Huntington Beach, California: Consultant's Technical Report, dated July 29, 1999, Work Order 102300. Pacific Soils Engineering,Inc., 1998,Preliminary geotechnical investigation,proposed residential development, Tentative Tract 15377, City of Huntington Beach, California, and Tentative Tract 15419, County of Orange, California: Consultant's Technical Report, dated February 2, 1998,Work Order 102300, 36p, appendices. Pacific Soils Engineering, Inc., 1997a,Disposition of exploratory test pits, Tract 15377, City of Huntington Beach, California: Consultant's Technical Report, dated June 18, 1997, Work Order 102300,2p. Pacific Soils Engineering, Inc., 1997b,Preliminary geotechnical investigation,proposed residential development, Tentative Tract 15377, City of Huntington Beach, California: Consultant's Technical Report, dated April 21, 1997, 36p., appendices. Pacific Soils Engineering,Inc., 1996,Alquist-Priolo earthquake fault zone investigation,north branch of the Newport-Inglewood fault zone, Tract No. 15109, southeast of the intersection of Beach Boulevard and Adams Avenue, City of Huntington Beach, California: Consultant's Technical Report, dated April 5, 1996, Work Order 102167-GG,27p. Poland, J.F.,Piper,A.M., and Others, 1956, Ground water geology of the coastal zone Long Beach-Santa Ana area, California: U.S. Geol. Surv., Water Supply Paper 1109. Robertson,P.K., 1986, "In-Situ Testing and Its Application to Foundation Engineering", 1985 Canadian Geot. Colloquium, Canadian Geot. Journal, Vol. 23,No. 4,pp. 573-594. Robertson,P.K., and Campanella,R.G., 1988, Guidelines for geotechnical design using the cone penetrometer test and CPT with pore pressure measurement: Hogentogler& Company, Inc., Columbia, Maryland,pp. 162-179. Shacketon,N.J., and Opdyke,N.D., 1973, Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific Core V28-238: oxygen isotope temperature and ice volumes on a 105 and 106 years scale: Quaternary Research, v.3,n.l,p.39-55. PACIFIC SOILS ENGINEERING, INC. August 3, 1999 Page 5 Work Order 102300 Shlemon,R.J.,Elliot, P., and Franzen, S., 1995,Holocene displacement history of the Newport- Inglewood,North Branch fault splays, Santa Ana River flood plain,Huntington Beach, California: Geol. Soc. Amer., Abstracts with Programs,November 6-9, 1995,New Orleans, Louisiana,p. 375. State of California, 1986a, Special Studies Zones,Newport Beach Quadrangle, Official Map: Effective July 1, 1986,map scale: 1:24,000. State of California, 1986b, Special Studies Zones, Seal Beach Quadrangle, Official Map: Effective July 1, 1986,map scale: 1:24,000. Stoney-Miller Consultants,Inc., 1996, Investigation for feasibility of purchase,proposed detached housing tract, 40 acre Bolsa Chica Property,Huntington Beach, California: dated May 28, 1996,Project No. 11334-00. Thomas,M.A., 1992, Clastic sequences developed during late Quaternary glacio-eustatic sea- level fluctuation on a passive margin: Example from the inner continental shelf near Barnegat Inlet,New Jersey: Discussion and reply: Geol. Soc. Amer. Bull., v.104,pp. 1386- 1388. Tokimatsu,K. and Seed,H.B., "Evaluation of Settlements In Sands Due to Earthquake Shaking", ASCE Journal of Geotechnical Engineering,Vol. 113,No. 8,August 1987. Winchell,R.E., 1998, Comments on Parkside Estates EIR#97-2 Draft Environmental Impact Report(DEIR): Citizens Letter, dated June 12, 1998,unpaginated. PACIFIC SOILS ENGINEERING, INC. August 3, 1999 Page 6 Work Order 102300 APPENDIX II PSE REPORT DATED JUNE 18, 199 PACIFIC SOILS ENGINEERING, INC. PACIFIC SOILS ENGINEERING, INC. Q10653 PROGRESS WAY,P.O.BOX 2249, CYPRESS,CALIFORNIA 90630 TELEPHONE:(714)220-0770, FAX:(714)220-9589 (Corporate Headquarters) SHEA HOMES June 18, 1997 P.O. Box 487 Walnut, CA 91788-0487 Work Order 102300 Attention: Mr. Ron Metzler Subject: DISPOSITION OF EXPLORATORY TEST PITS Tract 15377 CITY OF HUNTINGTON BEACH, CALIFORNIA Reference: Gentlemen: Three exploratory test pits were excavated on the subject site on March 14 and 15, 1997. The purpose of the exploration was to observe the groundwater condition as it may be related to tidal fluctuations and examine the time required for the water to recharge after pumping. The pits were excavated to a depth of approximately 10 feet below original ground surface at the locations shown in the attached Test Hole Location Map. Each pit required an excavation of approximately 550 cubic yards. The pits were excavated with a backhoe and the excavated materials were temporarily stockpiled adjacent to the pit. After excavation, an approximately one foot thickness of crushed rock was placed in the bottom of the pit. A chain-link fence was erected at the top perimeter of the pit for safety purposes. Water was observed to stabilize at a depth of approximately 6 feet below ground surface within each pit. No fluctuations with tidal activities were observed. On March 20, 1997, the pits were pumped to within one foot of the bottom of the excavation (approximately 3 vertical feet) and the recharge time was observed. The water from the two southerly-most pits was discharged into the nearby Wintersburg Channel, while the water from the third pit was discharged at the ground surface, away from the pit. Similar operations were conducted on May 2, 1997 and May 19, 1997. On all occasions a relatively slow recharge was observed and approximately 24 hours was LOS ANGELES COUNTY RIVERSIDE COUNTY SAN DIEGO COUNTY SOUTH ORANGE COUNTY L:(310)325-7272 or(213)775-6771 TEL:(909)676-8195 TEL:(619)560-1713 TEL:(714)730-2122 FAX:(714)220-9589 FAX:(909)676-1879 FAX:(619)560-0380 FAX:(714)730-5191 June 18, 1997 Page 2 Work Order 102300 required to fully recharge the pits. The excavations were backfilled on May 19 and 20, 1997 with the original ground surface configuration restored. If you have any questions or require additional information, please contact this office. Respectfully submitted, PACIFIC SOILS ENGINEERING, IN tUs&� LU No.192 N By: a Dp.331-00 J S B. CASTLES/RGE 192 �`� 1'F�TEc►+N`OP��`� E 30280/Reg. Exp.: 3-31-00 T'�lf OF CAI�F�� Chief Operations Officer Distr.: (2) Addressee (1) Edaw-Attn: Jayna Morgan (1) Hunsaker&Associates-Attn: John Michler (1) Richard Harlow JBC/ml-23000006 PACIFIC SOILS ENGINEERING, INC. t • i b p I 3k £ 03ACIFIC SOILS ENGII'JEE.RING,., INC. 'I!0653 PROGRESS WAY CYPRE SS; CAL,ik6RC�IA 7141.220-0770 /.0.102300 DA`T``.� 6 18%9'7 , I 74,0r, V i a�97 ARK A A IN A F.G.N AF AN T RMINAT Q 30 60 120 ATE REMON BY OM R°less,°,� STATEMENT OF OWNERSHIP �oP°pu►r cR,, � 1 I HEREBY STATE THAT THIS MAP WAS PREPARED UNDER W No. 49118, MY SUPERVISION AND THAT THE OWNER OF RECORD HAS Exp. 9/3Q/00' � _._ s, \r KNOWLEDGE OF AND CONSENTS TO THE FILING'OF.THIS MAP. 'Tf Ciw� CALF DATE N SCALE ��-60' VICINITY MAP DATE 5/15/97 W.O. . 1 61.302 __ ..... - . : . GROSS AREA 44.66 i CONTOUR INTERVAL 1' TOTAL LOTS NUMBERED LOTS: 181 - ' LETTERED LOTS 2 •' i .. PREPARED 'FOR: PREPARED BY; S A , H , - E Sl '­ H E 0, .M . 655 Br'e Canyon . Road ; '" .`. •�.. Walnut, GA 9�789-9010 SSOC78tes~Ir ink Ian (9 0 9�) . 5 9 8- 18 4 'I � • • ���'f '� �-.� ,�::r ,A;�:�:, ,'- �.`w•t=��/�.y-��j�.�..w��:;, f >,� .-: - , /�Ji/ \�I i/MBfYWIIiI�•• VYI M �, ♦.•,/i. _ 3 Ril+GAES•DtWN,,4 CAUFOR1VL Wn$ ms)JWIVID-`' RHOLEI--�- ECEIVED 1997 + `Y ACIFiC .. • .'r,•u• " .f:'ai• i''C:•. „. i '.1•i, .•r R :•!� �1.•t�'r4,�•w. ''•,vim :L+'�'•�=. .• w 3� •�.;t r::� �� "i, R . :,+.. �..•A` .'f .s.•a^•• �.C• p!� }'..`.` •a.:K: +..�.: •y�LYt''%G:. C r`+..La" ,' 3v a•, ► t �S :t M 7 .o- . y I. •.•<.(:. +,,,A•} i• '' ,�..f: -'t,:;..•1rh CAiCiti:' �.. ��•:':t t •�, , �• .ta `+.��`!'•+L•i ,• ',�•y•f��:�C"•�.r3' �.�;� •;Y; :r; tkr�i': •'•., i,��••`•�.'F'.»•. s Y � • ,i f.rw�+i .,ui ,.,�:,s,,y,�S .e•�.. �- +w_•4.'' .`=.. :;A+r".r. '}r •ter,•�:�a;.;�+'.%i',��K.�».yy. t !\,....�1•�•.•.�`•�,�'•�-'}•'�� � `�''1'� '^'i', ,` - .< t. �•. � .. Y. •+t•,.7r�.f' �`�r.+t,w-r ,,'• .^•et..;�•.lwj•T,V,w• Ay Nor,����,�.��_�•. t.t , v 'r I` �'': ,�.' •iw•:.:,:'3.••�i�i^••' �vl'=wv \ .ate, a fA,A�.� "� ,•».•t O•. •d'y�s '}:'!? . .r t' -,•f. wi ,�. '':r r.. ,i• _ "�'�"' ..�.••w;�i' :x3er..l : rt.i• ,: ..t� ,!..1•it, ....�'..•h 'y.yi�''�i '� „•�, ,�?,�,;•":LrCtw. .a. c! 7.s •ww�;,t�r 0 PACIFIC SOILS ENGINEERING, INC. 10653 PROGRESS WAY, P.O.BOX 2249,CYPRESS,CALIFORNIA 90630 TELEPHONE: (714)220-0770, FAX:(714)220-9589 (Corporate Headquarters) SHEA HOMES July 29, 1999 603 S.Valencia Avenue Brea,CA 92822 Work Order 102300 Attention: Mr.Ron Metzler Subject: RESPONSE TO COMMENTS Pertaining to Parkside Estates EIR #97-2 Draft Environmental Impact Report Tentative Tract 15377 CITY OF H1JNTINGTON BEACH, CALIFORNIA References: See Appendix I Gentlemen: Pacific Soils Engineering,Inc.hereby submits this document that responds to comments and queries by various individuals and agencies regarding geological and geotechnical issues set forth in the Draft Environmental Impact Report(DEIR)prepared for Parkside Estates by EDAW,Inc.(1998). In this transmittal,Pacific Soils Engineering,Inc. (PSE)replies only to the geologic/geotechnical issues,and refers the reader to other sources for information about unrelated issues. Many of the questions raised by the various parties are common to one or more of three general issues as follows: -Faulting -Dewatering and construction -Effects on existing homes Prior to responding to the individual specific comments,general discussions of these major topics are presented below. If you have any questions about this or other geotechnical aspects of the Parkview Estat 0.ect,please contact this office. Respectfully submitted, ���°�y e• ��s���cyF PACIFIC SOLULENGRTFiERING,INC. Reviewed by: "Si No.192 By: E,P,3,U-00 MfCHAL F.MILL J S B. AS ES' CI, Geologist/CEG 994 CE 30280/Reg. Exp.: Z60F Cpt>F Reg.Exp.: 2-28-00 erations Officer ODORE M.WOLFE CEG 1626/Reg.Exp.:4-30-00 Distr.: (2) Addressee Manager of Geological Services (2) EDAW—Attn: Jayna Morgan (1) Hunsaker&Assoc.—Attn:Fred Graylee MFM:JBC:TMW/m1-23000011 LOS ANGELES COUNTY RIVERSIDE COUNTY SAN DIEGO COUNTY SOUTH ORANGE COUNTY TEL:(310)325-7272 or(323)775-6771 TEL(909)676-8195 TEL(858)560-1713 TEL(714)730-2122 FAX:(714)220-9589 FAX:(909)676-1879 FAX:(858)560-0380 FAX:(714)730-5191 July 29, 1999 Page 1 Work Order 102300 1.0 FAULTING PSE (1998; Appendix E of DEIR) discussed briefly both the Newport-Inglewood(N-I) fault zone and the Bolsa-Fairview fault(B-F) as mapped by the California Department of Water Resources (CDWR, 1968). PSE also summarized the reasons the B-F is neither included in an Alquist-Priolo(California Division of Mines and Geology, 1986a, 1986b) zone,nor afforded a structural setback on the study site. PSE,however,herein expands its discussion of the B-F to both respond to the concerns expressed in EIR review comments by Dr. Winchell and to aid future reviewers. The activity-level of the B-F is particularly important because it has been inferred to underlie the study site,hence its importance relative to the potential for fault ground rupture. Review suggests,however, that the CDWR criteria for geological recent movement along the B-F (or even its existence) is specious based on both regional and site-specific assessment. 1.1 Regional Assessment The B-F was first mapped at and near the study site by CDWR in 1968 (Figure 1, following page)based on several lines of indirect evidence: 1) topography on Huntington Beach Mesa; 2) an inferred 3-meter vertical offset of the lower Holocene to uppermost Pleistocene Bolsa Aquifer; 3) differences in ground water quality in late Pleistocene deposits across the inferred fault, and 4)oil-well data northwest of Bolsa Chica Mesa in the Sunset Beach Oil Field. For reference, the inferred trace of the fault as mapped by the CDWR(1968)is shown on Plate I (in pocket). The City of Huntington Beach(1995),the State of California(1986a, 1986b), and Bryant(1985)indicate,however,that the fault is not active based on a variety of arguments. A map of the Newport-Inglewood fault zone [Figure 2, following page, modified from City of Huntington Beach(1995)] depicts the B-F as "inactive or non-existent(sic)." Several lines of evidence lead to the conclusion that the B-F, if extant,is pre-Holocene. For example,the commonly cited topographic evidence for existence of the fault and of its activity-level on nearby Huntington Beach Mesa is an apparent left-lateral offset drainage course. This PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 2 Work Order 102300 deflection is in essence most likely a remnant or antecedent bend in the old drainage course, for lateral slip along elements of the N-I is exclusively dextral or right-lateral. Further, the assumed 3-meter(-10 feet)offset of the Bolsa Aquifer is based on information interpolated between two water wells about 2500 feet apart(Figure 3, following pages)--insufficiently close enough to distinguish fault offset from slight(.23 degrees) regional dip or irregularities in the top and bottom of the Bolsa Aquifer. Differences in ground water quality across the inferred B-F are seemingly detectable in the pre-Holocene (Pleistocene) deposits(Figure 4, following pages). Those differences,however, are not detectable across the mapped fault in the uppermost Pleistocene to lower-Holocene Bolsa Aquifer(Figure 5). As shown on Figure 6, (following pages)the faults mapped at the Sunset Beach Oil Field(California Division of Oil and Gas, 1991)neither trend in the same direction as,nor are they spatially or laterally consistent with, the inferred B-F fault. Further,the cross-section in Figure 6 shows the oil field faults as being pre- middle-Pliocene-- several million years old. Thus, evidence of the B-F northwest of the study site is, at a minimum, equivocal. 1.2 Site Specific Assessment From a site-specific standpoint, examination of both hollowstem-auger borings and CPT soundings in the context of the regional geology suggests that if indeed the B-F is present beneath the surface at the study site, it is pre-Holocene. These explorations allow PSE to synthesize an uppermost Pleistocene to upper Holocene stratigraphic section useful for judging the B-F activity level. 1.2.1 Uppermost Pleistocene Marine Oxygen Isotope Stage 2/Lower Stye 1 olsa Aquifer) Sediments Basal sands that are perhaps 20-to 30-feet thick(CDWR, 1968, Cross- Section G-G';Figure 3,herein) overlie middle to upper Pleistocene deposits(PSE, 1998; Exhibits 38 through 41, EDAW, Inc., 1998) and form the base of unlithified sediments in the upper stratigraphic section at PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 3 Work Order 102300 the study site. Based on stratigraphic position, lithology, location, and water-bearing characteristics,PSE correlates this basal unit with the 'Bolsa water bearing gravel/sand(Aquifer)" of Poland, et al. (1956) and CDWR(1966, 1968) that was previously considered lower Holocene. However,recent investigations (Law/Crandall, 1994; Shlemon et al., 1995; Grant, et al., 1995) demonstrate that the Bolsa is uppermost Pleistocene rather than Holocene in age. The dating stems from correlation of the basal sands and gravels to the marine oxygen isotope stage chronology and from 10,700 to 11,700 years old radiocarbon dates for immediately overlying sediments. These basal sands/gravels make a rather remarkable time line and marker bed, for they are easily recognizable in boring logs, and have sharp, unique signatures on the CPT soundings. 1.2.2 Holocene Marine Oxygen Isotope Stage1 Sediments Lower to upper(modem)Holocene fining upward sediment superposed on the Bolsa basal sands (Aquifer) consists of about 30-to 40-feet of locally fossil-rich, gleyed(unoxidized) clays, silts, fine-to occasionally coarse- grained sands and occasional peat beds. These are alluvial/intertidal/ marsh sediments, replete with small outwash channels,that were laid down as Holocene sea-level rose. These deposits are locally well stratified and provide good signatures on CPT soundings. 1.2.3 Bolsa-Fairview Fault Assessment For this transmittal, PSE compared or"calibrated" CPT soundings with hollowstem-boring logs to identify and match the "30 to 40 feet basal sands" (Bolsa Aquifer) reported in the boring logs with CPT sounding signatures. Comparison of the boring logs with the CPT soundings showed that the basal sands gave rise to a unique, identifiable CPT sounding signature, and that some Holocene sand/clay beds, also yielded useful "marker" signatures. PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 4 Work Order 102300 A commonly used and an increasingly acceptable method of fault exploration(Grant, et al., 1995; Law-Crandall, 1994; Freeman, et al., 1992; PSE, 1996)in areas underlain by saturated sediments is correlation of CPT soundings across a suspected fault,much like the use of E-log correlations in oil field exploration. This firm thus constructed three cross-sections or CPT Correlation Lines across the inferred B-F of CDWR (1968). Although the elevations of the CPT soundings were not surveyed, adequate topographic control was available on Plate I. The Bolsa Aquifer does not seem to be offset(faulted)near the inferred trace of the CDWR(1968)B-F based on CPT Correlation Lines A-A' through C-C' (Plates II through IV, in pocket). Rather,the top of the Bolsa seems "undisturbed". And overlying Holocene marker beds are likewise not offset. Near the southwest corner of the site,the Bolsa is five to ten feet deeper than below the rest of the site. By contouring the top of the Bolsa in that area(Plate I), it is clear that the change in depth is not linear, as would be expected if the stratum were offset by a fault. The change is semi-circular,thereby indicating that depositional processes (channeling; topographic controls) account for the differences in depth. Note that the dip of the top of the Bolsa in the area of depth change is but two to three degrees. The exaggerated vertical scale of the CPT Correlation Lines makes the depth changes seem abrupt. 1.3 Summary In sum, on-site evidence strongly suggests that, if extant,the B-F is pre-Holocene, and thus not active according to Alquist-Priolo standards; such is consistent with the Class D assignment of the fault (Figure 2 b the City of Huntington Beach � � �' ) Y tY � (1995). Further, regional evidence is equivocal for even its existence. Accor- dingly,no setbacks have been recommended for the inferred B-F of CDWR (1968). PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 5 Work Order 102300 2.0 DEWATERING AND CONSTRUCTION The recommended grading process is outlined in Section 7.0 (Pacific Soils, 1998) and includes overexcavation of loose/soft, compressible soils to depths varying from 5 to 19 feet. Perched ground water was observed in borings and test pits at levels varying from 4 to 19 feet below existing grades. These water levels vary, to some extent, seasonally and are considered to be "perched" above less permeable silt and clay seams. Those interbedded seams are discontinuous laterally and, as a result,water is migrating both vertically and laterally within the more permeable sand layers. Based upon excavations that were monitored in March through May 1998 (PSE, 1997), consisting of 3 exploratory pits dug to depths of approximately 10 feet, water levels at that period of time were approximately six feet below ground surface(bgs). The excavations were pumped on two occasions and monitored periodically in between. We concluded that: 1) No fluctuations in water levels were observed during tidal changes and; 2) Relatively slow recharge (approximately 24 hours)was observed after pumping. The grading and construction dewatering effort will consist of a combination of several techniques. The primary technique, and that which will be used in proximity to the northerly project boundary,will consist of accomplishing the excavation of the upper 4+ feet with conventional earth moving equipment(scrapers). At that point, further excavation of wetter materials will be accomplished with a large excavator(backhoe). Within 100 feet of the north boundary,the excavation will predominately be 10 feet deep or less except for the extreme easterly one-third of the boundary where removals will be on the order of 15 feet. Initial excavations will be at least 50 feet away from the north property line due to the presence of an existing storm drain that must remain functional until the replacement systems can be constructed. Dewatering of this northerly boundary area will be accomplished by surface pumps within the excavation. The excavations will be segmented in approximate 200 x 200 feet +increments that will be refilled with a mixture of materials from an adjacent excavation and drier import materials as needed. Within the interior of the project, dewatering will be accomplished with similar surface pumps, supplemented with local shallow well PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 6 Work Order 102300 points, and dewatering wells. Ultimately,upon accomplishment of similar procedures throughout the site, the replacement storm drain system will be constructed and the remaining slot adjacent to the north property line will be graded. This latter grading will likely be accomplished in 50 feet by 100 feet±increments in a fashion similar to that described above,thus excavation and at least partial refilling will generally be accom- plished within the same day's operation. 3.0 EFFECTS ON EXISTING HOMES The recommended dewatering and grading procedures are discussed in Section 2.0, above. Along the northern boundary, dewatering will be accomplished with local surface pumps and gravity flow within the excavation. Grading within 50 feet of the north property line will be accomplished in small segments that can be excavated and expeditiously refilled. The drawdown effects of such local dewatering efforts on offsite areas will be insignificant. It is quite likely that historic fluctuations in perched water levels were more extensive than those that could be created during the proposed construction. As such, significant stress increases will not occur and settlements resulting from dewatering efforts are not anticipated. In order to monitor the boundary conditions, it is planned to accomplish the following prior to and/or during site grading: 1) Conduct a survey of existing conditions; 2) Install piezometers to monitor groundwater levels; 3) Install and monitor survey monuments; 4) Prepare a detailed dewatering plan for review by the governing agency(s).. It should be noted that similar conditions have been encountered previously and procedures similar to those proposed for this site have been successfully implemented on numerous projects throughout the Huntington Beach, Fountain Valley, and Westminster areas. PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 7 Work Order 102300 4.0 RESPONSE TO SPECIFIC QUESTIONS DR. R.E. WINCHELL This narrative follows the organization and hierarchy used by Dr. Winchell in his letter. That is, the same headers and enumeration used in that letter are repeated below,together with the PSE response. A geological map, as well as three Cone Penetrometer Test Correlation Lines, are included in the pockets as Plates I through IV..Pertinent figures and tables follow the pages of this text on which are first mentioned. General Comments Items 1 through 5: These are mainly statements and opinions regarding the overall content and organization of the DEIR. Where applicable and within its province, PSE has incorporated Dr. Winchell's suggestions. Specific Comments Section 5.6 Earth Resources: PSE has provided a geological/geotechnical assessment of the site. Please see PSE (1998). Existing Conditions 1) Based on Plate I (in pocket), the ground elevations on-site and nearby vary from about 3 feet below sea level to about 50 feet above sea level. Spot elevations and elevation contours are given on Plate I. Post-grading configuration is shown on Exhibits 38 through 41 in the DEIR. Pad elevations will vary from 1.0 feet to 10.2 feet. 2) Exhibits 38 through 41 of the DEIR depict four kinds of mappable fill deposits. Each are delineated and labeled on those exhibits; in addition, the 1997 locations of ephemeral piles of dumped fill are pointed out. PSE (1998)recommends that all existing fills be removed and replaced by engineered fill. Where such cannot be accomplished(for example, along the East Garden Grove-Wintersburg Channel embankment), structural setbacks are , recommended to mitigate adverse effects of such fills SE 1998). g , PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 8 Work Order 102300 i Stratigraphy/Subsurface Soils: 1) The PSE report(PSE, 1998; and Appendix E of the DEIR)describes in some detail the significance of both the kinds and the geotechnical properties of on-site deposits; and provides recommendations to mitigate adverse, where extant, geotechnical properties of those materials. The deposits labeled on Exhibits 38 through 41 as alluvium do include a variety of stream, flood plain, and esturine deposits; all of which are complexly stratified and are typical of low-relief coastal plains. These deposits thus reflect shallow marine and non-marine environments that stem from coastal climatic and sea-level changes (Shakleton and Opdyke, 1973) during the latest Pleistocene and Holocene (last—11,000 years). For example, the "Cone Penetrometer Test Correlation Lines" (Plates H through IV, in pocket) particularly illustrate the lenticular and cut-fill relationships of channel(sand),tidal flat (mixed fine-grained and coarse-grained), and overbank(mainly silts) deposits. These correlation lines,which are in essence cross-sections of the subsurface, are discussed relative to the mapped Bolsa-Fairview(B-F) fault of the CDWR(1968)in Section 1.0 of this exposition. The remedial grading program outlined by PSE(1998)is directed at the issue of inhomogenity of potentially liquefiable soils. In general terms of the importance of interfaces among the various deposits, during grading all removal "bottoms" will be mapped by this firm to mitigate possible effects of placing structures on materials with different bearing qualities. Differential settlements produced by underlying inhomogenity will be monitored prior to release for construction(PSE 1998). Further mitigation could include additional overexcavation to provide more uniform bearing materials or special designed foundations (for example,post-tensioned or mat foundations). Estimates of anticipated settlements, as well as possible remedial measures are discussed by PSE (1998; Appendix E of the DEIR). Also, the presence and engineering characteristics of differing soils (i.e.,peat, liquefiable layers) are discussed in the PSE report and Appendix E of the DEIR, together with methods PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 9 Work Order 102300 of remediating soils that are adverse, from a geotechnical standpoint, to development in their natural state. 2) Many of the responses given in Section 1.0 apply to this comment. The PSE report contains the exploratory logs of 12 backhoe trenches, eight hollow-stem auger borings, and 65 cone penetrometer soundings that were part of the PSE preliminary investigation. In addition,the logs of exploratory excavations produced during previous explorations(Leroy Crandall and Associates, 1988; Stoney-Miller Consultants,Inc., 1996) are contained in the PSE report, and were used during the PSE geotechnical analysis of the site. The reviewer is thus afforded ample information about on-site soils that would be useful for his/her assessment of the site. Additionally,the geologic map of the site(Plate I in PSE 1998; Exhibits 38 through 41 of the DEIR) shows the aerial distribution of earth materials Aerial photographs that were used for a PSE assessment of faults and general t e (deposits). P �P site conditions, as well as a Phase I preliminary site environmental assessment, are not particularly more useful for geotechnical review of the PSE reports than the geologic map (Plate I) and the site photos that are Exhibits 21 through 24 in the DEIR, for agricultural disturbance has continually modified the ground surface throughout the years. The aforementioned site photos(EDAW, Inc., 1998) do depict various deposits. For example, Site Photos A and C show at the extreme left a fill embankment for the existing flood control channel shown on the geologic map as Unit aft, and the recently disced alluvial flats; Site Photo L shows the height and typical hill underlain by the upper Pleistocene deposits (map symbol: Qpu). The ancient stream channels identified in PSE reports,based on explorations, occur at depth, and thus are not discernible on the photographs. The enclosed Cone Penetrometer Test Correlation Lines ("cross-sections")A-A'through C-C' (Plates II through IV) depict various subsurface channels, much like fence diagrams. The relations of inhomogenious soils to site development were briefly discussed in the previous item. By employing standard of practice observation of grading to discern . significant soil inhomogenity,remedial measures if required can be implemented in a timely and satisfactory manner. In addition to the possible adverse effects of PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 10 Work Order 102300 inhomogenious soil types, a possible positive effect may also exist. Thin, discontinuous layers of liquefiable soil are less likely to produce surface manifestations of liquefaction than thick continuous layers. Also, for the most part,potentially liquefiable soils are interbedded with non-susceptible soils,thus possibly reducing uplift pressures associated with liquefaction. 3) Ground water impacts two principal geotechnical concerns;namely, liquefaction and nuisance construction water. As noted by PSE(1998), and earlier reports by others(see references), semi-perched ground water levels varied both spatially and temporarily. Such differences were ascribed to several possible reasons including local ground-water mining, seasonal fluctuations, local drainage devices("Slater Drain"),possible faulty measure- ments, aid,most importantly,the scattered and discontinuous nature of lenses and seams of highly permeable sands and less permeable fine-grained soils that locally both convey and temporarily impede the downward migration of incident rain and irrigation waters. Cone Penetrometer Test Correlation Lines A-A'through C-C' illustrate those inhomogenities. Information about water levels appears in the exploratory logs and tables of PSE and previous geotechnical reports. The reviewer or user(for example, the biologist)of the PSE reports can use the information as required, or to make maps as necessary. However, such maps were not necessary for the preliminary geotechnical assessment,because a conservative ground water level of six feet below.ground surface was used in the PSE (1998) liquefaction potential calculations--even though the water may be transient and even though in some areas the ground water levels were deeper(up to 19 feet deep)than six feet. Thus a contour map was not required. Also, dewatering programs have been implemented to assess the feasibility of and to design a program for pumping of nuisance construction water. The preliminary studies indicate such is feasible. A final procedure must await final tract(s) design and,ultimately, actual field conditions. Other sections of this transmittal contain further discussions of ground water. 4) The phrase "In the vicinity of. . ." means in essence that the peat deposit was observed in that boring,but did not continue to adjacent borings for which the logs thereof do not indicate the presence of peat. PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 11 Work Order 102300 Of the 53 on-site exploratory excavations,ten are reported to have encountered peat deposits; that is, 19 percent of the excavations exposed peat. One other boring log, LC-3, indicates "traces" of peat at depth. Peat deposits are thus scattered over the site,but as discussed in Item 7,below, the thicker and, therefore, the most important from a geotechnical standpoint, deposits are within about 5 to 6 feet of the surface(Table A, following page). Since all areas of the site are programmed for overexcavation to depths of at least 5 feet,potentially detrimental peat deposits will be removed. For recommended removal depths (or elevations) see Table I of PSE (1998). For clarity, a copy of Table I from that report follows this page. Overexcavation will not be merely on a lot-to-lot basis, but area-wide, and based on field observations during grading. 5) The thickness or depths to the tops and bottoms of peat beds are indicated on the logs. Table A also displays the vertical distribution and thicknesses of peat beds encountered during exploration. 6) The descriptions on page 5-120 are of existing conditions. Mitigation measures 1 and 2 are set forth as geotechnically feasible methods for mitigating the potential effects of deleterious peat deposits. 7) As depicted in Table A,peat deposits of up to about three feet thick occur in the upper five to six feet of some exploratory excavations. These thick deposits are, of course, significant; PSE has thus recommended removal and off-site disposal of such. The deeper peat strata in the borings noted by the reviewer are thin(a few inches) and have been "surcharged" by about 12.5 feet to 28 feet of sediment. The same applies to the "traces" and scattered organic material that are seemingly disseminated in the soils, rather than concentrated in classic "peat" beds. The impacts of such material at depth are minor and have been accounted for in our settlement estimates. The exploratory excavations and CPT soundings clearly indicate that the peat is concentrated at depths above five to six feet below ground surface, with only local thin deposits at greater depths. The number of borings/trenches seemingly yield enough information to permit a reasonable assessment of the potential impacts of existing peat deposits. In fact, the level of investigation and frequency of borings and CPT soundings far exceed"normal' site investigations. PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 12 Work Order 102300 A major task in mitigation(i.e.,removal)of peat deposits is observance of overexcavations during grading operations, so that the actual depths and areal extent of near-surface peat can be identified and complete removal can be carried out. Further, it may be anticipated that soils containing abundant root holes, such as at five to eight feet in trench T-12,will also be identified and removed. For reference,Table I of PSE (1998)indicates that about 5.5 feet to about 19 feet of removals are anticipated. Such overexcavation is anticipated to mitigate porous near-surface soils, and the aforementioned observance of operations would permit variances from Table I, if unanticipated conditions are encountered. In the context of the vertical distribution of peat, it is not surprising,but indeed expected, that the greatest accumulations of the material should be near the present ground surface, owing to the Pleistocene-Holocene history of the Bolsa Chica area. As spelled out by PSE (1998): about 12,000 to 20,000 years ago sea level was about 350 to 500 feet below the modem sea level(Figure 7, following page); and Poland, et al. (1956) suggested the existence of channels in the Bolsa Chica area to 150 feet below the modem ground surface. During that time, and as sea level rose for most of the last 12,000 years, the local deposi- tional environment was relatively high energy and thus not conducive, except locally or for short periods of sea level stability,to the deposition of quiet intertidal/lagoonal deposits (fine-grained)that favor peat accumulation. As sea level rose to its modern levels in the last few thousand years, and as river channels were "drowned," tidal flats/lagoons formed that gave rise to the thick, shallow peat deposits on- and near-site. Such is reflected in the extensive database that reveals major peat deposits exist only within the upper 6 feet on the site. As a consequence, the possibility of si igr�'ficant "undetected"peat deposits, as suggested by Dr. Winchell, is incorrect,thus the suggestion that problems will be associated with undetected peat deposits is also incorrect. Seismicity 1) Please see Section 1.0 of this response. 2) Please see the figures included in Section 1.0. The requested map is provided. PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 13 Work Order 102300 3) Per the discussions in Section 1.0,the possibility of tectonic ground rupture,including en echelon shears attributable to the B-F, is extremely low to nil. 4) The sentence seems to need to be revised by dropping the "of' and"two are" and by adding an"is" after"which". Potential for Ground Ruptur e 1) Many definitions of an active fault appear in the geological literature. Usually, for projects such as Parkside Estates, in terms of potential for ground rupture,the CDMG(Hart and Bryant, 1997) definition of an active fault as one that has ruptured the ground surface in the Holocene(last—11,000 years)is applied. The City of Huntington Beach seemingly has adopted this criteria. As explained in Section 1.0, above, the consensus of the geological literature and site-specific evidence indicates that the B-F, if extant, has not slipped in the Holocene. Only equivocal evidence even suggest the existence of the B-F. 2) The B-F has been reported,but not proven to be, on-site. The geological evidence 0 indicates that the fault, if extant, is not active according to Alquist-Priolo standards. Rather,on-site explorations yield positive ti s evidence that the inferred fault does not affect uppermost Pleistocene and Holocene sediment. Potential for ground rupture arising from that fault is thus extremely low to nil. Strong Ground Motion Potential For engineering purposes, estimates of possible ground motions, such as horizontal acceleration, are usually submitted. Paragraph 4,page 5-121 sets forth possible ground acceleration derived from several methods, each with varying amounts of conservatism. Ground acceleration is particularly useful for liquefaction potential and structural engineering analyses. For the reader, however, a table of intensity(Table B) follows this page. For reference, the City of Huntington Beach(1995)indicates possible intensities of XI for the entire gap (flat land) areas and XI+ along the Newport-Inglewood fault zone. Note that the level of damage as measured by intensity varies with the kinds of buildings. Modern, code-consistent, engineered buildings are planned for the site. For a complete discussion of site seismicity, the reader is referred to PSE(1998). PACIFIC SOILS ENGINEERING, INC. Masonry A,B,G D: fol av lid Im ng of language,the quality of masonry,brick or otherwise is specified by the Masonry A Good workmanship,mortar and design;reinforced,especially laterally,and bound together by using steel,concrete,etc.;designed to resist lateral forces. Masonry B: Good workmanship and mortar,reinforced,but not designed in detail to resist lateral forces. Masonry C: Ordinary workmanship and mortar,no extreme weaknesses like failing to tie in at corners,but neither reinforced nor designed against horizontal forces. Masonry D: Weak materials,such as adobe,poor mortar,low standards of workmanship;weak horizontally. 1. Not felt.Marginal and long-period effects of large earthquakes 11. Felt by persons at rest,on upper floors,or favorably placed. Ill. Felt indoors.Hanging objects swing.Vibration like passing of light trucks.Duration estimated.May not be recognized as an earthquake. IV. Hanging objects swing.Vibration like passing of heavy trucks,or sensation of a jok like a heavy ball striking the walls. Standing motor cars rack.Windows,dishes,doors male.Glasses clink.Crockery clashes In the Upper Range of N wooden walls and frame creak. V. Felt outdoors;direction estimated.Sleepers wakened.Liquids disturbed,some spilled.Small unstable objects displaced or upset.Doors swing,close,open.Shutters,pictures move.Pendulum docks stop,start,change rate. A Felt b�yy all.�Many frightened and run outdoors.Persons walk unsteadily.Windows,dishes,glassware broken. Knicldahacks,books,etc.,off shelves.Pictures off walls.Furniture moved or overturned.Weak plaster and Masonry D cracked.Small bells ring(church,school).Trees,bushes shaken visibly,or heard to rustle. VII. Difficult to stand.Noticed by drivers of motorcars.Hanging objects quiver.Furniture broken.Damage to masonry D, including cracks.Weak chimneys broken at roof line.Fall of plaster,loose bricks,stones,dies,cornices also unbraced parapets and architectural omaments.Some cracks in masonry C.Waves on ponds;water turbid with mud.Small Ades and caving in along sand or gravel banks.Large bells ring.Concrete irrigation ditches damaged. VI 11. Steering of motor cars affected.Damage to masonry C;partial collapse Some damage to masonry B;none to masonry A.Fall of stucco and some masonry walls.Twisting,fall of chimneys,factory stacks,monhsrnerar,towers,elevated tanks.Frame houses moved on foundations if not bolted down;loose panel walls thrown out.Decayed piling broken off.Branches broken from trees.Changes in flow or temperature of springs and wells.Cracks in wet ground and on steep Mopes. IX. General panic.Masonry 0 destroyed;masonry C heavily damaged,sometimes with complete collapse;masonry B seriously damaged.General damage to foundations.Frame structures,if no bolted,shifted off foundations.Frames racked.Serious damage to reservoirs.Underground pipes broken.Conspicuous cracks in ground.in alluviated areas sand and mud ejected,earthquake fountains,sand craters. X. Most masonry and frame structures destroyed with their foundations.Some well-built wooden structures and bridges destroyed.Serious damage to dams,dikes,embankments.Large landslides.Water thrown on banks of canals,rivers, lakes,etc Sand and mud shifted horizontally on beaches and flat land.Rails bent slightly. XI. Rails bent greatly.Underground pipelines completely out of service. XII. Damage nearly total.Large rock masses displaced.Lines of sight and level distorted.Objects thrown into air. 1. Original 1931 version in Wood,K O.,and Neunsam,F.,1931.Modified Mercalli intensity sale of 19315eismologa Society of America bulletin,v.53,no.5,p.979-987. 2. 1956 version prepared by Charles F.Ricker,in Elementary Seismobp,1958.p.137-138.W.H.Freeman do Ca SOURCE:Buena Engineers,lnc.Preliminary Geotechnical Engineering Report(May 1989) TABLE B MODIFIED MERCALLI INTENSITY SCALE FROM: OF 1931 ', (1956 version)z CITY OF HUNTINGTON BEACH ��2 City of Huntington Beach General Plan EIR (1995) July 29, 1999 Page 14 Work Order 102300 Impacts/Mitigation/Level of Significance 1) In 1997,the State of California,Department of Conservation,Division of Mines and Geology issued Special Publication 117, Guidelines for Evaluating and Mitigating Seismic Hazards in California. PSE has analyzed the site and provided recommendations to mitigate the site in accordance with those guidelines. That publication stands as the most definitive document to date to establish both means to analyze and to define appropriate mitigation goals. The objective of the Guidelines, as stated on Page 2 of that document, are twofold: a) "To assist in the evaluation and mitigation of earthquake-related hazards for projects within designated zones of required investigations; and b) To promote uniform effective statewide implementation of the evaluation and mitigation elements of the Seismic Hazards Mapping Act." The Guidelines define mitigation as Those measures that are consistent with established practice and reduce seismic risk to 'acceptable levels'." Acceptable levels of risk are defined as "that level that provides reasonable protection of the public safety,though it does not necessarily ensure continued structural integrity and functionality of the project." Minimum Statewide Safety Standards are defined,based on the above definitions of mitigation and acceptable risk. "The minimum level of mitigation for a project such as this should reduce the risk of ground failure during an earthquake to a level that does not cause the collapse of buildings for human occupancy,but in most cases,NOT to a level of no ground failure at all." The mitigation scheme prepared for the Parkside Estates project includes: a) Overexcavation and replacement of 5 to 19 feet of site soils; and b) Utilization of post-tensioned slab/foundations or mat foundations designed to withstand differential settlements of 2-inches in 30 feet. PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 15 Work Order 102300 s These mitigation recommendations are consistent with the Guidelines and are similar,if not more extensive, than similar residential projects in Huntington Beach and other nearby communities. Implementation of these measures will reduce the risk of seismic hazards to acceptable levels consistent with the State guidelines. 2) "Level of significance" is not in the geotechnical nomenclature; other specialists,in particular planning and governmental representatives, deal with this term. From a geotechnical standpoint, as discussed above,the State of California has defined " v risk." Structures designed in consideration of and mitigation and acceptable level of S 1� capable of withstanding differential settlements up to 2-inches in 30 feet and overall settlements on the order of 4-inches are expected to protect occupants from injury due to structural failure. Cracking of slabs and foundations and tilting of structures could occur as a consequence of a major seismic event in proximity to the site and ground shaking and damage to non-structural possessions remains a significant risk, as is the case throughout Southern California and other seismically active areas. Site remediation has been proposed for all areas of the site including below infrastructure. In fact,deeper remediation is programmed along the alignment of some storm drains and sewers to facilitate construction. After remediation, anticipated seismic settlements are unlikely to significantly affect utilities, although individual agencies supplying services such as gas and electric should be advised of anticipated post-grading seismic settlements in order to evaluate the potential effects on their service facilities. 3) See response to Item 2, above. 4) The majority of the recommended site remediation is aimed at mitigation of liquefaction hazards. The major peat concentrations are in the upper 5 to 6 feet, and thus will necessarily be removed in accomplishing the recommended site overexcavation/recompac- tion(PSE, 1998). As shown in Table I, PSE, 1998, depths of removal will vary from elevation minus 3 to elevation minus 19. 5) It is generally recognized that an important factor influencing whether liquefaction is manifested at the ground surface is the thickness of the mantle of non-liquefiable soil above PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 16 Work Order 102300 the liquefiable layers. If the mantle of non-liquefiable soil is sufficiently thick, the uplift force due to the excess pore water pressure will not be large enough to cause a breach in the surface layers. Thus, there will be no surface expression. Wave amplification is a phenomenon generally associated with a free-face(i.e., slope) or an inclined material discontinuity. No significant slopes are proposed within the project and the fills will be comprised of a relatively uniform thickness. Densification of surface soils to render them non-liquefiable by overexcavation and recompaction(man-made fills)is a recognized method of liquefaction mitigation and is the preferred technique for the subject site. 6) Please refer to responses to Items 1 and 2, above. 7) Please refer to responses to Items 1 and 2, above. Other Comments: 1) Any potential for landsliding will, and can feasibly, be mitigated if the recommendations in the PSE reports are included in design and construction. 2) Please refer to other consultants. 3) These concerns have been addressed in this transmittal. RESOURCE PRESERVATION ALLIANCE There are several questions raised by the Resource Preservation Alliance,Risse, Tonjes, and Buley that are primarily related to ground water and construction dewatering. The discussion presented in Section 2.0 of this response is intended to be a comprehensive description of the construction and dewatering process and form a basis to address each of the individual issues raised by those citizens. Specific Issues In response to specific issues,the following is submitted: PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 17 Work Order 102300 Question 1: ". . . the EIR consultants EXPECT this to be a problem with possible subsidence of the existing adjacent properties." PSE Res-onse• Construction sequencing as discussed in Sections 2.0 and 3.0 is expected to have no effect on adjacent properties. Question 2• "We have a real concern that the monitoring wells may fail, may not be monitored 24 hours a day and that whatever parameters that they use as a crisis point may be flawed." PSE Response: Removal and recompaction adjacent to the north property line will be conducted in small increments(±50 by 100 feet). Within the range of required local water drawdown adjacent to existing properties (4 to 9 feet) stress increases in offsite areas as a consequence of dewatering efforts will be insignificant and within the range of likely historic fluctuations. While we intend to monitor boundary conditions,significant regional and offsite drawdown is not anticipated. By using surface pumps within relatively small excavation increments adjacent to offsite properties, "crisis points" will not be created. Surficial pumps will be operated only during periods of construction activity and will be manned continually during those periods. Similarly,monitoring wells will be observed during periods of pump activation. Within the tract interior, deeper pumps may be employed to supplement surface pumps. These devices will be designed and operated to have no significant drawdown effects on offsite areas. Question 3• "There is no analysis of the actual underground aquifer. The consultants do not know if the groundwater continues from the subject site under the existing properties at the northern boundary." PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 18 Work Order 102300 PSE Response: It is likely that similar perched water levels extend into offsite areas including the northern boundary area. The construction sequencing described previously will limit the effects on these perched water levels. Question 4• "The other major problem we see is that it is likely that they are dealing with an unlimited aquifer(the Pacific Ocean). It is documented that the area to the southwest of the project is subject to tidal influence, it was clear from the test pits that were dug adjacent to the EGGWC that the ground water there was 1)saltwater and 2)subject to the tides and finally the EGGWC is earthen and not lined. It seems obvious that a large portion of the underground aquifer is indeed not a closed system and, therefore, would be unaffected by dewatering." PSE Response: No response to tidal influence was observed in our test pits, and approximately 24 hours was required to recharge a relatively small test pit(PSE, 1997). These facts indicate that either the water is perched and independent of tidal influence or that the permeability and continuity characteristics of these near-surface soils are such that responses are slow. In either case,the construction and dewatering sequences described previously can be accomplished without significant effects on adjoining properties. Question 5• "Finally there is no mention of where the water will go once it is removed. We can only assume that the applicant will put it into the EGGWC. Is this the case and if so has the County approved this and will the water quality be monitored? At the very least, the Dewatering Plan recommended in Mitigation Measure 4 should be required as part of this EIR document. PSE Response: It is intended to discharge the water into the EGGWC. The County will be consulted prior to construction and treatment to satisfy their water quality requirements will be implemented as PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 19 Work Order 102300 necessary,prior to discharge. Mitigation Measure 4 will be implemented upon certification of the EIR and approval of the project. MR. AND MRS. SING JOE KONG Question-, "If and when the permission to build were granted, how long would take the developer to tear down the wall, to dewater the soil, to replace the soft peat with a more solid soil substitute, to compact the new soil, and to build the retaining and the block wall?" PSE Response: The entire grading process is likely to require approximately 6 months to complete. Grading along the 50-foot wide strip immediately adjacent to the northerly property line would likely occur near the end of that process since the existing storm drain must remain functional until a replacement system can be constructed. Replacement walls would necessarily be constructed after completion of grading in the area. MS. DONNAMARIE RISSE Question: "On page 2-7 of volume I, water from the new development 'may result in subsidence of the property just north of the property boundary'--That's me! My property has already subsided as evidenced by the cracks in my pool decking coupled with the fact that the field side of the back wall is 1-2 feet higher than my side. Further subsidence could crack my pool, make me liable to flooding during winter rains, and be a thoroughly unpleasant condition with which to cope." PSE Response: Mitigation 4, in conjunction with the construction methodology/sequencing described herein, will mitigate this concern to a level less than significant. Evaluation of the causes of past distress to existing properties is beyond this firm's purview. Any past distress to the property could have been caused by any of several possibilities, none of which will be significantly affected by the PACIFIC SOILS ENGINEERING. INC. July 29, 1999 Page 20 Work Order 102300 proposed construction. Drainage will be improved by the proposed development when surface and subsurface drainage systems are constructed. COUNTY OF ORANGE PLANNING AND DEVELOPMENT SERVICES DEPARTMENT Question: "We suggest that special publication 117-- Guidelines for Evaluation and Mitigating Seismic Hazards in California, adopted March 13, 1997 by the State Mining and Geology Board, in accordance with the Seismic Hazards Mapping Act of 1990, by utilized in evaluation of the subject site." _PSE Response: Methodology utilized in our evaluation of liquefaction and other geologic hazards is consistent with the requirements of Special Publication 117. Question: "We recommend that discussion/evaluation relative to lateral spread or seismically induced landslide hazards be provided in the EIR." PSE Response: The major natural slope ascending from the site is comprised of dense Pleistocene sands that are not subject to seismically induced landslides or lateral spread. The majority of manufactured slopes within the project will be on the order of 2 feet or less and will be comprised of compacted fill. A maximum 10-feet high 4:1 slope is proposed at the extreme west end of Tract 15419. Remediation of potentially liquefiable soils will be accomplished prior to construction of all slopes. Sheet piling is to be installed along the north bank of the EGGWC. Upon completion of construction, lateral spread and seismically-induced landslide hazards will not exist. Question: "The EIR should address any potential adverse impact upon the stability and/or function of existing utility/service lines or other improvements (e.g, Flood Control Channel). Any PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 21 Work Order 102300 grading and/or improvement activities impacting County improvement will require an encroachment permit." PSE Response: The only known existing utilities consist of. 1) a 60-inch RCP adjacent to the northerly property line and 2)the EGGWC. The 60-inch RCP will be protected in-place and remain functional until replacement systems can be constructed. Grading adjacent to the EGGWC and within the right- of-way will be conducted, and an encroachment permit will be obtained prior to construction. Details for grading and construction in proximity to the channel can be discussed with County personnel prior to implementation. Additionally, channel improvement plans will be reviewed and approved by the County as a prerequisite for permit issuance. GERI BULEY Question: "When you overexcavate to a depth of 19 feet over a large area, lower a perched'water table that is now at a 4 foot depth with 40 to 60 submersible pumps over a period of 4 to 6 months with the recommendation that this work be done only in the summer months; move, dry and recompact/replace 470,000 cubic yards of soil while importing 210,000 cubic yards of new fill it is a major undertaking that requires significant schedule and project controls." PSE Response: Excavation depths will vary from 4 to 19 feet with the majority of the deeper excavations required to facilitate deep utility construction(i.e., storm drain and sewer). Grading projects of this size and magnitude are routinely accomplished in Huntington Beach and surrounding areas. We concur that the project will require significant schedule and project controls and this fum's report of February 2, 1998 is intended to form the basis for those controls. PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 22 Work Order 102300 COMMENTS OF JAN D. VANDERSLOOT. M.D. Question 1: "Next is the Aerial Geology Map, Figure 4.4 from the 1993 Revised Draft EIR for Bolsa Chica, showing the Bolsa-Fairview earthquake fault bisecting the Shea property. Same document, Figure 4.4-1, shows Existing condition Drainage Pattern Map, with water draining away from the earthquake fault line. Figure D2 Bolsa Chica On-Site Surface Flow, shows on-site drainage into the EPA area. This shows how water can appear on the property, with a high ground water table creating wetlands. Water may be coming up from the earthquake fault area in an artesian manner similar to the artesian wells and springs present historically in the area. The DEIR needs to account for the high ground water levels mentioned in the DEIR (p.5-128 'The upper site soils are typically moist to wet. . . (p.S-129 'excavation of the site soil will be hindered by the presence ofperched water and high moisture content soils9. This soil moisture probably explains how wetlands can recover rapidly if the site is not disturbed." PSE Response: The Bolsa-Fairview fault as mapped by the California Department of Water Resources (1968)is discussed in detail in Section 1.0 of this transmittal. The Bolsa-Fairview fault, if extant or present on-site,is not a near-surface fault, and thus does not affect near-surface ground water conditions or create artesian conditions in shallow wells. Geotechnical recommendations regarding ground water are contained in the 1998 report and in this document. The ground water levels and moisture contents of the near-surface soils are similar to those observed throughout the Huntington Beach area. Although those conditions will have an economic impact on grading of the site(in the form of above normal grading costs), the final product will be no more affected by ground water conditions than other similarly developed sites in the area. Ground water levels have been considered in the design of improvements. Question 2• 'p. 5-121 'Faults have not been reported within the project site'and p.S-126 and p. 5-131 'No active or potentially active faults are known to exist on the site' However, the Bolsa- PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 23 Work Order 102300 Fairview fault, a potentially active fault; has been mapped on the site(see above). Identification, and ramifications, of this fault should be in the DEIR." PSE Response: Please refer to Section 1.0 for a discussion of the pre-Holocene Bolsa-Fairview fault. Question 3• 'p8-3 Potentially active fault(Bolsa-Fairview) traverses site." PSE Response: Please refer to Section 1.0 for a discussion of the pre-Holocene Bolsa-Fairview fault. MARIANNE AND JOEL TOMES Comment: 17 understand a significant amount of ground water will be pumped from the area. I know from building a pool that the water table in this area is extremely high and if too much is drained from this area it may cause the neighborhood that borders this area to sink" PSE Response: Please see Sections 2.0 and 3.0 of this report. PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 24 Work Order 102300 APPENDIX REFERENCES Bryant, W.A., 1985, Southern Newport-Inglewood fault zone, southern Los Angeles and northern Orange counties: Calif. Div. Mines and Geol. Fault Evaluation Rpt.FER-172,2lp. California Division of Mines and Geology, 1997, Guidelines for evaluation and mitigating seismic hazards in California: Calif. Div. Mines and Geol. Spec. Pub. 117, 74 p. California Department of Water Resources (CDWR), 1968, Sea-water intrusion: Bolsa-Sunset area, Orange County: Bull. 63-2. California Department of Water Resources (CDWR), 1966, Santa Ana gap salinity barrier Orange County, California: Bull. 147-1, 177p. California Division of Oil and Gas (CDOG), 1991, California oil and gas fields,Volume II, southern, central coastal and offshore California, third edition: Div. Oil and Gas Pub. TR-12, unpaginated. s City of Huntington Beach,Department of Community Development, 1995,Draft Environmental impact report,Huntington Beach draft general plan: Eviron.Assess.No. 94-9. EDAW,Inc., 1998,Parkside Estates, EIR#97-2,Draft Environmental Impact Report: SCH #97091051,April 17, 1998. Freeman, S.T.,Heath,E.G., Guptill,P.D., and Waggoner, J.T., 1992, Seismic hazard assessment, Newport-Inglewood fault zone,in Pipkin,B.W., and Proctor, R.J., eds., Engineering Geology Practice in Southern California: Assoc. Eng. Geol. Spec. Pub. 4, Star Publishing Co., Belmont, California,P. 211-231. Grant, L.B., Waggoner,J.T., and Von Stein, C.R., 1995, Paleoseismicity of the North Branch of the Newport-Inglewood fault in Huntington Beach, California; Amer. Geophys. Union Abstracts with Program,December 11-15, 1995, San Francisco, California,p. 362. Hart, E.W., and Bryant W.A., 1997, Fault-rupture hazards zones in California Alquist Priolo earthquake fault zone act with index to earthquake fault zones maps: Calif. Div. Mines and Geol. Spec. Pub. 42, 38p. Ishihara,K., 1985, "Stability of Natural Deposits During Earthquakes",_Proceedings, 1 lth International Conference on Soil Mechanics and Foundation Engineering,Vol. 1,pp. 321- 376. PACIFIC SOILS ENGINEERING, INC. July 29, 1999 Page 25 Work Order 102300 4 Report of fault rupture hazard investigation, Waste Water Treatment Law/Crandall Inc. 199 P P Plant No. 2, Huntington Beach, California, for the County Sanitation Districts of Orange County,Vols. I and H: Consultant's Report Technical,Los Angeles, California,June 13, 1994, 37p. Leroy Crandall and Associates, 1988,Report of preliminary geotechnical investigation,Bolsa Chica Property,Huntington Beach, California, for the Metropolitan Water District of Southern California: Consultants Technical Report,dated August 1988,Job No. AEF-88234. Pacific Soils Engineering,Inc., 1998,Preliminary geotechnical investigation,proposed residential development,Tentative Tract 15377, City of Huntington Beach, California, and Tentative Tract 15419, County of Orange, California: Consultant's Technical Report, dated February 2, 1998,Work Order 102300, 36p. Pacific Soils Engineering, Inc., 1997, Disposition of exploratory test pits, Tract 15377, City of Huntington Beach, California: Consultant's Technical Report, dated June 18, 1997, Work Order 102300, 2p. Pacific Soils Engineering,Inc., 1996,Alquist-Priolo earthquake fault zone investigation,north branch of the Newport-Inglewood fault zone,Tract No. 15109, southeast of the intersection of Beach Boulevard and Adams Avenue, City of Huntington Beach, California: Consultant's Technical Report,dated April 5, 1996 Work Order 102167-GG 27 p. Poland,J.F.,Piper,A.M., and Others, 1956, Ground water geology of the coastal zone Long Beach-Santa Ana area, California: U.S. Geol. Surv., Water Supply Paper 1109. Robertson,P.K., 1986, "In-Situ Testing and Its Application to Foundation Engineering", 1985 Canadian Geot. Colloquium, Canadian Geot. Journal, Vol. 23,No. 4,pp. 573-594. Robertson,P.K., and Campanella, R.G., 1988, Guidelines for geotechnical design using the cone penetrometer test and CPT with pore pressure measurement: Hogentogler& Company,Inc., Columbia,Maryland,pp. 162-179. Shacketon,N.J., and Opdyke,N.D., 1973, Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific Core V28-238: oxygen isotope temperature and ice volumes on a 105 and 106 years scale: Quaternary Research,v.3,n.l,p.39-55. Holocene displacement history of the Newport- Inglewood,R.J. Elliot P. and Franzen, S., 1995,H ry wP P Inglewood,North Branch fault splays, Santa Ana River flood plain, Huntington Beach, California: Geol. Soc. Amer., Abstracts with Programs,November 6-9, 1995,New Orleans, Louisiana,p. 375. State of California, 1986a, Special Studies Zones,Newport Beach Quadrangle, Official Map: Effective July 1, 1986,map scale: 1:24,000. PACIFIC SOILS ENGINEERING, INC. DR ROBERT E. WINCHELL DEPARTMENT OF GEOLOGICAL SCIENCES CALIFORNIA STATE UNIVERSTTy LONG BEACH 6411 WEBER CIRCLE HUNTINGTON BEACH; CA 92647 June 12, 1998 two Mr. Jan Barnes JU(� 15199a Project Director,Parkside Estates 2000 Maim Street Huntington Beach, CA 92648 i Dear Mr. Barnes: I have been asked by citizens and citizens'groups in Huntington Beach to comment on the quality and content, especially the geological quality and content of the Parkside Estates EIR#97-2 Draft Environmental Impact Report (DEIR)prepared for the city of Huntington Beach by EDAW, Inc and dated Ap!A 1998. The comments which follow represent my response, as time has allowed, to those requests. As you may be aware, I am also a resident of Huntington Beach and, therefore, supply the following comments on that basis as well. As the comments, questions and statements which follow indicate,I am not only very concerned about this project as a professional geologist and a resident but as a taxpayer who will ultimately wind up paying the bills for continued development projects in areas Bice this. In addition to being 2 professional geologist, I served on the Huntington tim 8ton Beach Environmental Council for several years in the early 1970's In that capacity I had the opportunity to review a large number of environmental impact reports, statements and negative declarations. I have also, in the interim, periodically reviewed 1-.Uvn mental documents and reports for the Bolsa Chica area The comments below reflect, therefore, both my professional experience and the experience developed from the review of documents lice this EIR. GENERAL QQA04ENTS 1. The letter and spirit of CEQA require that an EIR statement be a fall disclosure planning- and decision oriented document. In contrast to a negative declaration, an EIR is meant to provide both the public and all decision making bodies with a clear, impartial, concise statement of the Potential environmental impacts, potential mitigation measures for these impacts and an assessment of the viabdrty and level of mitigation attainable for potentially adverse impacts. The document is meant to inform the public and decision makers in the fullest possible manner so that appropriate decisions which protect . . public's interest to the fullest can be made. As such,the document mz3st be based on complet work, not on work to be done in the future, and.must provide the fullest technical and nontechnical evaluation of impact and mitigation measures Possible, couched is terms that can be understood fnIly by the public and decision makers who may not be conversant with all the technical aspects involved In my opinion, an opinion based on the comments I have made below and -other observations which I do not have time to put down on paper, this docent does not accomplish these ends. Consequently, it is, in_my opinion;not acceptable in its present form and should be rejected until it does meet the accepted standards of such a work and the letter and intent of CEQA.._ 2. Further, since this document will be reviewed by both technically and nontechnically oriented individuals,it should be written and should include appropriate material to meet the needs of both in so far as possible. As is both indicated and implied in the comments below, this document finds to meet these needs. 3. The project and associated alternatives which are the subject of this EIR involve incredibly important decisions concerning the safety,health and economic welfare of the projected residents and may or will have associated repercussions, some of which may well be irreversible. 4. The EIR should have been set in a format such that the lines are numbered on a page so that comments and questions may be more easily related to the information supplied. Because of the scattering and mixture of topics this has not always been possible to relate comments and . questions to a given topic and the related discussion. An attempt has be made,therefore,to relate the following comments and questions to at least one item in the body(first volume)of the report to which the item is relevant. Responses should, therefore, be taken as applying to any and all places where a given matter is considered and the response is appropriate. 5. The information which is presented in this report is, in my opinion, disorganized, incomplete ' and unnecessarily repetitious A reviewer is left to synthesize the material for himself or hersel, having to go bade anct forth between and within the volumes in an attempt to be ore-that a coherent body of material is available for both specific and overall evaluations, The result is unnecessarily time-consuming and frustrating not only in terms of trying to trying to make an evaluation but especially so when one tries to make comments. SPECIFIC COMMENTS Section 5.6 Earth Resources This section is mistitled. What is supposed to be being dealt with here are not earth resources but a geological assessment or evaluation of the site as part of an environmental evaluation of the project. Such an assessment or evaluation, most o$en these days, is referred to as a geotechnical assessment (or evaluation), as PSE has referred to this kind of information (Appendix E) and is said to have prepared EXISTING CONDITIONS 1. P.5-119. paragraph 3: The comment " a few feet above sea level" is insufficient to provide a feel for the flood potential of this site, as the reviewer attempts to get a picture of the potential on this site as the geologic evaluation proceeds. Numbers need to be used Why have they not been used? 2. Ibid.: Fill sod site(s) need to be delineated on the maps provided in this section and eLwwhere, since they are important in the assessment of the relevancy and necessity associated with such things as the site preparation, a-g. earthwork specifications including grading (Appendix E, Appendix V) and earthquake wave amplification(not considered: see comments elsewhere). Only two areas of fill are shown on the exhibits (Exhibit 38 and 41) and these are not in the area discussed in the . text. What is the relationship of the fill areas discussed to the lots and associated projected houses that would be involved in the development? Stratigraphy/Subsurface Sods 1. Ibid., paragraph 5: 0 The channel deposits referred to are apparently,ifproperly referred to, stream deposits and would include not only stream channel deposits but flood plain deposits. Is that not correct? Of what significance are the different kinds of soils and their mterfaces? 2. Ibid. and P. 5-120,paragraph 1: There is insufficient information and lack of the necessary associated discussion for a reviewer to get a picture and make an assessment of the inhomogeneity of the surficial material on this site. Why have aerial photographs and a relevant discussion of these photographs not been provided to show this inhomogenerty, distribution of deposit types and location of such things as ancient ch have been been provided, especially since photographs were available and h been discussed for r C3 . historic use purposes in Appendix E? Why have fence diagrams not been provided to show the subsurface distribution of the sediments? Where is a discussion of the inhomogeneity of the sediments on this site and its relationship to the development of this site? Photographs and diagrams would make sediment distribution relatively clear to anyone interested in determining the level of knowledge and possible constraints of the proposed residential construction on this Property. 3. P. 5-120,paragraph 1: Groundwatdr dismbution-and depth on the site are important, not only to the geologist for geoteclmical considerations, e.g. liquefaction considerations, but to the biologist for wetland considerations. Yet, outside of very general comments such as those on this page and the individual water depths indicated in the boring information in Appendix F there is no summary information on the groundwater distribution, such as a map (or maps) of groundwater distribution, mchkding surface water. Why has such information not been included? Why have fence diagrams for groundwater distribution, scaled to show where information is known and what information has to be inferred for water distribution,not been provided? 4. Ibid.,paragraphs 2 and 3: What does "in the vicinity of borings B-2, ..." mean with respect to peat and peat distribution �? laterally and'how was this determined? What is the lateral extent of the peat and what Mfac r samplmg controls lead to this determination? The answers to this and other questions of lire dp vitally important to a homeowner who nature are important from a remediation standpoint and --L. f will occupy the lots where no testing has been done. How is the homeowner to be assured that 1' there is not a pocket of peat under the lot or that a peat layer does not extend under that lot? Or'� is the site to be excavated to a uniform level across the site to remove the peat or possible peat and,if so, to what depth will that excavation occur(see item 7 below)? Who will be responsible for problems associated with any undetected peat deposits? 5. Ibid..paragraph 3: Where is the evidence, e.g. logs, etc., to support the statement that eat la p layers are two to three feet thick in the upper five feet of the site? No thicknesses for the peat are shown on the pictorial logs presented and the peat and organics are not broken out from the other sediments as separate thicknesses in the pictorial or text presentations. 6. Ibid.: Considering the thickness of these deposits, the word "could" in the context of the residential development is incorrect. The phrase "would unless appropriately mitigated" is the correct description of the situation. 7. Ibid.: In view of the previous comment and question and the statement that significant deposits of peat have not been observed belowy minus 5 feet, what does"significant ificant mean and what about the peat observed at depths below five e n e Roy Crandall and Associates(LC)borings 5 and 10 in which peat was observed? Further,from the PSE report, it would appear that the peat can extend to at least six feet, not just five feet (PSE trenches 1 and 6, for instance). What about the "rootlets" which are cited as abundant in trench 12 the PSE trench, when they could apparently extend organics are g equated to peat, organics have been observed to greater depths, e.g. LC boring 5. Stone}-Miller routinely did not sample between approximately five to sic feet and approximately nine to ten feet. What evidence exists that there is not organics (including rootlets?) or peat in these intervals and would it not be necessary to know the extent of these organics to have a proper evaluation of potential settlement and to recommend excavation depths for mitigation purposes? Also, LC found organic matter at depths significantly greater than five feet, e.g. Boring 1. In this same context, see also PSE borings, eg. HS-1. What is expected to be the impact of such material and what would be the r emediation necessary for any impacts, such as settlement? Seismicity 1. Ibid. and P. 5-121: Together with potential flooding of this site, the presence of the Newport Inglewood Fault and Fault Zone,in-which the Bolsa-Fairview Fault should be included, and the associated hazards are the single most important factors which bear on the proposed development of this site. As indicated by the following comments and questions, one brief paragraph in the body of the EIR is totally inadequate to provide the reviewer with the information, and,therefore,the fiuII disclosure: necessary to evaluate the Faun and earthquake-related hazards and their effects associated with the proposed development of this site. This situation is not remedied adequately by referring to the PSE report. 2. Ibid.: - A reviewer should be provided with a good map of the N I fault zone and recognized and inferred fault lines in the main b of the report or, . oily rep , at the v I referred to r amendment m PSE � �' the map (which itself equines ) report in order to be provided a good idea of the relationship of the fault zone to the site. Further, the Bolsa Fanview Fault, which is, or would be, part of this zone and bisects, or would bisect, the site is not shown on the PSE map or on any other map in this report. Such a map would have to show the proposed housing and be at a proper scale-for a reviewer to be able to determine the potential effects of fault displacement and associated activity on the homes proposed for this site. Why has all of this information not been provided? 3 Ibid.:A reviewer should be apprised of the fact that the near surface manifestation of this fink zone in weak, unconsolidated sediments, such as those found in the Bolsa Chica proper and on this site, can be expected to be a series of en echelon shears like those possible in a deck of cards on its side, so that localized shearing and associated ground displacement may occur at any place in this zone. It should also be pointed out that the dotted lines commonly used in this nine to delineate fault segments are extrapolations of places where the fnuh segment displacements have come to the surface in more consolidated and better cemented materials, e.g. the bluff areas, and/or other areas when trenching, borings and drilling have encountered more consolidated materials capable of preserving fault displacements and allowed some degree p of extrapolation to the surface. The point should be made here that,as long as there is some evidence for subsurface faulting, the unconsolidated materials lace those found in the Bolsa Chica, including the Parkmde site do not necessarily, and often do not, preserve direct evidence of the presence of a fault or its recent activity and that these considerations are particularly important in considering the potential for activity along, and adjacceel�&��tQp�� the Bolsa-Fairvview Fault associated with the Parkside property'Why has this infoMUO U i Deem provided? r 4. Ibid: To what does "two" apply? This sentence seems garbled. 5. Ibid.: The N I Fault within the fault zone is considered by most geologists to be the single most dangerous fault in California. The reason is that housing like that proposed for the Parkside Estates site has been built all axon this fault on sediments g h'lce that present on this site. Why has this information and a rele vant discussion of this information not been included in the general consideration of the geology and seismicity of the site? Potential for Ground Rupture 1. P. 5-121,paragraph 2(See also P. 5-126 to which these same comments apply): Pestaps active faults, as defined for statute purposes by the Alquist Paolo Act, have not been reported within the project site. One fault has,however,been reported within this site and has not yet been shown not to exist. In point of fact, there is compelling evidence that this fit is, present. Only the activity level within the last 11,000 years is currently in question and, although -4-1 '`-i it may not conform to strict statute criteria inthe opinion ofBryant(1985)and has been removed from coverage by the Alquist-Ptiolo Act,this does not mean that it does not exist,that it does not - • have to be considered in a geologic and seismic evaluation of the site and that site investigation should not bedew to detmmme whether it is present or absent, especially since it isindtpdte more than once in this report that such work has not been done. Just as the risk and potential effects associated with an earthquake along the N I Fault Zone have to be dealt with so do the risk and potential effects of the possible presence of the Bolse-Fairview Fault on the Parkside site have to be dealt with. The EIR is inadequate and incomplete without this information. Why has the appropriate information on and discussion of this matter no t been provided, rovi iachi n reference, at least,to the summary provided by PSE in Appendix E? That mimomarybelongs mthe body of the report,not in an appendix. 2. Ibid. (See also P. 5-126 to which these same comments apply): In view of the evidence cited in the geologic literature and for instance, by PSE in Appendix E, the last statement in this paragraph is, at the very least, unsupported, unwarranted and misleading to anyone trying to evaluate the seismic hazard level from surface offset and ground rapture on this site. Instead, one would have to say that, if the Bolsa-Fairview Fauh traverses this site, the potential for ground rupture would exist and that, in such a case, structural damage and even personal injury or worse could result. Why has this information and an associated disctus.4ionbeen inc�tuded? a ,- f(5► G� Strong Ground Motion Potential A discussion of the past and expected earthquake magnitude(s) associated with this site and their relationship and relevancy to this project needs to be includedn the body of this EIR, not left to the reviewer to synthesize. There might at least be a reference made to Appendix E for magnitude values to be expected and those that have been used for ground motion and shaldag considerations. Only one aspect of ground shaking has been included It i.e, ground acceleration and its calc ulaam )Oere,for instance,is all the information ow and this site, both past and projected, �a to e& intensity to its effects and a discussion of earthquake intensity, both historic and projected., and their relevancy to this site? It is common practice to include this latter information in an acceptable EIIL R"ACTSMMGATION/LEVEL OF SIGNIFICANCE ,��, 1. -P. 5 125,paragraphs 2 and 3: The implication is that, design with reasonable construction and/or maintenance will overcome significant impacts of liquefaction and apparently reduce them, as subsequent discussion terms it, to less than significant. Is one to conclude from this discussion and what follows, therefore, that people and structures will no longer be exposed to major geologic hazards and health hazards - with the construction of this project as mitigated? For this to be true it would be necessary to show that with the use of the mitigation, remediation, etc.,rgcoamu> d d AM that prod octa.like . this, located on siun7ar foundation mat ro • ta► possibility splay pY- an actzve fang and with the o of a la of this fault gone oicnother�fault `' e project,have survived Pro t design-level earthquake related problems with 'less thin lit" ofi*icts. What are some examples of such projects and what are the impacts and levels thereof on such projects? 2. Ibid.,paragraph 5 ff and P. 5-131-132 LEVEL OF SIGNIFICANCE• The phrase "less than significant" is used in a number of places in this EIR When the teem is coupled with the concept of reduction to less than significant, use of the term implies that the matter being considered has or can be expected to have a significant impact. In order to determine whether or not the term less than significant applies, one needs to know what that team . means in actual practice, ie. the rest world; by whom it is being defined; and on what basis relevant to:actuaLpractice and to those who wiff be subject to any impacts this term_ appfied. What does"less than significant"mean in actual practice, e.g.kind and level of impact to structures, humans, etc. after completion of the project; by whom would it be defined, e.g. the developer, the fiuture resident and homeowner, city and other government agencies, the general taxpayer, aR of whom have a stake in the outcome of this project; and what are the bases for the application of this assessment? More specifically, what land and level of damage can be expected to residential and public structures,inchudiag infrastructure? Also Spec icall what kind and evil of injury can be expected to be associated with this level of significance? 3. P. 5-122,last paragraph: I to 4 inches of settlement can be expected from the assumed design earthquake even after mitigation (p. 5-122� What does this mean in terms of structural damage? How much such movement can the structures proposed for this development undergo without beginning to break up? What level and Land of damagefmjury would be result from such breakup e.g. with respect to a residential structure, streets and water and sewer pipes? What is the mitigation for this that the project or project proponent will provide? Are we to assume, for instance, that the property owner wM consider any breakup that might occur to be less than significant,if repairs must be performed? 4. P. 5-125: paragraph 5: To what depth is excavation for peat (and liquefiable) materials expected to be necessary,especially in the context of the comments and questions raised above on peat and its location? 5. P. 5-126, paragraph 2: Where man-made,fills have been materials lice those found on this site, the area involved has gem been shoe test a in a generally � . �8 damaging earthquake, when compared with adjacent areas where these naturai materials are not present. Apparently, this increase in damage occurs because of wave amplification (shakong increase) at the interface between the fills and the natural materials. Fills are proposed as part of the mitigation for this site. What is the expected effect of wave amplification and associated shaking from the use of these fills?..What,gxamples,trejevwt to d a site; can be-cited to show that the use of man-made fibs can be or hive been used without producing negative shaking effects? 6.P. 5-127,Liquefaction and Seisrmc Settlement: r The contention here is that the effects of liquefaction, including settlement, can be reduced to an acceptable level of risk (become less than significant) through design and that liquefaction below the compaction layer will not be a problem. What are examples, relevant to this site, that can be cited to support this contention? What does an acceptable level of risk mean in actual practice, e.g. what type and level of damage, injury, etc. can be expected within such a level of risk? For instance, what damage will occur to residential structures, piping, streets, and curbs and guttering? Wiry has 2 inches of differential settlement been chosen? Is it, as implied, true that within 2 inches there will be no damage, eta? If not, what will be the effects, for instance, on structures,including infrastructure? What will be the effects of settlement,if settlement is greater than 2 inches? 7. The same considerations and questions raised above in comment/question 2 for "less than significant" apply to risk and application of the term "acceptable level of risk". What are the answers for risk and acceptable level of risk to the same questions raised for less than significant above? OTBM COMMENTS - t . 1. What is the potential for landsliding on or in association with this project? ' 2. On or about-May 28, 1998,there was a meeting in Huntington Beach City Hall durhgrwhich a vohune containing aerial photographs and water data was introduced into the discussion by a representative of EDAW, Inc. Nearly all of the discussion centered around the presence or absence of wetlands on this site. The material in the volume indicated was used for, pertinent to and necessary for evahuation of wetlands on the property but has not been included in the EIR In view of what I heard at this meeting and the use of this vohune of material, it should have been part of the EIR.so that the public would have had access to this material for purposes of malting general and 4e0fic comments on the Elk especially with regard to the presence or absence of these wetlands on the property. In my opinion the EIR is deficient in this regard, should be revised and amended to include this material and should be recirculated for public review and comment on the matter involved. 3. In addition to the comment just made, I believe the EIR needs to be revised, amended and recirculated on the basis of the geotechnical questions and comments made. The most notable of dwee basen the lack of treatment of the Bolsa-Fairview Fault, the lack o '4rW quake IDt or an ems aPwson me site, ns ons u mrp on an .Robert E. Wmchell, Department of Geological Sciences 6411 Weber Circle Califomia State University Long Beach Huntington Beach, CA 92647 1250 Bellflower Blvd. (714)846-4003 Long Beach, CA 90840 (310)985-4920 ?Defame to QF R[,.i- l' a`�i, EACH x .b: on e wl I er ■ SHEA HOMES October 12, 2001 603 South Valencia Avenue Work Order 102300 P.O. Box 1509 Brea, CA 92822 Attention: Mr. Ron Metzler Subject: RESPONSE TO CITY OF HUNTINGTON BEACH REGARDING FINAL EIR Parkside Estates Tentative Tract 15377 CITY OF HUNTINGTON BEACH, CALIFORNIA References: 1. City of Huntington Beach, Interdepartmental Communication, Tentative Tract 15377, Parkside Estates, dated November 17, 2000,Revised March 28,2001. 2. Response to Draft EIR Comments,Parkside Estates, Tentative Tract 15377, City of Huntington Beach, California; by Pacific Soils Engineering, Inc., dated October 11, 2001 (W.O. 102300) Gentlemen: Presented herein are this firm's responses to the Interdepartmental Comments by the City of Huntington Beach staff on this review of the EIR for Parkside Estates. For clarity,the review comment immediately precedes this firm's response. Comment#5• "5. Page 3-6, DS-1,fourth paragraph—Delete the first sentence as it repeats the information in the paragraph above. Also, we need to specify what the `drawdown effects'could be, and how they are measured and deemed `insignificant'. When we make statements like, `it is quite likely. . . 'it appears that we are guessing and does not convey very strong assurances to the public. Also, it is not clear how `historic fluctuations in perched water'by degree are relevant if we are comparing `fluctuations'on undeveloped land versus developed subdivisions. Lastly, what is the remedial plan of action if settlements occur, even though they are not `anticipated'." PSE Response: Revised text, specific to the current"Alternative" grading plans, is presented in Reference 2, in our response to RWQCB-3 through 5. That information is revised from the earlier text in response to DS-1. Given that the required mil-grading under the new alternative plan October 12, 2001 Page 2 Work Order 102300 analyzed in the June 2001 document and dewatering efforts will be substantially removed from the northern boundary, the revised text seems to remove the portions of the text that has been queried. Comment#38• "Page 3-70, DR-1, third sentence— Our response that `Any past distress to the property could have been caused by any of several possibilities, none of which will be significantly affected by the proposed construction'is conjectural. Additionally, the statement that the development will not have an affect of these stress points is not supported by our technical documentation." PSE Response: The etifrenrgrading plan under the new alternative plan analyzed in the June 2001 document places Paseo Park, a 50-foot wide passive land use,between the existing properties on the north and`B" Street. Neither dewatering or femedialgrading under the new alternative plan anal in the June 2001 document will be required for that area; thus the grading activities will have no. impact on these northerly adjoining properties. It is beyond our scope of services or purview to speculate on the causes of past distresses to existing properties. Comment#65• 65. Page 3-111, BCLT-9— The volume is changing per the latest analysis that we have received. In the second paragraph, we assert that there is `no import, 'but the soils engineer, PSP, on page 11 of his errata letter,states that peat deposits (which are significant on this site) will be removed and disposed of offsite (see paragraph 7). This would imply that significant import would be necessary to replace the overexcavation. " PSE Response: There are minor amounts of peat that exist below the surface of the site that will be encountered Iduring Femedial grading;under the new alternative plan analyzed in the June 2001 document. Such could be removed from the site or could be disposed of within passive land use areas such as the Park Sites. The quantity of such material is expected to be very small, on the order of a few truckloads, at most. Comment#90• 1190. Page 3-170, RPA-40 and 41 — We should refer the reader to the addendum prepared by the geotechnical engineer for dewatering. Additionally, we should provide October 12, 2001 Page 3 Work Order 102300 some discussion about the monitoring of surface subsidence due to the dewatering. Although we touch on the issue here, it should be discussed more fully." PSE Response: Boundary conditions will be evaluated with piezometers to monitor groundwater and surface survey to monitor ground surface movement. These instruments will be placed prior to construction and maintained throughout the construction process. As discussed in our response to RWQCB-3 through 5,no dewatering or 1-grading under the new alternative plan analyzed in the June 2001 document will be required for Lot'W', Paseo Park. If you have any questions or require additional information,please contact the undersigned at (714) 220-0770. Respectfully submitted, PACIFIC SOILS ENGINEERING, INC. By. JAMES B. CASTLES/RGE 192 RCE 30280/Reg. Exp.: 3-31-04 Chief Operations Officer Dist.: (2) Addressee (1) EDAW—Attn:Jayne Morgan (1) Hunsaker&Assoc.—Attn:Fred Graylee JBC/ml-23000018 SHEA HOMES October 11, 2001 603 South Valencia Avenue Work Order 102300 P.O. Box 1509 Brea, CA 92822 Attention: Mr. Ron Metzler Subject: RESPONSE TO DRAFT EIR COMMENTS Parkside Estates Tentative Tract 15377 CITY OF HUNTINGTON BEACH, CALIFORNIA References: See Appendix Gentlemen: Presented herein are Pacific Soils Engineering, Inc. (PSE)responses to comments and queries by various individuals, groups, and agencies regarding geologic and geotechnical issues set forth in the Draft Environmental Impact Report (DEIR),prepared for Parkside Estates by EDAW, Inc. In this transmittal,PSE responds only to the geologic/geotechnical issues and refers the reader to other sources for information about other topics. For clarity, the source and comment immediately precedes this firm's response. Bolsa Chica Land Trust BCLT#2-9: "8. The new Alternatives document does not discuss the ramifications of the Bolsa Fairview earthquake fault that traverses the property, a former tidal slough, on the developments described in the New Alternatives. This would make hazardous any fill in the property, which would be subject to liquefaction and subsidence in the case of an earthquake. " PSE Response: A detailed discussion of the Bolsa Fairview fault was presented in Pacific Soils, 1999a and 1998 and prior Response MW-1, pages 3-65 through 3-68, inclusive. That information is considered to remain valid. In sum,we have concluded that the on-site evidence strongly suggests that the Bolsa Fairview fault, if extant, is pre-Holocene, and thus not active according to Alquist-Priolo October 12, 2001 Page 2 Work Order 102300 standards. Such is consistent with the Class D assignment of the fault by the City of Huntington Beach. The issue of liquefaction has been previously addressed in Pacific Soils, 1998. In fact, the grading under the new alternative plan analyzed in the June 2001 document proposed in that document is aimed, in large part, at mitigation of that potential hazard to an acceptable level of risk. California Regional Water Quality Control Board RWQCB-3 through 5: RWQCB-3• "The DEIR also indicates that dewatering will be necessary. Dewatering during construction at the site will require either a National Pollutant Discharge Elimination System (NPDES)permit for the discharge of wastes to surface waters or a Waste Discharge Requirements (WDR)permit for the discharge of wastes to land be obtained from the Regional Board. Jim Martinez with the Regional Boards Regulation Section may be contacted at(909) 782-3258 to discuss your project. " RW CB-4• `A Storm Water Pollution Prevention Plan may be required to be submitted to the Regional Water Board prior to the start of the proposed project. Proper erosion and sediment controls must be utilized to prevent runoff during excavation, construction, and site remediation. Please contact Mark Smythe (909) 782-4998 with the Regional Board's Coastal Storm Water Section to further discuss your project. " RWQCB-5: "Should dredge and fill activities become necessary for the proposed project, either a 401 Water Quality Standards Certification (pursuant to Section 401 of the Clean Water Act) or Waste Discharge Requirements (pursuant to Section 13260 of the California Water Code) will be required. Please contact Kelly Schmoker (909) 782-4990 with the Regional Board's Planning Section to further discuss your project. " PSE Response: The permit requirements stipulated in RWQCB-3, 4, and 5 are noted. Required permits will be provided by the developer and appropriate consultants/contractors prior to construction. For information purposes, the previous response (M&JT-1) to questions regarding site grading and October 12, 2001 Page 3 Work Order 102300 dewatering are presented below. The response has been modified to reflect the changes in the current plan, specifically the changed relationship of the development to the northern boundary. The recommended grading process includes overexcavation of loose/soft, compressible soils to depths varying from 5 to 19 feet. Perched ground water was observed in borings and test pits at levels varying from 4 to 19 feet below existing grades. These water levels vary, to some extent, seasonally and are considered to be"perched"above less permeable silt and clay seams. Those interbedded seams are discontinuous laterally and as a result water is flowing both vertically and laterally within the more permeable sand layers. Based upon excavations that were monitored in March and May 1998, digging to depths of approximately 10 feet,water levels at that period were approximately 6 feet below ground surface (bgs). The excavations were pumped on two occasions and monitored periodically in between. The following were the conclusions: 1. No fluctuations in water levels were observed during tidal changes and; 2. Relatively slow recharge(approximately 24 hours) was observed after pumping. The grading and construction dewatering effort will consist of a combination of several techniques. The primary technique,which will be used in proximity to the northerly project development limit,will consist of accomplishing the excavation of the upper 4+feet with conventional earth moving equipment(scrapers). At that point, further excavation of wetter materials will be accomplished with a large excavator(backhoe). Within 50 feet of the north boundary, the excavation will predominately be 10 feet deep or less except for the extreme easterly one-third of the boundary where removals will be on the order of 15 feet. The bottom of all excavations will be at least 50 feet away from the north property line due to the passive use proposed for Lot"N",Paseo Park. Dewatering of this northerly area will be accomplished by surface pumps within the excavation. The excavations will be segmented in approximate 200 x 200 feet+increments that will be refilled with a mixture of materials from an adjacent excavation and drier import materials as needed. Within the interior of the project, dewatering will be accomplished with similar surface 0 pumps, supplemented with local shallow well points, and dewatering wells. Along the northern project limits, dewatering will be accomplished with local surface pumps and gravity flow within the excavation. Activities will be removed from the north property line by at October 12, 2001 Page 4 Work Order 102300 least 40 feet. Such local grading and dewatering efforts will not affect existing properties to the north. In order to monitor the boundary conditions, it is planned to accomplish the following prior to and/or during site grading: 1. Conduct a survey of existing conditions; 2. Install piezometers to monitor groundwater levels; 3. Install and monitor survey monuments; 4. Prepare a detailed dewatering plan for review by the governing agency(s). It should be noted that similar conditions have been encountered previously and procedures similar to those proposed for this site have been successfully implemented on numerous projects throughout the Huntington Beach,Fountain Valley, and Westminster areas. Risse DR#2-4: "3. The water level in my bac and ool which is about 30 ears old is showing k1' P Y g subsidence at the end that is closer to my home so I would like careful attention to the dewatering process as I know that our soil being river bed is very unstable." PSE Response: The current plan reflects a park(Paseo Park) to be situated between`B" Street and the northerly property line(common to Risse residence). This park will have a passive use, thus Yemed-i-al grading under the new alternative plan analyzed in the June 2001 document will not be required in this area. Remedial gFadi, . Grading under the new alternative plan analyzed in the June 2001 document efforts will begin approximately 40 feet southerly of the north property line and will extend to depths on the order of 15 feet below`B" Street. Consequently, the dewatering and f ein dia4 ing under the new alternative_plan analyzed in the June 2001 document efforts will not impact residences adjacent to the north property line. Resource Preservation Alliance RPA#2-2: "1.) I am still concerned that there is no formal plan under osed review or the proposed .f P P dewatering that is anticipated for the project. This is a huge engineering effort that potentially has serious safety and structural implications for those residents on October 12, 2001 Page 5 Work Order 102300 Kenilworth adjacent to the project. I believe that a formal study/plan, by a qualified dewatering engineer should be required as part of the final EIR document." PSE Response: Please see response to RWQCB-3 through 5 and DR#24 above. When grading plans are finalized, grading and dewatering efforts will be a combined effort between the civil engineer, geotechnical engineer, grading contractor, and dewatering subcontractor. If you have any questions or require additional information,please contact this office at(714) 220-0770. Respectfully submitted, PACIFIC SOILS ENGINEERING, INC. By. JAMES B. CASTLES/RGE 192 RCE 30280/Reg. Exp.: 3-31-04 Chief Operations Officer Distr.: (2) Addressee (1) EDAW—Attn:Jayne Morgan (1) Hunsaker&Assoc.—Attn:Fred Graylee JBC/m1-23000017 October 12, 2001 Page 6 Work Order 102300 APPENDIX REFERENCES Bryant, W.A., 1985, Southern Newport-Inglewood fault zone, southern Los Angeles and northern Orange counties: Calif. Div. Mines and Geol. Fault Evaluation Rpt. FER-172, 21p. California Division of Mines and Geology, 1997, Guidelines for evaluation and mitigating seismic hazards in California: Calif. Div. Mines and Geol. Spec. Pub. 117, 74 p. California Department of Water Resources (CDWR), 1968, Sea-water intrusion: Bolsa-Sunset area, Orange County: Bull. 63-2. California Department of Water Resources (CDWR), 1966, Santa Ana gap salinity barrier Orange County, California: Bull. 147-1, 177p. California Division of Oil and Gas (CDOG), 1991, California oil and gas fields, Volume II, southern, central coastal and offshore California, third edition: Div. Oil and Gas Pub. TR-12, unpaginated. City of Huntington Beach, Department of Community Development, 1995,Draft Environmental impact report, Huntington Beach draft general plan: Eviron. Assess. No. 94-9. EDAW, Inc., 1998, Parkside Estates, EIR#97-2,Draft Environmental Impact Report: SCH #97091051, April 17, 1998. Freeman, S.T.,Heath, E.G., Guptill,P.D., and Waggoner, J.T., 1992, Seismic hazard assessment, Newport-Inglewood fault zone, in Pipkin, B.W., and Proctor, R.J., eds., Engineering Geology Practice in Southern California: Assoc. Eng. Geol. Spec. Pub. 4, Star Publishing Co., Belmont, California,P. 211-231. Grant, L.B., Waggoner, J.T., and Von Stein, C.R., 1995,Paleoseismicity of the North Branch of the Newport-Inglewood fault in Huntington Beach, California; Amer. Geophys.Union Abstracts with Program, December 11-15, 1995, San Francisco, California,p. 362. . Hart, E.W., and Bryant W.A., 1997, Fault-rupture hazards zones in California Alquist Priolo earthquake fault zone act with index to earthquake fault zones maps: Calif. Div. Mines and Geol. Spec. Pub. 42, 38p. Ishihara, K., 1985, "Stability of Natural Deposits During Earthquakes",Proceedings, 1 lth International Conference on Soil Mechanics and Foundation Engineering,Vol. 1,pp. 321- 376. October 12,2001 Page 7 Work Order 102300 Law/Crandall, Inc., 1994, Report of fault rupture hazard investigation, Waste Water Treatment Plant No. 2, Huntington Beach, California, for the County Sanitation Districts of Orange County, Vols. I and II: Consultant's Report Technical, Los Angeles, California, June 13, 1994, 37p. Leroy Crandall and Associates, 1988, Report of preliminary geotechnical investigation,Bolsa Chica Property, Huntington Beach, California, for the Metropolitan Water District of Southern California: Consultants Technical Report, dated August 1988,Job No. AEF-88234. Pacific Soils Engineering, Inc., 1999a, Supplemental information used for the July 29, 1999 response to comments#97-2 draft environmental impact report, Tentative Tract 15377, City of Huntington Beach, California: Consultant's Technical Report, dated August 3, 1999, Work Order 102300, 2p, appendices. Pacific Soils Engineering, Inc., 1999, Response to comments pertaining to Parkside Estates EIR #97-2 draft environmental impact report, Tentative Tract 15377,City of Huntington Beach, California: Consultant's Technical Report, dated July 29, 1999,Work Order 102300. Pacific Soils Engineering, Inc., 1998, Preliminary geotechnical investigation,proposed residential development, Tentative Tract 15377, City of Huntington Beach, California, and Tentative Tract 15419, County of Orange, California: Consultant's Technical Report, dated February 2, 1998, Work Order 102300, 36p, appendices. Pacific Soils Engineering, Inc., 1997a,Disposition of exploratory test pits, Tract 15377, City of Huntington Beach, California: Consultant's Technical Report, dated June 18, 1997, Work Order 102300, 2p. Pacific Soils Engineering, Inc., 1997b, Preliminary geotechnical investigation,proposed residential development, Tentative Tract 15377, City of Huntington Beach, California: Consultant's Technical Report, dated April 21, 1997, 36p., appendices. Pacific Soils Engineering, Inc., 1996, Alquist-Priolo earthquake fault zone investigation,north branch of the Newport-Inglewood fault zone, Tract No. 15109, southeast of the intersection of Beach Boulevard and Adams Avenue, City of Huntington Beach, California: Consultant's Technical Report, dated April 5, 1996, Work Order 102167-GG, 27p. Poland, J.F.,Piper, A.M., and Others, 1956, Ground water geology of the coastal zone Long Beach-Santa Ana area, California: U.S. Geol. Surv., Water Supply Paper 1109. Robertson,P.K., 1986, "In-Situ Testing and Its Application to Foundation Engineering", 1985 Canadian Geot. Colloquium, Canadian Geot. Journal, Vol. 23,No. 4,pp. 573-594. Robertson,P.K., and Campanella,R.G., 1988, Guidelines for geotechnical design using the cone penetrometer test and CPT with pore pressure measurement: Hogentogler&Company, Inc., Columbia, Maryland,pp. 162-179. October 12, 2001 Page 8 Work Order 102300 Shacketon,N.J., and Opdyke,N.D., 1973, Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific Core V28-238: oxygen isotope temperature and ice volumes on a 105 and 106 years scale: Quaternary Research,v.3,n.l,p.39-55. Shlemon, R.J., Elliot,P., and Franzen, S., 1995,Holocene displacement history of the Newport- Inglewood,North Branch fault splays, Santa Ana River flood plain,Huntington Beach, California: Geol. Soc. Amer., Abstracts with Programs,November 6-9, 1995,New Orleans, Louisiana,p. 375. State of California, 1986a, Special Studies Zones,Newport Beach Quadrangle, Official Map: Effective July 1, 1986,map scale: 1:24,000. State of California, 1986b, Special Studies Zones, Seal Beach Quadrangle, Official Map: Effective July 1, 1986,map scale: 1:24,000. Stoney-Miller Consultants, Inc., 1996, Investigation for feasibility of purchase,proposed detached housing tract,40 acre Bolsa Chica Property,Huntington Beach, California: dated May 28, 1996, Project No. 11334-00. Thomas, M.A., 1992, Clastic sequences developed during late Quaternary glacio-eustatic sea- level fluctuation on a passive margin: Example from the inner continental shelf near Barnegat Inlet,New Jersey: Discussion and reply: Geol. Soc. Amer. Bull., v.104,pp. 1386- 1388. Tokimatsu, K. and Seed, H.B., "Evaluation of Settlements In Sands Due to Earthquake Shaking", ASCE Journal of Geotechnical Engineering,Vol. 113,No. 8, August 1987. Winchell,R.E., 1998, Comments on Parkside Estates EIR#97-2 Draft Environmental Impact Report(DEIR): Citizens Letter, dated June 12, 1998,unpaginated. ®_ PACIFIC SOILS ENGINEERING, INC. 10653 PROGRESS WAY, P.O.BOX 2249,CYPRESS,CALIFORNIA 90630 TELEPHONE: (714)220-0770, FAX:(714)220-9589 (Corporate Headquarters) SHEA HOMES June 13, 2002 603 South Valencia Avenue Work Order 102300 P.O. Box 1509 Brea, CA 92822 Attention: Mr. Ron Metzler Subject: RESPONSE TO CITY OF HUNTINGTON BEACH Comments on Response to EIR Comments Document Parkside Estates CITY OF HUNTINGTON BEACH, CALIFORNIA Gentlemen: Presented herein, at the request of EDAW, are this firm's suggested responses to the City of Huntington Beach review comments on the Parkside Estates Draft EIR. For clarity the review comment(or excerpts)precede this firm's response. DS-1: (Response to Verbal Comments at Public Information Meeting) PSE Response: The recommended grading process includes overexcavation of loose/soft, compressible soils to depths varying from 5 to 19 feet. Perched ground water was observed in borings and test pits at levels varying from 4 to 19 feet below existing grades. These water levels vary, to some extent, seasonally and are considered to be"perched" above less permeable silt and clay seams. Those interbedded seams are discontinuous laterally and as a result water is flowing both vertically and laterally within the more permeable sand layers. Based upon excavations that were monitored in March and May 1998, digging to depths of approximately 10 feet,water levels at that period were approximately 10 feet, water levels at that period were approximately 6 feet below ground surface(bgs). The excavations were pumped on two occasions and monitored periodically in between. The following were the conclusions: LOS ANGELES COUNTY RIVERSIDE COUNTY SAN DIEGO COUNTY SOUTH ORANGE COUNTY TEL:(310)325-7272 or(323)775-6771 TEL:(909)676-8195 TEL:(858)560-1713 TEL:(714)730-2122 FAX:(714)220-9589 FAX:(909)676-1879 FAX:(858)560-0380 FAX:(714)730-5191 June 13, 2002 Page 2 Work Order 102300 1. No fluctuations in water levels were observed during tidal changes and; 2. Relatively slow recharge(approximately 24 hours)was observed after pumping. The grading and construction dewatering effort will consist of a combination of several techniques. The primary technique,which will be used in proximity to the northerly project development limit,will be initiated approximately 40 feet south of the north boundary and will consist of accomplishing the excavation of the upper 4+feet with conventional earth moving equipment(scrapers). At that point, further excavation of wetter materials will be accomplished with a large excavator(backhoe). The excavation will predominately be 10 feet deep or less except for the extreme easterly one-third of the boundary where removals will be on the order of 15 feet. The bottom of all excavations will be at least 50 feet away from the north property line. Dewatering of this northerly boundary area will be accomplished by surface pumps within the excavation. The excavations will be segmented in approximate 200 x 200 feet±increments that will be refilled with a mixture of materials from an adjacent excavation and drier import materials as needed. Within the interior of the project, dewatering will be accomplished with . similar surface pumps, supplemented with local shallow well points, and dewatering wells. Activities will be set back from the north property line by at least 40 feet at the top of excavation and 50 feet at the bottom. Such local grading and dewatering efforts will not affect existing properties to the north. OCPD-16: "Does the response reflect new alternative slopes?" PSE Response: The response to OCDP-16 remains applicable to the current(alternative)plan. REW-32: "In these responses (REW-27 and—28) we don't answer his question regarding why it is 2 inches. It's implied that is standard recommendation from State bu t it"not explicitly stated." PACIFIC SOILS ENGINEERING, INC. June 13,2002 Page 3 Work Order 102300 PSE Response: The following information can be added to the response to REW-27. SP 117 suggests that, "localized differential settlements on the order of up to two-thirds of the total settlements anticipated should be assumed unless more precise predictions of differential settlement can be made." The Southern California Earthquake Center(SCEC)in preparing its 1999 publication,Recommended Procedures for Implementation of SP117 suggest," . . . in the absence of extensive site investigation, that the minimum differential settlement on the order of one-half of the total settlement be used in the design." The investigation of this site can be characterized as "extensive"and upon completion of remedial grading, total dynamic settlements of 1 to 4 inches have been estimated. The design of structures for 2-inches over a span of 30 feet is consistent with the recommendations of SP117 and the SCEC guidelines. PMK-5. "The fifth issue raised was regarding the subsidence problem. Speaker indicated they have an existing subsidence problem and she is concerned about the quantities of dirt to be transported b the "heavy"construction ru Speaker wondered i we have considered potential impacts y vy c o trucks. Spf p p associated with heavy trucks, e.g. vibration." PSE Response: The following amplification to the second paragraph of the prior response is submitted. According to the project geotechnical consultant,Mitigation 4, in conjunction with the construction and dewatering methodology/sequencing described in below response DS-2 (page ...)within this section 4.1,will mitigate this concern to a level less than significant. Evaluation of the causes of past distress to existing properties is beyond project's purview. The grading plans for the new alternatives place the Paseo Park, a 50-foot wide passive land use,between the existing properties on the north and`B" Street. Neither dewatering nor remedial grading will be required for that area. Trucks delivering rock and/or soil during the grading operation, as well as PACIFIC SOILS ENGINEERING, INC. June 13, 2002 Page 4 Work Order 102300 heavy earth moving equipment,will thus be removed from the existing properties by 50 feet or more. This zone will greatly reduce the vibrations that conceivably could be realized on adjacent properties as a result of grading and/or construction activities. Consequently, these grading activities are expected to have no impact on the northerly adjacent properties. Drainage will be improved by the proposed development when surface and subsurface drainage systems are constructed. If you have any questions or require additional information,please contact this office at(714) 220-0770. Respectfully submitted, ofESSip PACIFIC SOILS ENGINEERING, INC. �� 8'�SrGFyy Ui 1�.192 Eip.3.31.04 B P�. . S B. CASTLES/RGE 192 ��oF CA1�F�P� RCE 30280/Reg. Exp.: 3-31-04 Chief Operations Officer Distr.: (2) Addressee (2) EDAW—Attn:Jane Park (1) Hunsaker&Associates—Attn:Fred Graylee J13C/m1-23000018 PACIFIC SOILS ENGINEERING, INC. 3 • 3. REVISED RESPONSE TO FEMA COMMENTS ON FEBRUA.RY 5, 2001 REQUEST FOR CONDITIONAL LETTER OF MAP REVISION: PARKSIDE ESTATES TENTATIVE TRACT Nos. 15377 .AND 15419 ExPANDED WATERSHED ANALYSIS OF EAST GARDEN GROVE- WINTERSBURG CHANNEL WATERSHED FROM TIDE GATES TO I-405 FREEWAY, JANUARY 309 2002 *N OTE: DUE TO THE SIZE OF THIS REPORT, IT IS AVAILABLE ON FILE AT THE CITY OF HUNTINGTON BEACH, DEPARTMENT OF PUBLIC WORDS, FOR PUBLIC REVIEW, 4 • i 4. FEDERAL EMERGENCY MANAGEMENT AGENCY CLOMR APPROVAL CORRESPONDENCE JUNE 6, 2002 jun 12 02 11 : 27a p . 2 y g Federal Emergency Management A enWECC:IVEE'j. � g g Washington, D.C. 20472 JUN -0 6 M JUN I :z zooz CERTIFIED MAIL IN REPLY REFER TO: PLAN & DEV RETURN RECEIPT REQUESTED Case No.: 01-09-393R The Honorable Debbie Cook Community: City of Huntington Beach,CA Mayor, City of Huntington Beach Community No.: 065034 City Hall 2000 Main Street 104 Huntington Beach, CA 92648 Dear Mayor Cook: This responds to a request that the Federal Emergency Management Agency(FEMA)comment on the effects that a proposed project would have on the effective Flood Insurance Rate Map(FIRM)and Flood Insurance Study(FIS)report for Orange County,California and Incorporated Areas(the effective FIRM and FIS report for your community),in accordance with Part 65 of the National Flood Insurance Program(NFIP)regulations. In a letter dated February 5,2001,Theodore V. Hromadka II,Ph.D.,Ph.D.,Ph.Dc.,P.H.,P.E.,Exponent Failure Analysis Associates(Exponent), requested that FEMA evaluate the effects that the proposed Shea Homes Parkside Estates development along the northern overbank of East Garden Grove-Wintersburg Channel from approximately 3,200 feet downstream to just downstream of Graham Street would have on the flood hazard infor mation shown on the effective FIRM and PIS report. The proposed development will consist of: 1) Placement of fill in the overbank areas bordered on the south by East Garden Grove-Wintersburg Channel,on the east by Graham Street, on the north by a property line that is approximately parallel to and 100 feet south of Kenilworth Drive,and on the west by a north-south tract boundary that is approximately 2,200 feet west of Graham Street(Shea Homes property); 2) Construction of a gated 10-foot-diameter culvert beneath the East Garden Grove-Wintersburg Channel; 3) Addition of two 147-cubic-feet-per-second(cfs)pumps to the Slater Pump Station; 4) Construction of steel sheet-pile walls along the southern boundary of the development;and 5) Development of an internal drainage system to convey the interior drainage and potential flows that may result from levee breaches. The request also included a revised hydrologic study for East Garden Grove-Wintersburg Channel. In addition,the request included a study entitled"Final Response to FEMA May 2,2002,Comments on February 5,2001,Request for Conditional Letter of Map Revision: Shea Homes Parkside Estates Tentative Tract Nos. 15377& 15419: Expanded Watershed Analysis of East Garden Grove-Wintersburg Channel Watershed from the Tide Gates to 1-405 Freeway,"prepared by Exponent,dated May 16, 2002. This study is comprised of detailed proposed conditions"with-levee"and "without-levee"HEC-UNET, Version 4.0,models dated May 16,2002. These models include East Garden Grove-Wintersburg Channel Jun 12 02 11 : 27a p • =� 2 from its confluence with the Pacific Ocean to its crossing over the San Diego Freewa • Ocean View Y. Channel from its confluence with East Garden Grove-Wintersburg Channel to its crossing over the San Diego Freeway;and associated levees,pump stations,bridge structures, and gated culverts. Because the existing levees along East Garden Grove-Wintersburg Channel are not certified in accordance with Section 65.10 of the NFIP regulations, the modeling involved failing levees in accordance with the FEMA Guidelines and Specifications for Flood Hazard Mapping Partners,dated February 2002. As a result of these hydraulic models and a revised delineation of the Special Flood Hazard Area(SFHA), the area that would be inundated by the flood having a 1-percent chance of being equaled or exceeded in any given yeas (base flood),the FIRM and FIS report can be revised not only for the Shea Homes property but also for the entire study reach. All data required to complete our review of this request for a Conditional Letter of Map Revision (CLOMR)were submitted with letters from Mr.Neil M.Jordan,P.E.,Senior Engineer,also with Exponent, and Dr.Hromadka. Because this request also affects the unincorporated areas of Orange County,a separate CLOMR for that community was issued on the same date as this CLOMR. We reviewed the submitted data and the data used to prepare the effective FIRM for your community and determined that the proposed project meets the minimum floodplain management criteria of the NF1P. The effective HEC-RAS model dated January 26,2000,was used as the base conditions model in our review of the proposed conditions model for the CLOMR request. We believe that, if the proposed project is constructed as shown on the map entitled"Tentative Tract Map No. 15377,"prepared by Hunsaker& Associates,dated February 1,2001,and the data listed below are received, a revision to the FIRM would be warranted. As a result of more detailed topographic information,the water-surface elevation(WSEL)of the base flood will decrease compared to the effective base flood WSEL along East Garden Grove-Wintersburg Channel. The maximum decrease in base flood WSEL, 1.9 feet, will occur approximately 1,000 feet downstream of Gothard Street. As a result of the more detailed topographic information,the proposed project,and the failure of uncertified levees, the base flood WSEL will decrease compared to the effective base flood WSEL along the northern overbank of East Garden Grove-Wintersburg Channel. The maximum decrease in base flood WSEL,6.4 feet, will occur in an area bordered on the west by Graham Street,on the east by Springdale Street,on the south by Warner Avenue,and on the north by Heil Avenue. The base flood WSEL within the Shea Homes property will be 2.2 feet,referenced to the National Geodetic Vertical Datum of 1929. The width of the SFHA will decrease from approximately 2,120 feet downstream of Graham Street to just downstream of the San Diego Freeway. As a result of the more detailed topographic information,the proposed project,and the failure of uncertified levees, the base flood WSEL will decrease compared to the effective base flood WSEL along the southern overbank of East Garden Grove-Wintersbur gChannel. The maximum num de crease in base flood WSEL, 5.9 feet,will occur in an area bounded approximately on the west by the Slater Pump Station, on the east by Gothard Street,on the south by Central Park Drive,and on the north by Slater Avenue. Upon completion of the project,your community may submit the data listed below and request that we make a final determination on revising the effective FIRM and FIS report. RECEIVED* JUN 1 1 2002 PLAN & ®EV Jun 12 02 11 : 28a p. 4 3 • Effective June 1,2000,FEMA revised the fee schedule for reviewing and processing requests for conditional and final modifications to published flood information and maps. In accordance with this schedule,the current fee for this map revision request is$3,400 and must be received before we can begin processing the request. Please note,however,that the fee schedule is subject to change,and requesters are required to submit the fee in effect at the time of the submittal. Payment of this fee shall be made in the form of a check or money order,made payable in U.S. funds to the National Flood Insurance Progmmm, or by credit card. The payment must be forwarded to the following address: Federal Emergency Management Agency Fee-Charge System Administrator P.O.Box 3173 Merrifield,VA 22116-3173 • As-built plans,certified by a registered professional engineer,of all proposed project elements • Community acknowledgment of the map revision request • Please provide evidence that the proposed levee along the southern boundary of the Shea Homes property ties into the high ground at both ends. • Please ensure that the levees stem proposed y surrounding the Shea Homes property conforms to all requirements of Section 65.10 of the NFIP regulations,in particular the provisions concerning freeboard,closure devices and mechanisms for interior drainage,anticipated erosion,embankment stability,retention of freeboard during settlement,and operation and maintenance plans. • Hydraulic analyses,for as-built conditions,of the base flood,if they differ from the proposed conditions models. Please note that the HEC-UNET models dated May 16, 2002, must be resubmitted if they differ from the proposed conditions models. • Please note that the work map entitled"Certified'Topographic Workmap,"prepared by Hunsaker&Associates,dated May 16,2002,does not correctly represent the base flood WSEL for Storage Areas 8 and 20. Please submit a corrected work map. After receiving appropriate documentation to show that the project has been completed,FEMA will initiate a revision to the FIRM and FIS report. Because Base Flood Elevations(BFEs)would be established as a result of the project,a 90-day appeal period would be initiated,during which community officials and interested persons may appeal the BFEs based on scientific or technical data. The basis of this CLOMR is, in whole or in part,a culvert project. NFIP regulations, as cited in Paragraph 60.3(b)(7),require that communities assure that the flood-carrying capacity within the altered or relocated portion of any watercourse is maintained. This provision is incorporated into your community's existing floodplain management regulations. Consequently,the ultimate responsibility for maintenance of the culvert rests with your community. RECEIVED JUN 1 1 2002 PLAN & DEV Jun 12 02 11 : 28a p- S 4 0 This CLOMR is based on minimum floodplain management criteria established under the NFIR Your community is responsible for approving all ioodplain development and for ensuring all necessary permits required by Federal or State law have been received. State,county,and community officials,based on knowledge of local conditions and in the interest of safety,may set higher standards for construction in the SFHA. If the State,county,or community has adopted more restrictive o P x comprehensive floodplain management criteria, these criteria take precede nce nce over the minimum NFIP criteria, If you have any questions regarding floodplain management regulations for your community or the NFIP in en geral,please contact the Consultation Coordination Officer CCO for our community. ( ) yInformation on the CCO for your communitymay be obtained y twined b calling the Chief Community Y umt Mitigation. g , tt anon Pro. y g grams Branch,Mitigation Division of FEMA in San Francisco,California, at(415)923-7184. If you have y any questions regarding this CLOMR,please ca ll our Map Assistance Center,toll free,at i-877-FEMA MAP (1-877-336-2627). Sincerely, Matthew B.Miller,P.E.,Chief Hazards Study Branch Federal Insurance and Mitigation Administration Enclosures cc: The Honorable Cynthia P. Coad Chair,Orange County Board of Supervisors Mr. Sara Bavan Manager Flood Control Planning County of Orange Mr. David Webb City Engineer Department of Public Works City of Huntington Beach Mr. Neil M.Jordan,P.E. Senior Engineer Exponent Failure Analysis Associates Mr. Ronald C.Metzler Vice President, Planning and Development Shea Homes RECEIVED . JUN 11. 2002 PLAN & DE 5 • 5. RIVERTECH WATER QUALITY ANALYSISIPLAN, DECEMBER 1998 AND R vERTECH ADDENDUM TO URBAN RUNOFF WATER QUALITY ANALYsis AND CONCEPTUAL WATER QUALITY CONTROL PLAN, FEBRUARY 2002 �1110w �11 a KSIDE. ESTATES CITY OF HUNTINGTON BEACH URBAN RUNOFF WATER QUALITY ANALYSIS And CONCEPTUAL WATER QUALITY CONTROL PLAN Prepared for: Prepared by: Hunsaker & Associates Rivertech Inc Three Hughes 23332 Mill Creek Drive Irvine, California 92618 Suite 210 Laguna Hills, California 92653 December 1998 R/VERTECH ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ DESCRIPTION PAGE Section 1-Summary 1-1 Section 2-Introduction 2-1 Section 2.1-Background and Description of the Project Area 2-1 Section 2.2-Criteria,Procedure and Methodology 2-1 Section 3-Existing Condition 3-1 Section 3.1-Land Use and Drainage 3-1 Section 3.2-Hydrology for Existing Condition 3-1 Section 3.3-Water Quality Analysis for Existing Condition 3-1 Section 4-Developed Condition 4-1 Section 4.1-Land Use and Drainage 4-1 Section 4.2-Hydrology for Developed Condition 4-1 Section 4.3-Water Quality Analysis for Developed Condition 4-1 Section 5- Comparison of Existing and Developed Conditions 5-1 Section 5.1-Drainage Area 5-1 Section 5.2-First Flush Hydrographs 5-1 Section 5.3-Urban Runoff 5-1 Section 6-Mitigation Measures 6-1 Section 6.1-Mitigation Concept 6-1 Mitigation Results 6-2 Appendix-Under Separate Volume � v ir s sole 1,wal JLsF 1 , _ �• �.�.�'L 1 ; yy L '/ _ � •\� 'SR�'�'iV,A rt`f �% /`` � • :: . ra ,B'rl2t j i.Nw,"�� t^`�Rn'��1� M�+}�J 4tir tr Lc. -pt MMA:RY 1.1 SITE DESCRIPTION AND TECHNICAL APPROACH Shea Homes Southern California is developing an area of approximately 50 acres known as Parkside Estates in the City of Huntington Beach adjacent to Garden Grove Wintersburg Channel and upstream of Slater Channel.It will consist of 208 single-family homes and an 8.2-acre park.Presently the site is being used for farming and has no outlet to allow storm runoff to Wintersburg Channel or the Slater Channel. All on-site storm runoff is retained and eventually lost through evaporation and infiltration.Therefore,in its existing condition the site discharges no pollutants to the downstream channel. In its existing condition all off-site stone runoff is by passed by means of 60"reinforced concrete pipes (RCP)around the site into the Slater Channel. The off-site area includes an existing residential area located to the northwest of the site having an area of 21.8 acres. Currently,this area has no water quality control devices and contributes pollutants to the Slater Channel.Using the Advanced Engineering Software(AES)and the EPA's Storm Water Management Model(SWMM),Rivertech calculated the pollutant loads that the existing residential area contributes to the Slater Channel during the occurrence of a first flush event. The approach is to allow storm runoff from the existing residential area pass through the site planned for development By treating this off-site and 95%of the on-site areas effectively,any residual pollutant load after development released to Slater Channel would be less than the existing levels. 1.2 RUNOFF MANAGEMENT CONCEPT PLAN The concept for managing runoff from Parkside Estates utilizes a state of the art device known as Continuous Deflective Separation(CDS).Research conducted by Cooperative Research Center for Catchment Hydrology(Reference 1)revealed that this device is capable of removing up to 99%of pollutants and trash from urban runoff.By using this device and assuming a 90%removal rate significant reduction in the contribution of pollutant loads to Slater Channel is predicted.In order for the storm drain system and the CDS to function properly a drainage pump having a capacity of 11 cfs is recommended at the outlet of the CDS. Using the EPA's %2 inch rule for the first flush event and the SWMM,pollutant loads for 16 parameters corresponding to the existing and developed conditions were calculated. The results are summarized in Tables 1.1, 1.2 and 1.3.Based on Table 1.3,it is predicted that the mitigated pollutant loads to Slater Channel after development would be less than the existing levels by approximately 45 percent.Therefore, in comparison to the existing condition,the planned Parkside Estates in conjunction with CDS and an on- site drainage pump is expected to improve the quality of urban runoff to Slater Channel. ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ TABLE 12 FIRST FLUSH POLLUTANT LOADS TO SLATER CHANNEL FOR EXISTING CONDMON 223 190 248 278 1 0.82 1 0.30 4.4 1.7 ::::::Po�etcTs>.::::<::s:l�uand-s::::::::::::;Po�mds:<:z::.::.�riuii�s� ' >Fa��:.;;rr s.:rrr;::::;:::>:::>•.:::::<.�< 0.05 0.005 0.07 1 0.02 1 0.38 1 0.17 1 0.002 1 0.0008 TABLE L2 MITIGATED FIRST FLUSH POLLUTANT LOADS TO SLATER CHANNEL FOR DEVELOPED CONDITION 123 99 137 153 0.45 0.16 2.45 0.92 'oEal Pb D3tsI'b :< T ih Albs(5k 1'ti Tis oniids un8s ;'t :< .ouiids words omids.:,.:::. .o'mida<>::.: oiuiiTs:::<: uiiTs`?<; 0.027 0.003 0.04 0.01 0.21 0.10 0.0 0.0 TABLE 1.3 PERCENT REDUCTION IN POLLUTANT LOADS AFTER DEVELOPMENT OF PARKSIDE ESTATES AND INSTALLATION OF CDS ns4s onriils::::::::: .orind3'<; :o o d's aunds.;>: :>• ds;<:: iiriiiifi >: A-m— 45 45 45 45 45 47 44 46 ii ofal Pb Diss Pb Tota1 Gt Diss CY. Total?rs;;..;,;hiss Ta Tofai ed Ifisa Cd......c............ ri .................:...:><::::::' .:: ;•..... anmds:.. ... .am►�s ....., u�am8s..: ::. .onnds ,,;: :aun8s ;;::.: 46 40 43 50 45 41 100 100 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 1-2 :r`f ffl A:i::•i::{_.:i!.:is i W iF f<i::ii'i:i::}::'ii'•y�ii:;r'fi}ii "r' [ CTION 2.1 BACKGROUND AND DESCRIPTION OF THE PROJECT AREA Shea Homes Southern California plans to develop a site having an area of 50 acres,shown in Figure 2.1, in Huntington Beach, California.The development will create 208 single-family homes that would have characteristics similar to the surrounding neighborhoods. The development includes a park having an area of 8.2 acres at the northwest portion of the site. The park consists of 4.6 acres of bluff and 3.6 acres of flat area for recreational purposes. Presently,the site is used for fanning and has no outlet to allow the release of storm runoff.All storm water is retained at the site and is eventually lost through evaporation and infiltration. Under contract to Shea Homes Southern California,Hunsaker&Associates is preparing the development plans and analyzing the hydrology and hydraulics of the development.Rivertech Inc. is providing Hunsaker&Associates with subcontracting services to develop the most cost-effective plan for managing urban runoff from the planned development. This report describes that plan and serves as a supplement to the plans prepared by Hunsaker&Associates. 2.2 CRITERIA,PROCEDURE,AND METHODOLOGY Criteria for storm water analysis are consistent with the Hydrology Manual of the County of Orange. Hunsaker&Associates analyzed the hydrology of the site both for design and under 2-year storm event conditions.Analysis and design of storm drains at Parkside Estates is beyond the scope of this study. However,the water quality control concept plan identified in this report is in conformity with the storm drain plans prepared by Hunsaker&Associates.The water quality control concept plan of this report proposes minor modifications to that storm drain plan. Hydrologic analysis of the site was performed by Hunsaker&Associates corresponding to a 2-year storm event The 2-year hydrograph was then used to develop a"first flush"hydrograph consistent with the Environmental Protection Agency's(EPA)guidelines as described below. One of the recommendations made in the EPA report entitled A Watershed Approach to Urban Runoff Handbook for Decision Makers (Reference 1)is to use %:inch of runoff for the first flush. This value is based on studies of rainfall volumes and runoff coefficients (C Factors)across the country. These studies revealed that 90 percent of all storms in the United States have a volume of rainfall of 1 inch. In addition, 90 percent of runoff coefficients were 0.5. The product of the 1-inch rainfall and 0.5 runoff coefficient results into a runoff volume of%inch over an area of 1 acre. From the perspective of rainfall amounts,this procedure does not differentiate between Seattle, Washington and Phoenix,Arizona. From the perspective of land use,the procedure does not differentiate ■ ■ ■ ■ ■ 0 ■ 0 ■ 0 0 2-1 between the highest density urban development and low to medium-density suburban development such as Parkside Estate. Therefore,the use of%-inch of runoff,although consistent with the EPA's guidelines,is a conservative approach. Since this study utilizes %:-inch of runoff over the drainage area for managing urban runoff the results should be considered conservative. Based on the 2-year hydrograph developed by Hunsaker&Associates,Rivertech Inc.used the EPA's Storm Water Management Model(SWMM)to generate first flush hydrographs for existing and developed conditions. The volume of each one of those hydrographs is %:inch over the drainage areas. ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 2-2 nt CONDITION ±iil6iJ>3%fi'?+ii::.'•'.?iiiY:[45i::fnlL. :{ 3.1 LAND USE AND DRAINAGE Presently,the area is being used for fanning and has no outlet to allow storm runoff to the receiving waters.As shown in Figure 3.1 an existing development having an area of 21.8 acres discharges to an existing east-west 60-inch storm drain located along the northern boundary of the site.Flow is then directed to an existing north-south 60-inch storm drain located along Graham Street.That storm drain eventually discharges to the Slater Channel.There are no water quality control facilities along the above storm drains nor within the existing development.Therefore,pollutants generated within the existing development are discharged to the Slater Channel 3.2 HYDROLOGY FOR EXISTING CONDITION The outputs of the hydrologic analysis using the AES Software and SWMM are appended to this report. Using the 2-year hydrograph developed by Hunsaker&Associates and SWMM Rivertech generated the first flush event hydrograph under existing condition that had a volume of runoff of%inch over the drainage area. That hydrograph and the SWMM were then used to predict pollutant loads of sixteen parameters under existing conditions. 3.3 WATER QUALITY ANALYSIS FOR EXISTING CON rnoN Pollutant load analysis for this study is based on data developed for the National Urban Runoff Program (NURP),water quality monitoring program for the San Diego area by Woodward-Clyde Consultants and the EPA's SWMM.Event Mean Concentration(EMC)factors of Table 3.1 were applied to the SWMM. Results of the analysis are summarized in Table 3.2 and the details are appended to this report. II ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 3-1 Existing Developed Area of Pollutant Exh e 1 Area =21.8 Acres Existing 60" RCP Contribution RCP to the Existing System=21.8 Acres Along 493 Graham St. 0.......:::::::::::::: :::::::::............................................. :....::::........:. 48 6.1 f. .i:fr•L:.v:•' iii'r!: nv:::::n::.......;,v;•:.:}::•...:::.v.v.}:•n{+•:y}Y:+t;:;:;5?::r•}}}i v::.}}}SSS:•:i•}'w.£`?+.:...:.:;•{•Y::.,::•vt•v: ............ ................rv:w;:}}•....:v v:.v:.v..v:•:�•.w::,.:.r•.v..... .........}....}}i:ii:•}:::.........r... .•Yt , .:1v.v.ty v;}.v:.t•:+•. -::{^./::?}•:r•.{Srntvx.r......:.v:•i}�}i}}':.v:::.........r.r .�:vS}}ii}:•}}:^':{::.v::::w:v.v:::w:: .::::..... r:r::::.v::::::v:::.vn'• w:::v.vnv::}:!?}:+•i:t•}}•:n;•......:::r.v.v.•r.... .....u::. .....r...........r....,.. n.. ... rr.......f.....{ r.....r:::::.v.v::.}:!{?: f.+i::>?.y!{•:4:h..... r.................. nr.... .n............r:n...:.r:r.::..... :r:v:4::,vv:,;•}:v:•:4i:C•:•:¢:•:}:????w::::::.v.?w:v.vx;:....q rr;}::..r;.+f,....{}::n.t{... ..r r...:rf•:••:::r:::.�::..::::::::::::::�-:a.tr::::r.:.:}::•::::•:r:::::::.+::::•......y,...:......:...Yr........................:......:.. .:....rt.r..:t• ..Y}?•,>Y t. ,r::....rt... :::•:::.�::•...................... r... t...... ...r..r..................... .r .... ...... : r..,.fi r.k..tt.rr..... .......�?::{:xv.v:::,•::....:::::•::::::•.:�:!•:{{:•}:::::-::.....::y,{?•}:•}::tv::..:::-:;:x:::?x.v.....:.:..8::.vx:::::.v::+.....,, ..............t.nt...,........ ....n...r...f........... ::n::.,.r:.::n ,.,v:::.:;•... ........n.......... tY.tv......................r..:::.t•;f.r.::v..n..t...............:......}'..v:Yn• ;.r n..r..... ..l./.}........r:•: :}:?:v:•}}'•i:{^}}•:v{•}}:•i:{.}}}}'{:.};n:?i6;•}::•}}}:{.}C:::.......r...:a:v::.ter. ...r....................4 ..,. ... ...... �.v.. ..?...r:::::.:•:••>:•r::::::::.:::•:::.ti;S.:}}•::::•}:,{:.:.+............t.,..Y•:::::......:..:::.::o-:.�:::::•::.o:::rs:•:::::::::•::::............t.:. ...t... .... •3::::::::::::::::::::::::::•.}:v}:A\,•.L•}Y:ti•YX4:t{v}}:.;�}.. ::::{{:v..;;•:{.}....;...t..... r.... ......r.:.v::::r:................n...............:r.;.;.{...l..t. .4.. .}p t...�w.,,..:�.r:.,•.,a:rr.....•r..A., ,..... .,.,cox:$:tia::Y>v:,,t,r.r. ..iv; ..})::L.}:+. r.k t, ;�::� Y;`?:S•}`.;'.S;`.�:••?.•}::•:<}?;:: •Y:•w. Site has no ...G.....:.rr.......s.:•.:....rt•Y.::t..t'.�...}..>.:�.•:�.i.!a:S:+:::t..f�..>�.:: :::•`:3.:i..��,•'•.:c: soastorm runoff outlet. r. }' <:{C•iijii;}i:;}:iiii};i�. r::}!?... :!:}:' L�.:r.::/.4;•y;.t;•:!J.2 tY.}i:::-}t........ .................. Allstormwater runoff is r :.}>}}:.<:.}Y:.}:t.}:.:<:.}:;::..?..��.:::::G G:rt.r•.:f::.,•,,t.�t.+.:.�.t.:. . t... at h .t.a..:t e site to n a 1s a ventuall lost Y th rou g h infil tration ona d ev a orat on ...f•.'}:.;,;::.v:::•.:....:.::R?:!Y.{v}i:{},y{:+:•'+:•::.`:..; .;try,. .vi. ..:...........................+..::::::::::.:.!.}}}:•}}}:!{4;}}}:•}:^:^'4}}}}:4:^}}:L:C?•is??4:•}i:SY.C{•\'{6ii:•}:::.,.:................•.v:::::::;r......h:w:::v...t.........:n......?4;:•.;:::.;;?w: .:::,v........•v,a:?t•}i}}�.}}}}:4:0:�Y:>!.?!nx:.....+.:...........:.:v::.v:.v vv:;.+..:..2 h{J'•}:^:^:4+1.�}iiti•}}}}:•S:•}i}}i:is^riii}?'•. t tvp.::v.... :. v.r5:•}}•!}•}:•S:L:f}:•5::•}':t!^}i}:•}:ti•}:{{::.rfm:'Y> Y.v};•}}i:v:SS;;y}}}:?4Y:{:. .........v.....::::•}}:{:::::.}}::::::•..:.:}':.::::x::ry{;:.}}::•i'{4:{{:{:.}}}•{:C{J::v}:{Lv?{{:..:.::. r. .............F....... .....}.:rv,....v....<{• ,.....r . Flow to 1 . ..... S ater h..:.....:..::•::::.:::.v::::;•::::::::::::::.v::.::::.v::::::. :.. .............}.:5:-:}:•:r.:. ..:.v:.v::}::: :•:?i}:-i}:}•.r::::rtY::.:{:::.}:•}:•}}}S:.Yii}}:S:-Y:.:?: C annel r::::+yi:;•}:YY�t:;�:::�S:iY:�SS::�::::' ...r..,.;-;.}t;.S•{::,.:.;{;:;::::.::::::..;+.:::i:......r::..{.;..:........... ::i::.:.;}•::::::.�:::.:�::.�:::.:�:•:.:�.�::.::....... .................:.........: ..t..:......�..:.t�.tt•::::;r;t{•:•i::•Y;::SS::;}:::n::•r}:.}:•::......t...::•:::::u!•.... :j::'/`.:: :;:}?:}.:iy:i:iii::i�L';::'v:�:tii•`'i:'"`:":�i<i$:tiY?i:::�:y}:;+ai :::::::::::v:::::::w::v::::r:::::::::::.::::::: •h•:.w::r.:...,:::?v�v:,;.�^:}•:i:;i:;:'ij::t?<..;. n.Y•:'r:.i}iii%}<Y,>}:jiii!i::!ir.iiitiC?CviiiiiiS:}}:+f?{.f..i}n:�' }::j:yi:•iiiS'iii!i: :C': i::f}:.:}:::'i}:i!:ti•'.}:;:;'{'.}ii•}:•Y4::i i:iFii?i:i'r}:•}.,�;;,;..}iiiii!i:{:jai ;v......... ....::.::.;x.v.}}:r:::•.}:6}:{.}•.nv.v:i}::•::::{•}:•.t.............:.::.. n....r,�{•}i}i::.. {..is v{v:•r.•:.•.w:,:w:.... .:.v• ....:::nv:. v.:Fi:..Y:^SS:;?L'?vi}:}}:?{•:?:{::;tvi:v:;..:.• n.r....x .. +•i:•:;t4:.}y:?t{{x{h:.v; ...... :::::r.}•:r:r..,;;.,i::::::::..vtj;.}:•:v.•.: ?......... t Gar den Grove ''•:•j'fi:{'i.�:;��j}�{YY�:'k:Si:?+•:':::;:;:'iiii:...::::v::'v::}}:••r+a,:?.: iF+jjj•S:i4'S:::Y::iii':J:3Yi:{•}}}}i:Lj'yj SS'•:••v:•.. Wn 1 r to sb ur g v}:? h C an net Slater t Channel a el Slater Pump Station NORTH NTS " RIVERTECH EXISTING DRAINAGE LAYOUT AND FIGURE K. IV INC AREA OF POLLUTANT CONTRIBUTION 3.1 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ TABLE 3.1 EVENT MEAN CONCENTRATION VALUES USED AS INPUT TO STORM WATER MANAGEMENT MODEL .•n.:•:if•::.. :. .. ::., ..:.:•.: +'t:��?::fir r}..:�:'•:�:JR�w41.�Maa ..•h :. BOD(mg/1) 13.8 COD(mg/!) 72.6 TSS(mg/1) 100 TDS(mg/1) 112 Total P(mg/1) 0.54 Diss P(mg/1) 0.41 TKU(mg/1) 1.76 NO2+-NO3(mg/1) 1.16 Total Pb(ug/1) 21.6 Diss Pb(ug/1) 2.2 Total Cu(ug/1) 27.6 Diss.Cu(ug/1) 10.0 Total Zn(ug/1) 153 Diss.Zn(ugR) 68 Total Cd(ug/1) 0.79 Diss.Cd(ug/1) 0.32 TABLE 3.2 FIRST FLUSH POLLUTANT LOADS TO SLATER CHANNEL UNDER EXISTING CONDITION .Tit.�:::>':::::��':�i��1?•::::::: ;<:::::::: ;-s;: ::......... Po 22.3 180ds:>::, 248 1 278 1 0.82 1 030 1 4.4 1 1.7 i :>>':.1` ;1�:>::> �i�s:I"b::.;:.:�.;;T�►ts1::i5;:�:::>:11iss>•� z:::>s::8:nia1:�:::zsllba:7ac:::,;<::'� ::���::: :::>::><: ....::.. :,.;r. • ...;:::1'iinid�";•>::: Pbuflds::i::>�::.. •:::.. ::..:..: -.:..:...�;�:..:::::;.;...:_;.;>.; .... ..9'oimda::::>.:.:�Pom��ds:::::<:::>::Puilhd3:<.>::;:.>:.:''•:Pb�sds::` :a:sp`vgndd:>:::f: 0.05 0.005 1 0.07 1 0.02 1 0.38 1 0.17 0.002 0.0008 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 3-2 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ;�� �411:: ..:-:. < tPED CONDITION iji .:w•..n...::............ 4.1 LAND USE AND DRAINAGE As previously noted,Parkside Estates consists of a residential area within a 50-acre site.The development will create 208 single-family homes the characteristics of that will be similar to the surrounding neighborhood.A park having an area of 8.2 acres is planned at the northwest portion of the site. Figure 4.1 shows a schematic of the stone drain plan developed by Hunsaker&Associates. The existing east-west storm drain located along the northern boundary of the site will be abandoned and the existing development having an area of 21.8 acres will discharge through the site.At Node 250 the total on-site and off-site drainage area will be 69 acres.Additional on-site drainage areas of 3.5 acres and 1.9 acres contribute to the system downstream of Node 250.The entire area then discharges to Nodes 608 and 609. Between Nodes 608 and 609 the storm drain passes under East Carden Grove Wintersburg Channel and its outlet is equipped with a flap gate.The Slater Pump Station is located at Node 609. Although the storm drain system is designed to accommodate the flow during the 100-year storm event,it has certain deficiencies during non-storm periods.Water elevation in the Slater Channel during non- storm periods is frequently higher than the invert elevations of the storm drains at Nodes 250,211 and 608. The flap gate at node 609 is provided to minimize the reverse flow from the Slater Channel to the storm drain system during non-storm periods.Even if the flap gate is fully leak proof;dry weather flow from on-site and off-site areas is expected to accumulate within the storm drain system.This may create anaerobic conditions and produce odor problems within the development.Further, during early stages of a storm when this severely degraded dry weather flow finds its way to the Slater Channel it will adversely impact the quality of water in the downstream channels. 4.2 HYDROLOGY FOR DEVELOPED CONDITION Based on the 2-year hydrograph for the area draining to Node 250 developed by Hunsaker&Associates, Rivertech generated the first flush hydrograph using the SWAM.The total volume of first flush hydrograph generated by the SWMM is 2.87 acre-feet.This corresponds to %inch of runoff over a drainage area of 69 acres. 4.3 WATER QUALITY ANALYSIS FOR DEVELOPED CONDITIONS Using the first flush hydrograph, SWMM and the EMC values of Table 3.1,pollutant loads for 16 parameters corresponding to developed conditions at Node 250 were calculated. Table 4.1 summarizes the results of the analysis while the Appendix includes details of the analysis.Based on area proportions, ■ ■ ■ ■ 0 0 ■ ■ ■ ■ 0 4-1 Existing Developed Area =21.8 Acres Abandoned Existing 60" RCP 493 ,v .:;ix: i.v'4?:::;v..•.l{::::;.:'•.v•.;rr:;v v:v:Y.:::}:r•: k::•.v:.}:{:;.{.n .rr :::..... ;;.....::vnv.w:.v............ ..,$:::x";J'{.•{?{:::••;:} .:.{{•n•:;:.,v:::n..}:Y.;.:{$k. 424::i•:k v:::::.t...r. vv.??J r v.{Y:• }'{%}:i i}v •:k•v ::f:••t. ...k1::- ::}:#:.4•J`{'4•.::•.. }.;r. !,.C'..;.�.�':`,:}:' f ...m:.;:�{}. .,'y\f;n :.y}::..Yv.k ...{ry•{•.viIXn'}:•'. .kc/::::{.fix{• :S.`ti is:ix;�!,.};.. ..\.,. ?S.{}:2;:r.:.x.•Y,. •.,C.'.•.ff:�3Yt..`•::' r',ci`?.:: ��`�/,'i` ..J}} : .}1"`v �• ::.}$• }¢,.h. ;;..}:.}.'•r:. ?+t'Y•+;•rf:' r::}2,;,..:$}:2}.;:,r,... .i•`' {:': 'Y'2t:2:;'•}'6+\+`h•:.C.::..,.R:fi,. ;{;�.` •r•}#.•2 .J}Yr:•: ;�:•`, +$$:s'knJ. ...t,:,,.$h+xn?:,;...,:.J:. .:.,:.,r!�. , >l •.�:;•''' �:,:: ?}.:�..?,� .J. ..f,: .. r• �?�{,:z. 486.1 Y;IC.-nnv;7.{,,:�:. '.•.,:}}}}:}}�:::5;:" ..:h..,•.:/:,•::�.::::r.�,:..,t r.31..x•.:•'.'yY{vr:,�{�.::f } fin.. n,.fX. :f/.•r..:,.;. .}:.f'w••...2'ti:: z. .5,.... ♦. •}k:,• ,..g,?,.;�{"�}. :}},:•.%:•,•yt:} .,}..,�.•:: •.tv::r::'•tiyh v``�•$.} ::.2r:v x:+: r,$$, r. :,5..• Ca :: t}•;�'•i:..{.. �+�,� �".Y..,33u'fi::: �Y:.;.::•.:}`:.r..; l .y;:C$SY.'•y?ty}•S;rr..:v:.,•.`u•::Y•.Jr4';S::S;�:':+.Lr.,.,3;f;;:••:...%^•.t •;. ,,5 , 7: ,xY'r ::•�:S�2sw .•£.,h; ).; •::dr::i:}!••rJi,, �£:.••:ti2:w:•:5::;}:,r.,t} ::.y:•}::...�..;.,<;..s..:r:.:•,2}+r3,�;.;$. h.c} J f.•,r^:2i ..i{ h "'..}�,. {t h q}`rthC ..w.!:o:`�k.•$:�`'?r'•J::.`..f:f?•:::•}r}•:;<".}$?ps i:7.#?{5#r#'$.}••:}).�:.r :h}rr:,+}Jhf.:,k.:;;t: y� �,L� ..r; .:!J�: .;{{•u• .•!S':r:.Y�.•: ���:}^�•r.�C".':: ?:!.;' .fr:J•ii.::.S•.r•:, ..,t<•:•;•:,, +,..k:.{.nn;:.S.L:rv.;;:F.,$�y ..k:vy..w r:"h"i't..,+7,.;:: •. '?:•x,' :.•Y•Sr: .,:f•x:r': .hu a,,''n•. r:,3.`{••�rrk :)k. .}:s.,.,.r2t:}:,+::.�,..{:.u.{.:}:?::.; •`.2:::'<5:+,:::};.;..;%;.},; �� nit.•r :t:h{,�,{:� ..s,, Y.•iy�.�Y'? :}': 'k2.r.o:• . . CC}•:'£: :• .,:.f .;;.:::{r.-,ky,+rr}.x::. :,r::. :.vh}hl,..S:..S.{•:•.6:... ..,r.Y'w: ::i, ;;}r Yfk SS;{yi•:/,:...5. }:k.k::'?S:}Y•:••ri;:.}r;.J:t;:}.'•:sf:.,:•:!:••} :>, <c•:r?<•{,;ryjvh,si?•.• .}, '}'+,•rrr �1 : S :}k iY'• .:y :..2r}., 3. .{•k?.: y f:: / ..s.:y;?_:}}. L 2 :?'+ -1{}:C:{.2:}J}n.,.... t!; 'f?,.'4 ;r rriP.{ •:$!?t'r"'�.:7'.•.•? •:r.'{`.',r'ai.}is{- •.SS}�t:-i}+}.••}:C`•;, 't: ,�+`. ,}tq,•-f ,r.... } t5'•. •;R `.•.y,:x:�;.ry: {.S:a.{,$ ?r{. }.:::;;:}#•Y.:}+:�':.ic;:.,:'•;,St$:•::},:r.;a}:o}+}ii.;x.Yi'tY••}}.A• r#• �..•�• '£��,.�}f!''.': r{. '';92•.i�.i{ •:: '•;`X,-:,. ...hy.�.�} .;rr},+,ti}�;?S:Jr:.rYY:JiY.`.nxfi.::r:?S£,.••'"2�?{S::'u-k#.x{}:-:}{irr2;::9tcr;;Y? rr`r2':., .6�.f �:. � ..Ykc$ •::f,.. {� .:,':,.y}:. v:xv:•,vh?rr•}::t?••}4.$.:r.:;:•}.. ?,.;. }r� .:;•:•x2?,Cvr. ...h}•+2f' ,Y• x{!.${ •`�.. �s�(/'4•?.,.5{Y.f.#?,'• .. ,•'},: •::$?4::.} '»h'.C,{�: �.v.4..:/r:. ..�i.4}.{..;Y,:: .;$....{J'f,>rwr$$::+Y...Sn• '•:r:::?:A.:lri,;Y F. }' .,.);F:�fJ:. h`C :n{r'. :.{•: +: y:{.:t • :•:..J>::.{.;}:;?.:•.,v.s:• :tv. .;{e:S;Sr.h {.{c:.,t:tf.:x : pr; x .Yf}.• :.#•:.�f, y �y Q { ::2 ; •:k:.v. }}Y,v:..}2i!: f'fw:::},?: .i}}. .,4y;.??$';`:}.}+: ..j�.{•.'S• ..Y .:•�`: ,;,!. ..iv.{{;$Sf,.i:.:v::..': r:-:.${: R..?•::$:2Y;:•:•::::•rr ':l•:: :Y' �. � •r?f•�:. yy$iS,%.•'J�,;;:: .Y.. Sr .f�':,•:-••:�. SO4 .`•?`S.. ..S.. #.`;y:':':....:.r:aY.::.:ikz;;:}.}fr,.::.:.. ...f::h.S.: n�'�.rr i`a :#x:. h 2::i :J2,•: :2:{;.�<#$::::::�:.; rt. .r!�?O Y .n .r/• ! "S::S..:}-:R:?;>..o.. Y?::{.;. .�:•:S¢"pp ••:!...: •::•}.S:2i.:J r:Y#t'•?r.�{•i:C+;`:! ,/k .r.C�- .l.?n? :.$. :�. v.r.. { :�L:k$':$$$�:i{$>i $ixkr.....,...:x:::•;{r,.$'::.}':...v {. :.:Y�.{r: .{. lC.;n. 4} $+k.rh ,.}r H!; ::>.,;..J :^:(:{:r$ }.r.:: 40.:xr:}.4}::•fk':vL!!...�irr., ?ri}:: •r:9:: .,/. r•;:•f.,. f,s$ •:} !yK i•}}^:.2}:.,.y,.:..!. <.::•:}::..JYr:::,.,•r,:2x^f..::•;. .:3r:t t+ •,,`•r,.^•..:�',,22 hS.,...>.S#.vS}� r:3..n ::{2G::7:.x:..:?•:::..•:•:.�;..:. .rfb !t.. f •?,:+••, '2 .:,.{ > }Xi" yri?••;}r:}%Y}'• :•1.'•:x,{;?{ �`£:•Y :::x::r. !},;}{:'!:}.:,if�,:.r •f:. :::5#:rr.'•}.r••;Y•:. !., ,:.s,:xi}y;.. :r.2�:#�: nYv.::•:: +i�fil '/•?J•1•YSS}, �� ;.,•SS! .?.. .r ::•'<;:{}`:#'k' y{•:.+,•r>). '.5:::•{t::;�$•Si:�.;};r:. }i�:r•}} t...!. ?;}: :}4. .? ....•",Cr+`•'?':•'{}'•: �' i,•y'�fn ti.,?+:.y'{:.;•.}:.r.x..'{•,L;4;.,$}} yx4:;Y,.:.:n`aJ.,xr: •:.}.r�rrt .. t;:wM1/?¢; h•?<` '.4'i{`.�::pr:.Y.7!;} :. .{.ri{ ,t?. r••:k:?r.:.,C•},Y, 'f ... :}}>;;Srtk:iii: ••243}::t :i?:. {}}t:::}x;�,{•S:f i•+•}}. '•.:q#;:k„ry'y•r•. ;•'`�`•;',r.}.: •;>.?�}.3,;,' �,±./..... . Y;v>.${.y.#'.• 4}+r$�:>:SS'5223•.'6• ?f •::<rnri,{:!S%,,.yb:•}f::•;;:••. 2S0 :.;.rF.l :' {,.7a,ip} ;3.kjX{:: •$:•:::.?%r:::•:,} ••,'•i�'`•.'':•f{>#�'2i:;�'f,�:s2}••iI,g2� f....rk#,:•$sn....:;; �;,�'. ',}+••.••' :r}%}•52.; S}••. u;}:`• :/';:ik^:.}r„n:•T!•.••:}:yh?Y3tt.}{^: iyi}:: ;•:,}•}• :{:.C�n' 'S ••r:;;$•:{• .:•Sx't? ..t •�v`... y:'.:$'`•:;`.:}${ry.: �r; f....., .r:J.•n•y:•\'r'f•:::.•: �1,�{T,,,,,, ,,,,,,,;.}';�',.•.v�:4"• , hC} '•:{$•'>: �C�{:k• :4. .^}r j, { •h :'22`.v:::}f,V 4r::,•. •.:fJ}•.} 4,}'}'S.', {} fv:' -ff'•S. :S�S:h.::.' $<�2,+' ..:{i/.. h:• ��+?: }. •}{k'i�:Jr,e:.y�.. '{''i::k'}�•:: ...�.:?$;:::'} 2:£::`•2: r?•J...v.. +t�� r:2:': ?:{Y$:$�2:2:Y+ ''.•4'.• :2t%::. ,:h:r:.t{rr}:•}•.; y;::;'::4 .:.if- .:•:i,.::.2,, ;,i`}''+}:.};.:..i.'} ni};:r ..#�• ,r}n,•y2 .;: • :3:° •22•`.;rtn}:c•}.£.},f.2..h .:<•S:`.M1r;r:.'{ ;.Y.;: ::.$:..,:rt; .} .r%:.•:• :•{o''.':.,v2}�C. '.2},.t.k• :.,. r..2.,vi•? ? .. h:#£•:S}•:} i:}}:$y;n:{:.JS, ?SS::..:S.+xh::,., �y'.�,i•: >.}�h- a`.,i.., : .,,2 ,.yw{:2x;.,x::,}•::.. ,f '}�,.:i$::'}..:... #{. .;tr...+.;';;.} yia}.•{.r;..:.,.,•..::n,..x •`•$•:•'`.S°:"',. ,6:. 2:2}r;,n>}r.,r .:.}.C.x}, :k}}k .,f. Gy;;S..k:r.. :nCS.:};:;.. :.;}:t.::n2}} .y:: 22•: •• fit: r:Y:,tr:.f'.t• {:•'::F;li?.:$%:;:i}t}};^Y: }::r,•; :r$:2}$:'{'i{..2..:...y.:J. ..}}'.2•h�y:2 is.h:,v;:r}.�... h i:Y�+,$::.v. :.r$ �} :.,}!'... .2tv.-y.: vv$•h :.v x�•:n vv.::v•S..}�¢''r;/, ,.Y. }}':• t?i!b.}.. vr}.i!•h\v. SGr„-:•:... ;.�',.yY.. ,}.xiCyf.• :Q:ri:` };:%$}:•. v:::vrti•.r:}:•...?� `+.,•.r ..r!.4J.:A.'',J.�.#(rr;' f'.4``r) v'':$...... 'v.�•.}..:t. ? .,tr:::?iS-r'r.....:.4. J 7F.,.. ..;}':{: .+C . ,fr:rn:J.'r:: fYf!:�,..ki�., +3 , '':.9•:.::xr`.:}.,.r:•+ ::.yh•:xx{f. •.:r::: y{: .. .J.}•i• } . { , .knJ}r}}%$:....n..r.•fi .,r}'? •.S:r•3:.r.; f:l•.'.n. ..:y?r•}:: ..! ..>skrY:+.Ox?2:. -:Yi!ti?4•'+';..: .Y};::.:............ Al .}:;:${;`vxY:.......r :A ?' ":,.?q{ .r i4r .:hr}v...,•.+ 22•h:' rr rv; .. :'.{•.: :r.y. :4}}Y..:+;,}yti•Y;'l..}}:.;r.:•{•}:r,.} ...x•:r.;:. 'jy}••• r 2.......r... � 3,v.... 3.5 A .. 693 r..r./ .ri..r.., .•+.ff8.,4 r . �$S:2#:iL2.S•:n,.";#SSk.`?:f:�'',G,'.C:#'.�.t,: �..�:. ,:;{•£;};'f:{ :#{)•r`:.�' ::�•r,}?J{F.L}:• v:%::r?<}...,:$�`.`...},:ix. ..S{;..,ri s•':}`;f•.;':v:'•:�}{,+.`,'yam}Ys:!?,:S{"...•' ) <'r:>:•:.. ^,{•:%}'}.. <:`,##:}2;:�5:'t2 :;r.,w,:x:}�}:{riti r}'` p/LS.•`•-�•'2i: l,::J3:u ,.,\fy.`U,::'S.•''iS!• r,.Y::: }iy}/'%�•r�h�•{f}v;.l{?t r-:S{A' `�`'}h;}}}v •.4�v,,1'}`,.+,}+} :r,:}`',.:;$�} :�k •$'::ji;:�i}•::$#:#�::}}$#:2$;2:x,.;+.r -{;, }:•:# }}f>},'}h>}:•};>::}',xh•$;:;$}.Y• . 211 ?R{<:: •.,.:w•}:r}:.Y •Y.Y n{?SY.: r}',& '. -:45.Y}'x}t Ry.. ..,i•'-.;.-.', .:2K r" - x: !: i: .�.} East Garden Grove :fr''£:.Y.,., }:...2:::•22:r'S+):#:':vi<:: :+%••.:J}.?:2.. YY.}:n{ .t�#�{S}•y ?n. `ram ::L,•:t:... �'�•£''r';f.,}:. <nJ}xy::..>•:}?r:�':•2:,.rr: r.. :x:}#r. .w. . ,,.W,�?. �s,?. Wintersbur{::fir?:.5:??.$..+• t;{. •2: }.t.,2 r.x##;;: g R. A3 A/: '{ e.. { ..:........ .....{•nv: t--.v'?• ...........' •:f,..i:•1'x;;ti:. .:................::::....... 3Channel .2'.r.. Y µ .v' rrf ++(( Y kv. f ,�} r i•. 60 Slater Channel S a.�..i:... .. r� r an nel {2 ..?.•fir �S$}:}�:#ti::v'v':$:2v2•:•i:•i:#:ri/:2:i'�$,'4::ivy.:{$}:: ..<'..;.>""` Slater Pump Station RIVERTECH DEVELOPED DRAINAGE LAYOUT BASED ON FIGURE ' INC HUNSAKER & ASSOCIATES STORM DRAIN PLAN Em: 4.1 pollutant loads for Areas A2 and A3 of Figure 4.1 were estimated and shown in Table 4.2.Pollutant loads at Node 608 would be the sum of Tables 4.1 and 4.2 and are shown in Table 4.3. TABLE 4.1 UNMITIGATED FIRST FLUSH POLLUTANT LOADS TO NODE 250 OF FIGURE 4.1 FOR DEVELOPED CONDITIONS : .:. ' ]*pimfis •'lyoinds:: �giirnit�t <�om�4s �aa3nil'r:>�s:r.?r#1.►s�tttds ::.<.> 69.2 558 1 769 861 1 2.5 1 0.92 1 13.5 . 51 a.>•s:A3�s•Pb:.::: '��tAl::�tt::::;.}:semis>�S#:>::::�>::�'A�at:7rt���� ''.1�Rs.�ti::�:::}:::�p�id: } •:l��md�:«:>«:::Y!xwentYs::;: ''�utimdxa::>:::s�:�n�'s::::::: -'�a�nnds:•:�. .Fxion$s:�;f;:::�uti6ids:,:;��%>{��!'aii [>`:.'•.`<s 0.17 0.02 0.21 0.08 1.18 0.52 0.006 0.002 TABLE 4.2 UNMITIGATED FIRST FLUSH POLLUTANT LOADS TO NODE 608 FROM AREAS A2 AND A3 OF FIGURE 4.1 FOR DEVELOPED CONDITIONS :,.@�iki+rid's::::::':"<�mNts:>: sf:::�iiei�a��:>::;::aPo�da^�r<:r::�iiii�s<<: }1!oiedfs.:,.:-�:::}:•P..euids>f��: 5.4 43.5 1 60 1 67.2 1 0.2 1 0.07 1.1 0.4 ............. l:it <<r:r} :•:'>:::.v:::•:{:::.}.}viti}.:::•}:{!+:}•:(:: .:...:.;. ... f!?Y::x:•-v:,•.}%-'i}Sii{v...v:•}' i:}}'vyii•i}}:rh:.v::yv}Kv::.:Y::f :::'::�bUY1d�s':: :::�Ilftld3:;::::: :::�b�llaJ':i::? ::::Potu�dE:::•<.:::tr::�{�1ylIIC$::.j::.::`:�1�1!'f$::'•'•,;:`.,::�Q�Id•:4'fi:}+'{:`;�$�1f�S r.:::?:; 0.01 0.002 1 0.02 0.006 1 0.09 1 0.05 0.0 0.0 TABLE 4.3 UNMITIGATED FIRST FLUSH POLLUTANT LOADS TO NODE 608 OF FIGURE 4.1 FOR DEVELOPED CONDITIONS }:•:BUI.<.:»:::::>:;}:CUtI:.}::.}::-: .}::TSB::>z:>r>:s:::;1?DS}:.}>;:.::.}:•:2uta1:P::•<.::::::>i)tss:!'.:}}::, ;.}' s .P9 Pdltnds::><::•:::YOroriiTi:??�`���Paiit�id��:`:? urds:%':r'. 74.6 1 602 829 1 928 1 2.7 1 0.99 1 14.6 5.6 . ...,lnnd:. 0.18 1 0.022 1 0.23 1 0.09 1 1.27 1 0.57 1 0.006 1 0.002 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 4-2 -i:�'f,.:i'f,.?r:i{:ii:?$:ii"'"Y.•?+F?Y::4::?:r.} .v iY.::::ij:C• if-.;.........F.ii}'r'•iii::-: > 1[ ISON OF EXISTING AND DEVELOPED CONDITIONS 5.1 DRAINAGE AREA By reviewing Figure 3.1 one can note that the total drainage area under existing condition contributing pollutants to Slater Channel is 21.8 acres.Figure 4.1 shows that the total drainage area to Slater Channel under developed condition is 74.4 acres.This area includes the two small tributaries designated as A2 and A3 in Figure 4.1.This means that under developed conditions an additional area of 52.6 acres of residential area is contributing runoff to Slater Channel. 5.2 FIRST FLUSH HYDROGRAPHs In developing the first flush hydrographs the rainfall intensities of the Hydrology Manual corresponding to a 2-year event were reduced by a factor of 0.53.The 2-year and first flush rainfall intensities are shown in Figure 5.1.The reduced rainfall intensities of Figure 5.1,together with the infiltration and topographic parameters of the drainage areas generated hydrographs the volumes of which were %z inch over the drainage areas. These hydrographs are shown in Figures 5.2 and 5.3. In reviewing Figure 5.3 one can note the very sharp peak of the first flush hydrograph under developed conditions.Although the peak of the hydrograph for developed condition at Node 250 is at 19 cfs, Rivertech recommends mitigation appurtenances be selected for a much lower peak discharge for the following reasons: (a) As described in Section 2,the concept of%:inch of runoff over the watershed recommended by EPA is extremely conservative for drainage areas of Southern California. (b) First flush events occur at the beginning of a storm when storm drains are not full.Given the high tailwater condition and existence of flap gate storm drains have the capacity to store runoff and attenuate the peak discharge at the beginning of a storm.Because of the sharp peak of the hydrograph for the developed conditions,this attenuation is expected to be very effective. 5.3 URBAN RuNoFF Unmitigated pollutant loads under existing and developed conditions were predicted using the first flush hydrographs of Figure 5.2,EMC values of Table 3.1 and SWMM. Results of the analysis are shown in Figures 5.4 and 5.5. Details of the analysis are included in the Appendix. ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 5-1 2.0 I I I I I I I I I ------- -------- ---- --- ---- --- ---- -------- ----;--- ---- -------- ---- --- ---- --- --- ------- --- --1----T--------T----r---1----T--------T----r---T----r---1----T--------T----r---ti----7----1----T----r---Z--- --J----L---- ---1----L---J----L---J----1----•---J---- ---J----L---- ---J----L---J----i---J----L----.---J--- 1 i �\ 1.5 ------T--------T--------y----T------------------f---- --- ----7---i----T----P---l----T---!----T-- ---Z-- -J----L- -L---- --- ---- --- ---L----'----J----L---J----L----'----L----L•---J--- \� -- ---- --- --- ---- --- ---- --- ---- ---- --- ---- --- ---- --- --- ---- ---'�---- --- --- ---- -- --- --------I----,--- -------------------I- ---------------- --- --------------------- ---------I--- --- -1-------- , I I , I �1 -- ---- ---- --- ---- --- ---- --- --- -- - --- --- -- - - -- - -- - - - - -- 1.O -•----T--------T----r---1-------- ----T---- r-------- --- ---T----r---T----r---I I , • I I I I I � I I I I I I , I , --------------------------------L------ -------------------1------ --- -i----L---,----1--- ---1--- -- ---- -- --- --- - -- - - - - --- --- -- - - -- - -- - - - - -- I � , I , , I --1----T----I----T----r---1----T----1----T----r---1---- --- ---T----r---T----r---,-- --T---7---T---- ---�--- -------1----------J----1---J----i--------L----�•---J-------- --L---- ---1----L---JI----L---!----L---- ---•1--- a 2-Year Rain 0.5 ------ ---- --- -------- ---- --- ---------7--- ---- ---�---- -------- ---- --- ---- --- --- -------- -- --1----7-------------r---•1_---T--- ----T----I�---1---- ---•7---- -------------r---•1----7---1----T----r---1--- --J----L----J--- ----'--- '----L---J----i----'----J---- ---T -----J-------- L---J----1---J----i----L---J--- 1 1 .Z'll7iflS�---- --- - --- ----r----------------- -flRf-fl4/41!","1T. -y'!!Y First Flush 0.0 15 16 17 Time ( Hours ) "; RIVERTECH 2-YEAR AND FIRST FLUSH FIGURE INC RAINFALL INTENSITIES 5.1 20 , -- --- -- ---- -- --- ---- --- ---- -- ----7---7---7----7-- --- i--7---- -- ------7---;----7------- a----;----;'--- _-_-;'---J-_-_�-__�-------- ---- ---�--- -_i---- ---T---__---T--_-'----r---�_--_ ---i----r--_ ___-,_---T-- ' --- -- 15 --__-_----T--- ----T---___--r---i----T---7--------- T--------T-- --- _--'1---- ---T---Y---T--- ----' T---4-- -- ---- --- --- --------- - _- __�--- - - - --'1--- - -- - - r-------------•---••--- - - - - , - - - - - , - - - - - - , I � 1 / , ------------ -------T-- _--___-------- ---1------------_--------1---- -----------------i----T-_- ----7---_--- /1 -- ---- --- ---- ---•--- ---- --- __ -1---- --_ --_ __- -------- -- ---- -- ----1-------------•------- I I 1 1 U -- 1-----_--t---J---- I----L---J---- ---1--------L--- 1----L---1----1----L--- L-- --_ 1 1 , , IW�/1 10 -1---- ---T-_--r-__T-__•\--__r-_-'�__'�-r---1----^---T----,---- r---- --- --7----r_--T--- 1 T_-- i i , W/ T--- ---- ---�-- 1 L 1 1 1 1 -- --- --- ___�----a--_�_-- --J----L---J-- -�-- ---'- --L---J---_ -------- --- 1 1 1 1 A --1--_-r---T-- ___--T--- __--T---l----r-- --__ ---T--------r-- 1 --- - ; -- ---- --- ---- ---♦-- ---- --- --- ---J-_-- --- --- ---- ---J--- -- ---- -- -1-------- ------------ --- ---- - ---- ---T--------- __----------T--- -------_--------'�1---_ -----_- _-----_-i___-7-------- ------- 1 5 _ ___ ____ ____ ______ ___ _ --_ --1____ -_ _-- _ _J----i---1-__ Existing Developed N �f -- ---- --- --- ------- ---- --- ---- -- ---- -- --- ---- ---- --� --- --- -- ---- ------- 1 1 1 - ---;----1 � 1 1 -_1----r---1---Y__-T---1----r-__ ----------- ---,--- ---------- 1 - - - ---- --- --- 0 5 10 15 20 25 Time(Hours ) RNERTECy FIRST FLUSH HYDROGRAPHS FOR FIGURE rac DEVELOPED AND EXISTING CONDITIONS 5.2 20 -- ---- --- --- ---- -- -- --- --- ---- ---- --- ------- --- ---- --- --- ---- --- ---- --- ---- --- •- -•-•L---•V__•J_-_-L_•_•_ •-1___•L__-J-_•-i_•••L.•_-J•-- L •--r_-••i__•-L-•-J•-••i__--1-•-•J--_-L••-J--_-i--- 1 --1----T----------------------------------------------- - -- ------T------------------r---. i 1 -- 5 Minutes ---- --- -- -- - --- ---- --- -T- -T__-••--•,- -T-• - - -T---------------7---------T----f•- - ---T-• -- ---- ---- --- ----' -- -- ---- -- --- ---- ---♦-- - - -- ---- -- --- •-___•-----------•-_-_-_••- ------------------ -----•----1-- - ••-_-•---_•- --- ---- --_- -- - - - -- ---- ---- --- ---- -- --- -•-- - ----• _--- ----- - --- ---- --- ---- ---- --- ---- --- U1---- __-J----L----_---1---_L---J----i---- ---J- --L- J---- -_-J----L--_•�-•-J----L----:----1-_• a� 10 - ------ - -•_ -r-__T---------------- -- 1 -- __-- __--' _• __- - - -_ _-• -L-_--1-_--J- -L----�_ -L•__ •__-L--_-L._-•J.--•-L---J----i--- A __-----T-�-- -- _-__ -_---T--- ------------- ------ -------- 1 Developed / -- ---- ---- --- - - --- --- --- ---; --- --- -- ---- - - -- --- -- - - -- -------------------------- ---- ----------------------' ------ ---------- ----- ---- -------- - - -- -- 5 -- ---- -------- ---- -- -- ---- --- ---- ------ ---;----=--- -- ---- ---- -- ---- -- --- -- -- --------- ---- ------ E%7Stlllg ------ --;--�i` -----i----'---�- -i--- ---- -•------ ----!--- ---------------- -------------- ------------------- -�-, __J•_•-i•___L___J-___L___ _-__J-_ L___J•__-i•___L__•J�-_L_-_J____�•�_•J•_•-L_•__L.•__J-_•.-L•••J_•••i_•• �- ---------1---------r 0 15 16 17 Time (Hours ) R/VERTECH ENLARGE VIEW OF THE FIRST FLUSH FIGURE s �Nc HYDROGRAPHS OF FIGURE 5.2 5.3 92L 829 2.7 602 14.6 5.6 74.6 0.99 22.3 180 248 278 0.82 0.30 4.4 1.7 aw, z w cti C7 a Cy w C`J a a9w Cy a o z z o z o z o z o o a � a � a � a � a � a � a H H w w w w BOD COD TSS TDS Total P Diss P TKN NO2 +NO3 Pounds Pounds Pounds Pounds Pounds Pounds Pounds Pounds RIVERTECH UNMITIGATED FIRST FLUSH POLLUTANT LOADS TO FIGURE INC SLATER CHANNEL 5.4 1.27 0.18 0.23 0.57 0.09 0.006 0.022 0.002 0 0.05 .07 0.38 0.17 0.002 0.0008 0.005 0.02 z o w z a c7 w Cy a c7 w a a O H a a H Oa a H H aO .. CA W � W cn Total Pb Dissol Pb Total Cu Diss Cu Total Zn Diss Zn Total Cd Diss CD Pounds Pounds Pounds Pounds Pounds Pounds Pounds pounds RIVERT'ECH UNMITIGATED FIRST FLUSH POLLUTANT LOADS TO FIGURE SLATER CHANNEL ON MEASURES 6.2 MMIGATION CONCEPT Figures 5.4 and 5.5 show the urban runoff impacts of Parkside Estates without mitigation on Slater Channel. To offset these impacts two important mitigation measures for controlling the quality of urban runoff are recommended.The Continuous Deflective Separation Device(CDS)and drainage pump. Figure 6.1 shows the concept of controlling the quality of urban runoff from the planned Parkside Estates.The concept of CDS is described in the brochure included in the Appendix.Although the CDS can be installed on-line along a storm drain,that is,between Nodes 250 and 211 of Figure 6.1,an off-line arrangement as shown in Figure 6.1 is recommended.This is because of the high tailwater conditions at Slater Channel and to prevent the potential clogging of the CDS during the 100-year event. The mechanism of CDS is based on the separation of incoming flow containing pollutants and the main flow during major storms when pollutant loads are not excessive.However,given the site conditions,it is recommended the CDS be constructed along an off-line system. This concept is shown in Figure 6.1 and described as follows: A"Smart Box",shown in Figure 6.2,is constructed along the main storm drain between Nodes 250 and 211.During dry weather flow and first flush events the Smart Box directs runoff into the CDS where pollutants and urban debris will be trapped.Because of the high tailwater condition a pump is required to allow the discharge of the treated water to the Wintersburg Channel or Slater Channel.During first flush events the pump station must be designed such that it will be automatically actuated when runoff exceeds a minimum value,say 1 cfs.During dry weather periods the pump should be operated at least on a weekly basis to prevent anaerobic conditions in the storm drain.During the design stage and operation period when more experience is gained these values may be adjusted. As described in Section 5,the peak first flush discharge at Node 250 is predicted at 19 cfs.Although the manufacturer of CDS can design and construct the facility to achieve consistency with this peak discharge,Rivertech recommends that the standard CDS having a capacity of 11 cfs be selected at Parkside Estates. This is because of the sharp peak in the first flush hydrograph and EPA's conservative guidelines described in Section 5. 6.2 MITIGATION RESULTS Based on findings by the Cooperative Research Center for Catchment Hydrology(Reference 2),CDS has the capacity to remove 99%of the trash and pollutants present in urban runoff.This report conservatively assumes that if CDS is installed at Parkside Estates 90%of the first flush pollutants will be removed.Based on that removal rate the mitigated first flush pollutant loads downstream of Node 250 and 609 are expected to be lower than existing loads discharged by the 60-inch storm drain along Graham Street to the Slater Channel.The results of the analysis are summarized in Tables 6.1 and 6.2 and graphically represented in Figures 6.3 through ■ ■ ■ ■ 0 0 ■ 0 ■ 5 ■ 6-1 Existing Developed Area =21.8 Acres Abandoned Existing 60" RCP 493 :.:}}?:vf},.}r}kk{k{}i. :rv,..}t}r fi`2}'•}}:•f.:{:;::}.......:{.;..Nv.::.:x:••,J,{. ,f,.-. ,;..v..+. K+:fr}:•:?•}}}v:.vS.n:Fv, : ,\�p.+q,•... :k !f.:.:..:f •k•.tv...'kn •• .:t•:•£'„S�1v,'$k:Y kv ..�. :,;.;ry;.....;{.•-.; :.:•}'•!•rd ••Lf::..n•:r:•}:.;•r .-'Yr'4 }..: yCY!K:f;S:�`if:�:#•' `,;:�`: :k {:.:+•: kkx$$: c: ty!. Fi:..f: }{ x;+... .:}:....+B.:Y!.:#. •.'':<'.; .*�, :•`: $'`.•.:..,:z: 486.1 .:{#�� •:} :.f.,�k:'2$:''•a � r`.:}:y;:$$ $:•}::.:£fit•':#•`S•:: •rr-f� .a :•':rt•: .� r<.•, •..Y�o- •C.S kk•}:rf•$ ..�:•6 rtr •:�.-�r+f•:::4. ., .::,k•.:•r: :.:.�...;J}.:r:..:.5.,;...5.. +.ral."1,.. ,#4: .•'r}�r.$Ct#?�? yJ +Lr• ..;2 . .,.:,` r`.r.. •}• .yxf}''•:::,•.$ •a .:}.;3.•` .R #:':<. hk:i1.•:::::k:•:$•kr22kk'tk>Y.�.�.{+...•.}:{• :£.y{}+,}�{ .t. .}.�*'.. .,f.f•:,J, }?7.,..+g.??La: ?{:':::�<:�• .,a. ..r:. •.:✓+. . 3+}?<.�i�•+• :}::t;:..z: '�}:•�Ctk r}t .x.. ..f•Y- y.?. •}F.?..•: :�•::.:�..:."iv?.�.,.srtr:+::.:{.x:.,:t:}••}:!•.�•: �?:t at,{!.y..r:.. ,na: .J{Y..: }:r:2r2:.. J.r..�. !.2•'.iL?•k:Sk•:':f�° ;;;�. �,�'c.,Y �.#•:.:,. ...�.�;:�:c:•ary�'• .{:•:,b.,;:.r,.>,•�s?Y $%.;•�{•.` :£$: 3;::�. :;c.,.cs• ,:•;�:..o�++, :{: f;:r:${{:'R:} J• >;k;::�.;;?5;�£a,•;k:;2`.{;?;:;:.}:::;•::.,.•r::. :?•::: {:�•.r+�#.'• ..'^�` �!ay�fr?'�f Y,.7.': r{. • '�,{#:2�;}?:�:�•r.`: r{..a..?R'�. •x�•.. •.;•}7:..{.�k.,•:?{rr .:. ::;,.h23.::: •:x a}:a}•'•:'.::yJ•`•:a•.,;.,.1,G+:{�?�r�•r•.,fi:;}.b.. .J a•;?, ,}„r•;£••Yqc •:vw,}•Y Y�,•a}•{a}X:{•:^•Ka+t•} .•`h,•;}•{+,:{a�:::$ ;f �.:.#}. {!#.$}••.'ks :{, :3{;::-a.. ..,{ra,.},}r..y,., •,�Sr•!.,.<}w+ } $yf}.. .Y ry )...{;.:•}•+Y£'•:h '2y8•!F:.•,>,.? a•::::,:;r,}:�+kS:xx•:t{ .+s •� r,� �{g i.i.%a:.;�2'.v „i}Ff:} 3� �4Y,.}}•$<i'Yid'{:?C•::.::+.2:k:"r'•k7z^yti+::+.}' �'k+'•+�$. :{? ^{y: :}. �r J.44}'fir k: � n•{.�} :$'a'�'�a ,r "'" �;:•: ;#ra. {;r.r::$: ;i ':3•• i,,!{y:+a:;:�..'•>�: y!a,Y*.+' $f �a�xy�{: ::''}J:$:?.J r,, '•x r yys� r vv;; X4?2.:f,�•:�•.y'}�•�;'-//'�;�' 3''••.'?.�}.a#'�;%,fvr•,:i?�ti�:;}::+,#:#>t:'7}fi. ` YY:$w��j, .� �,$ > 'tad,••� � J+.;; • :Gf•{:Y '•Y::::.$S.,•:;Y,n'•,.++.'!•:•, -:,+,£'•:,;',^.�".;.: .;}r•}!nr +-H•Y•;}:;r{ .,�.;,.},�r?•;%$::r+ ,y .''?•;::?}'f t~ +';t�f-a,�:�' .`'�+'^••,:+• k <:.'+r. ,;{ k:L:+•.;.`,"�';,y,t ?#:e{;{r fi. ;a.-;wJ::a:?.;•::+��{ •y:•!<:{:,;,'d..r.Sr a: r•d�r• :::�.,. •i�; t�a�,y�.r•. �:..r n{ .'f: {,f #�••�•,Sy'�.•'''. 504 ;J;J;, �.• �..' ,a0,.}Y•r.r :r,•.,:;.L{,f.,. F? ?f r ; !.. +r.9 :{. rl 'tr`.' Y+ � F'�.; { a •./:..: !� .:y.}+$.;N�:}.,+;•}:•?;?:;•'r:• .$i•+. r�}'}�' ` +�` G; ;•'„ff;�,a ! �' Y..;�r,;af�Y{ .���r� •�}• :S: a3:;}�$}'x;:..r:::f;+;$ ..[[6%yk ...{o<:{•: :�::•:L•.t,��,� S£:&'. L;„^�r;! ;E:'i� +:#, {r,.,:. :may,2;'3,A'�:.� 'J%',:/:^`::•S', ,; •:��r fir:`r• � .�\i r: 'i:�:'>}•+' +��'•+�,$•S' •:' J. �• a{ v$v:. $ :'•�`•' {{CC �?'i$'••t;v}`:,•>£{k,?2'•.•{x;$;w$.,y!:;u.�{C}cy$,:y, ..,}J,•':. i•'.,•• $� �y 4:•'%'L,:.;�:yti,�y�'j�'•,•;.: f:'::'�:y�tr$$" :`r,#��!': ,, ';;:{ra{.:;:;.}. }•{.y:{.L...•.Jvy}:. yr w ;�r$,.:• L;.p.;'tu{).x •:}k$;9,•vY;';::••'jiT:' h>,��•}�{{' '{:}fi':':'f,. $}?}}":}::4:;.`•:i2:r�.s�:'v+'':��'•:r.}•{:•• 2SO •� �;{' $$ ,y�ti':';:'..:.• ((.,,,,;Sx�^¢'n�:.+ .2}+:•'` `ti}•{,'?{.i {:Z+r':h: + ri '2?Ar'r? .Fi;+; .a.'R.!fi.•: •$:f: ::r:'••f},:'�.•25Jr.?;.: ,r.; '$L;• F t ,•}try;; :}.`:L'`}... +:# S •;:{:C .!?.r:•r ?: •a; :<�++:h}.,+}.}K,-:'::tG +?4 <�`'{fitok�l:•`•?:.` r •:iY{k}•:;.}.}.,{-.$}. t. ?}{.++` .•,2. , x�ki k:<`}'•4'2•t< # t•�,r.#uy iM1...••y�:-.••'t,•!'t .• ,•rJ}acaf. '�'�..� .G. •tr' •. •'y 'x�':y'�. : $y>.;:::.,•.,.'t; %'? ,;, d. t:J. a•..• ;i2.;;:;:.}a.}:r :.'yi.• .,> ?y `Jh;!•,•;2• ,{ :+4•. :.j;, .,G?x+;:;•:,G,:i,?:!` •b.. Si:•y, 7,;.. �}? t�i:• ::.<,••S;{' :}:<;•,!!, i xx Y .?$�},•r,{R.,. .,•{s,::•.��t!:;k%;.; } ;3'L}:$.':2.y:.'•;t..{•i. .;'�:'r.k, :Sk;':Xl;.;.:;.n v.;::!�:}3'J.t�,�t•?.v..Jv: •,�:,�,`•}?? .tr•:`••'<,::"ti i?.•:}:2.:F.k:3: a\{+•ri f;•�.�+r�.}�ys}^{�}w•'��. ;'••{S t,.:.."• .Ft':,•r ;,J+u..++ y�� k.{:{f: r.�:r. r•,r. # }..:+::$ 6, >#• }.n ••+:�r#.•:-• ;:+.• ,:.; .p•+.. y}43�-�}�;A;£ :$�i,;"f.•#::{.??}i'4:!f:.v }r}9ivy.+:2�:+?6N�a�':•�a;*c�'''i'.f..'Y{;x4:`a''v�tvv' .,,a;$. /...• + .{yrzh,: fhi:4�'•� — `"�5�•<••`•:icL• :;�:•,ty9,k$k :• •:'��.:{ -:\'k•. `':�W{,:... ••{. $ ,s'k A 1 — 69 Ac 'a>> 4:?:?:::::v:?•I$�yi:.: pr{}.�:J:'r�+y+:`+'`�'k'+:• ,•y;r.. ;..':2'i't.`•$r:<{{:t+$a{;•. 'y?K{i ;S{+ x•: '{:R•�.#}}'•':.:. .,{•:,, L}�} 4• .y}yfJ•+ •�tyy,}, ::: ::i}$:?a{.}:: xw}::2{ :r{'v,`. :$S ; :k7�''�•`: } $$ :a:^`Or•.\i'v:'kx ,•r.;?:+`+v:S.{:{i', }',• R. 4�• �{�<:d r. ..,l. ?{�'s, J•¢a �� •$ L:�:�::}:.`�#:�?+��'•:ay',x�>.�ux. Lv�. A2 3.5 Ac :^y'y�k::ri•`y;'.L T`•� tyr`.:i.• a• •:z `•}r!�., }K::•{;}. .::;5'•• ::+::i'>'+`+i'r.ra+i.�:• : 'a 'v:{ ft�:!+a;$rn(•�:n,;;{.f r .Yf ,t'}Fl��. 'S rn;• 2y» ::2;Q:::• n {.}i-.r{',C': +IJ?i,$'fvbykJ , �,e�a'•j' `. Ck� :w. ` r :C;'{:,E$�{•}�. ,' '3{.3q;+';2.+,:���. •+` r;�':v;;•�::• C::.{Yi}�:+`:.{• ...; if 6�g }�:0•�. :Y:3`,�t2:it.`$:'•,.:"�;•f{'�'•.:yf''r: ?,� :} � �.�7.6>+ya /.'?t+.'v.:•, :;•i.'$•:.�${:••• , ' }.i: ;{.{: `;:4C+vjn fiS}:�'• J'F`' `'�•'.t�•'i}Y:. :'vt'�?+v:�;p. 'a}`G���+y2":{' ': $;"f. $kiy#a, 3 3$: �`}'•.+vk'+.f<}l�r.�ti•'a'• i },�" .;•k•.�'�£;f,.',1,:;}{p•{.:. ::rn'•'•: Y;�- `y?,;`,::}: 3:• •'Y.}�+ca,L '�i:. :yL`•}e.' 211. •'''• •j:.yi+}•:t}•{ ;�,�y .� �. # a :; `iy#+:. :K::Y;:, .w{•:+'' }; ::::: � •,. � `. :?:. East Garden Grove :#'r,+:#]�'ti ?2i9L1..;:}[,'•.i•„``r},• a, ...Y3'}•; r: ...;r•:?:•<•a':,�''}' '';•:'ir::r.�:•..'r`yd.r4 :y.:...h,..:.v .S, �;! $ �� i J'o:.{"i};Y:v• isiL;�.�$C4�:4y�kY,•:G:.. ;� /� Wintersbur :>6:•:}',{+, k#•`:>{f: f: .s` A3=1.9•A. '';;z t.$';::::v .r.. $ Channel :$::;•.:{?;;kv:{.}:::f,'•y>>r$:{r>:0;.!?:2. y +;, ±::tiff' :: •r:'?k}}'#i{L}:$•...... n{;{,ry,',ixSY• !.}:.rr:. }�Y••y ti :�<:L:::c,•s:.#k.¢�:a:,;.::<:?y{.:r�<+ �' r:.�` '<•x`' Slater Channel :r•,k:;}};k::itf.'••>$$y'•'�:•yp.;;t•3f::.?;{i:.��Fy4� t rfi#:�•X {i Slater Pump Station a_ SMART .....a:}•' Box WATER QUALITY Elev 4.4' 250 CONTROL 211 APPURTENANCES First Flush CDS Diversion to CDS Pump 608 Elev 2.6' Flap Gate 609 RI VERTECH MODIFICATION OF STORM DRAIN PLAN AND FIGURE ! INN CC CONCEPT OF WATER QUALITY CONTROL PLAN 6.1 Storm Flow to Slater Channel Diversion Sill Diversion Pipe A A Urban Runoff to CDS PLAN Storm Flow from Development Flood Level Urban Runoff Level Storm Flow to Slater Channel Urban Runoff to CDS SECTION A-A RIVER TECH SMART BOX FIGURE 6.2 248 278 22.3 0.30 4.4 1.7 180 0.82 6.9 77 86 56 0.25 0.09 1.35 0.52 Tw z o � w Ch a Cy aaW, vHi a H Oa O H 4 p O H C C ~ O EE BOD COD TSS TDS Total P Diss P TKN NO2 + NO3 Pounds Pounds Pounds Pounds Pounds Pounds Pounds Pounds RI VERTECH MITIGATED FIRST FLUSH POLLUTANT LOADS AT FIGURE INCOUTLET OF VDS SHOWN IN FIGURE 6.1 .,:: 6.3 0.38 0.17 0.07 0.05 0.02 0.005 0.002 z p t.7 w W C7 a Ch a q q 0.0008 9 � z O Z O z � � � C7 a C7 a Fi a p0-4 0 Z A P Z O 0.008 0.118 0.017 0.002 0.021 0.052 A 0.0006 0.0002 Total Pb Dissol Pb Total Cu Diss Cu Total Zn Diss Zn Total Cd Diss CD Pounds Pounds Pounds Pounds Pounds Pounds Pounds pounds RIVERTECH MITIGATED FIRST FLUSH POLLUTANT LOADS TO FIGURE OUTLET OF CDS SHOWN IN FIGURE 6.1 ,: INC�n►c 6.4 248 278 22.3 0.30 4.4 1.7 180 0.82 137 153 12.3 2.45 0.16 0.92 99 0.45 ch w w w ch a z o w o z o BOD COD TSS TDS Total P Diss P TKN NO2 +NO3 Pounds Pounds Pounds Pounds Pounds Pounds Pounds Pounds R►VERTECH MITIGATED FIRST FLUSH POLLUTANT LOADS TO FIGURE `` '' INC SLATER CHANNEL 0.38 0.17 0.07 0.05 0.02 0.005 0.002 0.027 0.04 0.21 0.0008 0.003 0.01 0.1 z H w � A A A q A q O pW, z c c a c a w z W W —() 0 0.0 Total Pb Dissol Pb Total Cu Diss Cu Total Zn Diss Zn Total Cd Diss CD Pounds Pounds Pounds Pounds Pounds Pounds Pounds pounds R/VERTECH MITIGATED FIRST FLUSH POLLUTANT LOADS TO FIGURE INC SLATER CHANNEL 6.6 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ and 6.6.Figures 6.5 and 6.6 include the unmitigated pollutant loads from Drainage Areas A2 and A3 shown in Figure 4.1. TABLE 6.1 MITIGATED FIRST FLUSH POLLUTANT LOADS AT CDS OUTLET FOR DEVELOPED CONDMONS D COI2 TS5 TAS '�atalP IhssF �KN XTQ2 1-N�3 �..QOila9 6.9 56 77 86 025 0.09 1.35 0.52 iota[PL 33bs Ph. TataiL DL�e C1► ToistZ ........D Tat `[otni Cd 1!b#Cd :::•. 0.017 0.002 0.021 0.008 0.119 0.052 0.0 0.0 TABLE 6.2 MITIGATED FIRST FLUSH POLLUTANT LOADS TO SLATER CHANNEL FOR DEVELOPED CONDMON D CUIT _TSS;;;;: [6 ;;;;:::;;: tOZ+1YQ3 ::�:,otirids s::::::: -.ponds::..;: .oriiuts::>::: •:;:-;:;:...:s;»�....::.::.:.:.:��.:�::;: ;:-� :-;:;;;:...:.:: ;:..::::;>::>::::::�s��::<::>:««::::;;::>;;s:,<:•::>::>s?:: 123 99 137 153 OA5 0.16 2AS 0.92 otal k'b 1hia�6 mot G�ai iNwataE INEZ 0.027 0.003 0.04 0.01 0.21 0.10 0.0 0.0 Note: BOD,Total P,Diss P,and NO2+NO3 are based on NURP EMC values of 9 mg/l, 0.33 mg/l, 0.68 mg/l, and 0.12 mg/l,respectively. ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 6-2 �lAr 1. A Watershed Approach to Urban Runoff Handbook for Decisionmakers,Produced by Terrene Institute in Cooperation with Region 5,U.S.Environmental Protection Agency,March 1996. 2. A Decision-Support-System for Determining Effective Trapping Strategies for Gross Pollutants, Report 98/6,Cooperative Research Center for Catchment Hydrology,May 1998. ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 6-1 ? ND/X 7 CDS TECHNOLOGIES, INC. BROCHURE j R/VERTECH StormWater Pollution Control CM I q , a - a Aid _ F , w 1 a n s , 59 r 3 � t r' Y r:� aP ti x . e • Y TEEH4^DIES achnologies, Inc. provides products and services to municipalities, CDS Technology Key Featuresagencies and industry, based on the unique solids/liquids separation logy known as Continuous Deflective Separation (CDS). The parent Efficient • -iy, CDS Technologies Ltd. —which is headquartered in Australia — • Captures greater than 95 percent of water-borne /eloped and owns this non-blocking screening technology, which is litter and debris. ed by US, Australian and international patent applications. • Effective in removing particles as small as coarse sediments. IOUs deflective separation (CDS)technology is an innovative and highly • Retains all trapped pollutants when CDS processing•, capacity is exceeded during infrequent high flow events. e new solution to address wet weather stormwater pollution problems. Large Flow Range -hnology offers an effective method of preventing pollutants—such as 1 to 300 cubic feet per second(CFS). tter, trash and debris, vegetation and coarse sediments and the attached Non-Blocking and Non-Mechanical its-nutrients and heavy metals—from entering our waterways. Separation screen does not clog and requires no power or supporting infrastructure. most great technological breakthroughs, simplicity prevails: The stem controls the water to enable a natural separation of solids from Low-Cost, Safe and Easy Pollutant Removal :er carrying them. The first non-blocking and non-mechanical system, Low maintenance by mechanical rather than human es fine-screening to provide a much more efficient and cost-effective methods. :ive to previous generations of technology. The CDS technology is Cost-Effective ntial first component of a "treatment train" to protect and enhance Lowest overall cost per pound of gross pollutants formance of other filtration systems and biological systems. removed. Unobtrusive and Easy to Install ijor application for the technology is currently to clean gross pollution Compact and below ground. Limited space require- Drmwater before it enters natural waterways, but through continuing ment. Ideal for retrofit and redevelopment applications. -i, the company has extended its product range for use in removing grease from stormwater flows, industrial and food processing indus- Applications d to separate floatables and remove solids from combined sewer ° Stormwater ivs (CSO). e Free oil and grease controls with sorbers e CSO a Pretreatment Water • Jon-blocking and Non-Mechanical o Industrial Pretreatment for O/W Sep/Sand filters media Dffective separator of gross pollutants without e Biofiltration ponds and infiltration basins separation screen becoming blocked." conditions could be created which produced significant blocking of the screen." ummary of results of an independent study by Monash University, erne,Australia Dr. Tony H.F Wong,Department of Civil Engineering, ry 1995 &_ t•. ,r The CDS unit can be placed in line How the CDS System Works: � `xc with an existing stormwater system. Pollutants are captured inside the Its remarkably small footprint takes separation chamber, while the water little space and requires no support passes through the separation ;• r.,, infrastructure. screen. �JY Y�" a inolo uses indirect screening to capture even the small materials _ ' 9Y 9 P particles remain within the unit while the water passes through the n screen. w r Safe Pollutant Removal Removing debris caught by CDS units is , :ost, safe and easy. Captured materials can be removed simply and yN hanically by basket, base flow take off(pump), clam shell bucket, or —eliminating the need for human handling t f dariperous materials. l ` fiF a R ti xrvc. +.,.Au aF 4x -K Y �. � r n. .� x�.t.�t r�r i4��y �yrtlu,�� Ate.-......_ •�S�..rr :. f�ddS�•afia��,u' n�s��*3'M�ki'"�VZ', f i a v'a+fC.ti_si,...swtti"i. � k l . ♦ \ r GG ` v� SEPARATION e SCREEN ` OUTLET w - I' OPTIONAL SUMP BASKET x CDS technology uses fluid flows and a SUMP " - perforated screen in a balanced system to cause a natural separation of solids from fluids. The continuous circulating �. flow over the separation screen, with the very low velocity, keeps the screen from blocking. Standard Unit Capacities x ,,• c Physical Features Manufacture Model* Treatment Capacity Design Sump Depth Below Foot Print Material Designation Head Loss Capacity Pipe Invert Diameter g cfs MGD (ft) (yd') (ft) (ft) Fiberglass FSW20_20 1.1 0.7 0.31 0.7 4.5 4.5 FSW30_28 3.0 2.0 0.43 1.8 5.3 6.0 PSW30 28 3.0 2.0 0.43 1.8 7.0 6.5 Precast** PSW50_50 11 7.3 0.78 1.9 9.6 9.5 •Concrete PSW70_70 26 17,3 1.10 3.9 14.0 12.5 PSW100_100 62 41.3 1.55 8.6 16.0 17.5 CSW150_134 148 98.7 2.11 Varies Varies 25.5 Cast in Place CSW200_164 270 180.0 2.60 Varies Varies 34.5 Concrete CSW240_150 300 2000. 2.60 Varies Varies 41.0 *CDS Fiberglass(F), Precast(P), and Cast in Place (C),Stormwater(SW) **CDS Technologies can customize units to meet specific design flows and sump capacities. installation of prefabricated FSW3Q 28 fiberglass unit 3 CDS unit under construction. �Asa e; J. Y Operational CDS unit unobtrusivey situated. CDS Installations installation of precast unit. Australia and New Zealand More than 140 units installed and operating nationally, including several units for the.Homebush' Say 2000 Olympic site,which will include the Olympic Village, in Sydney_ mmoLoGieS United States Currently, there are 9 stormwater and 1 CS{)units CDS TECHNOLOGIES, INC. installed and operating. Additional units are under www.cdstech-us.com construction in the states of California, Florida, e-mail:cds®cdstech-us.com Georgia, Kentucky, and Washington. Corporate Headquarters CDS Technologies Services 70'`Mansell Court,' Suite 225 Roswell,GA 30076 •Turnkey Projects Phone 770 641 6650 •Project site plan and conceptual layout Fax 770,641 '6649 •Technical specifications for installation Regional Office •Consultation including pre-construction 16375 South Monterey Road, Unit C conference; advice during setting of CDS unit • Morgan Hill,CA 95037 and during construction; and a project review Phone 40$ 779 6363 before acceptance from contractor Fax 408 7$2 ,0721 •Three joint inspections during initial year of operation Offices also in Sydney, Mornington and Brisbane,.Australia •Quotes for precast units.Cost Estimates and Hamilton, New Zealand. for cast in-place units.' •Maintenance Services AES 2-YEAR HYDROLOGIC ANALYSIS i i R/VERTECH i RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 OCEMA HYDROLOGY CRITERION) (c) Copyright 1983-96 Advanced Engineering Software (aes) Ver. 6.1 Release Date: 01/01/96 License ID 1239 Analysis prepared by: HUNSAKER & ASSOCIATES Irvine,Inc. Planning * Engineering * Surveying Three Hughes * Irvine, California 92718 * (714)583-1010 ++++*+++++++++++++*+++++++ DESCRIPTION OF STUDY ****+******+*************+ * 2-YEAR HYDROLOGY STUDY * FOR THE OFF-SITE AREA * TO TRACTS 15377 & 15419 FILE NAME: H:\AES96\HYDROSFT\RATSC6\D\61\15377\15377OFF.TT1 TIME/DATE OF STUDY: 16:47 10/ 1/1998 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC I) ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 52.0 _ 20.0 017/ 017/ 020 67 2.00 .03125 1670 01500 2 32.0 20.0 .017/ .017/ .020 . 67 2.00 .03125 .1670 .01500 3 20.0 10.0 .017/ .017/ .020 . 67 2.00 .03125 .1670 .01500 4 20.0 10.0 .017/ .017/ .020 .50 1.50 .03125 . 1250 .01500 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = .00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 460.00 TO NODE 461.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 780.00 ELEVATICN DATA: UPSTREAM(FEET) = 55.50 DOWNSTREAM(FEET) = 52.20 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA 'P;NALYSIS USED MINIMUM Tc(MIN. ) = 13.015 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.307 SUBAREA T: AND LOSS RATE DATA(AMC T_ ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) COMMERCIAL D 4.80 .20 .10 57 13.01 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = 5.56 TOTAL AREA(ACRES) = 4.80 PEAK FLOW RATE(CFS) = 5.56 FLOW PROCESS FROM NODE 461.00 TO NODE 462.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 52.20 DOWNSTREAM ELEVATION(FEET) = 43.90 STREET LENGTH(FEET) = 630.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH (FEET) = 52.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) _ .017 OUTSIDE STREET CROSSFALL(DECIMAL) _ .017 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11. 60 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) _ .49 HALFSTREET FLOOD WIDTH(FEET) = 19.29 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 3.46 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.70 STREET FLOW TRAVEL TIME(MIN. ) = 3.04 Tc(MIN. ) = 16.05 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.159 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN CONDOMINIUMS D 12.30 .20 .35 57 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .35 SUBAREA AREA(ACRES) = 12.30 SUBAREA RUNOFF(CFS) = 12.05 EFFECTIVE AREA(ACRES) = 17.10 AREA-AVERAGED _m(INCH/HR) _ .06 ARIA-AVERAGED Fp(INCH/HR) _ .20 AREA-AVERAGED Ap = .28 TOTAL AREA(ACRES) = 17.10 PEAK FLOW RATE(CFS) = 16.97 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .54 HALFSTREET FLOOD WIDTH(F£ET) = 22.33 FLOW VELOCITY(FEET/SEC. ) = 3.83 DEPTH*VELOCITY(FT*FT/SEC. ) = 2.06 FLOW PROCESS FROM NODE 462.00 TO NODE 462.50 IS CODE = 6.2 --------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 43.90 DOWNSTREAM ELEVATION(FEET) = 26. 90 STREET LENGTH (FEET) = 680.00 CURB HEIGHT(INCHES) = 8.0 STREET HA FWIDTH(FEET) = 52.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) _ .017 OUTSIDE STREET r = OiJ_�_DE ., R 17 _ EET CROSSFALL(DECIMAL) 0 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 3 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.05 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .52 HALFSTREET FLOOD WIDTH(FEET) = 21.04 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 5.06 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) = 2. 64 STREET FLOW TRAVEL TIME(MIN. ) = 2.24 Tc(MIN. ) = 18.29 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.075 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN CONDOMINIUMS D 6.80 .20 .35 57 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .35 SUBAREA AREA(ACRES) = 6.80 SUBAREA RUNOFF(CFS) = 6.15 EFFECTIVE AREA(ACRES) = 23.90 AREA-AVERAGED Fm(INCH/HR) _ .06 AREA-AVERAGED Fp(INCH/HR) = .20 AREA-AVERAGED Ap = .30 TOTAL AREA(ACRES) = 23. 90 PEAK FLOW RATE(CFS) = 21.34 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .53 HALFSTREET FLOOD WIDTH(FEET) = 21.75 FLOW VELOCITY(FEET/SEC. ) = 5.18 DEPTH*VELOCITY(FT*FT/SEC. ) = 2.77 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ FLOW PROCESS FROM NODE 462.50 TO NODE 463.00 IS CODE = 4.1 ---------------------------------------------------------------------------- »»>QOMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ELEVATION DATA: UPSTREAM(FEET) = 17.56 DOWNSTREAM(FEET) = 15.77 FLOW LENGTH(FEET) = 204.68 MANNING'S N = .015 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC. ) = 6.95 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 21.84 PIPE TRAVEL TIME(MIN. ) _ .49 Tc(MIN. ) = 18.78 FLOW PROCESS FROM NODE 463.00 TO NODE 463.00 IS CODE = 8. 1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 18.78 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.059 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "8-10 DWELLINGS/ACRE" D 5.20 .20 .40 57 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .40 SUBAREA AREA(ACRES) = 5.20 SUBAREA RUNOFF(CFS) = 4.58 EFFECTIVE P.REA(ACRES) = 29.10 AREA-AVERAGED Fm(INCH/HR) _ .06 AREA-AVERAGED Fp(INCH/HR) _ .20 AREA-AVERAGED Ap = .32 TOTAL AREA(ACRES) = 29. 10 PEAK FLOW RATE(CFS) = 26.07 FLOW PROCESS FROM NODE 463.00 TO NODE 464.00 IS CODE = 4 .1 »>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 14 . 97 DOWNSTREAM(FEET) _ 10.84 FLOW LENGTH (FEET) = 479.51 MANNING'S N = . 015 4 DEPTH OF FLOW IN 33.0 INCH PIPE IS 19.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 7.22 GIVEN PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 26.07 PIPE TRAVEL TIME(MIN. ) = 1.11 TW MIN. ) = 19.89 FLOW PROCESS FROM NODE 464.00 TO NODE 464.00 IS CODE = 8.1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN) = 19.89 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.025 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN CONDOMINIUMS D 4.40 .20 .35 57 RESIDENTIAL "8-10 DWELLINGS/ACRE" D 5.30 .20 .40 57 RESIDENTIAL "5-7 DWELLINGS/ACRE" D 6.00 .20 .50 57 RESIDENTIAL "8-10 DWELLINGS/ACRE" C 1.20 .25 .40 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .42 SUBAREA AREA(ACRES) = 16.90 SUBAREA RUNOFF(CFS) = 14 .28 EFFECTIVE AREA(ACRES) = 46.00 AREA-AVERAGED F&INCH/HR) _ .07 AREA-AVERAGED Fp(INCH/HR) = .20 AREA-AVERAGED Ap = .36 TOTAL AREA(ACRES) = 46.00 PEAK FLOW RATE(CFS) = 39.46 FLOW PROCESS FROM NODE 464.00 TO NODE 465.00 IS CODE = 8.1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 19.89 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.025 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/H R) (DECIMAL) CN PUBLIC PARK D 51.00 .20 .85 57 PUBLIC PARK C 14.70 .25 .85 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .21 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .85 SU3AREA AREA(ACRES) = 65.70 SUBAREA RUNOFF(CFS) = 49.98 EFFECTIVE AREA(ACRES) = 111.70 AREA-AVERAGED Fm(INCH/HR) _ .14 AREA-AVERAGED Fp(INCH/HR) = .21 AREA-AVERAGED Ap = .65 TOTAL AREA(ACRES) = 111.70 PEAK FLOW RATE(CFS) = 89.44 FLOW PROCESS FROM NODE 465.00 TO NODE 473.00 IS CODE = 4.1 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<< ELEVATION DATA: UPSTREAM(FEET) = 10. 92 DOWNSTREAM(FEET) = 10.56 FLOW LENGTH(FEET) = 183.56 MANNING'S N = .015 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC. ) = 10.78 GIVEN PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIP_-FLOW(CFS) = 89.44 PIPE TRAVEL TIME(MIN. ) _ .28 Tc(MINA = 20.17 5 FLOW PROCESS FROM NODE 473.00 TO NODE 473.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 20.17 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.017 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL D 4.80 .20 .10 57 CONDOMINIUMS D 3.90 .20 .35 57 COMMERCIAL C 2.80 .25 . 10 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .21 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .18 SUBAREA AREA(ACRES) = 11.50 SUBAREA RUNOFF(CFS) = 10.13 EFFECTIVE AREA(ACRES) = 123.20 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) = .21 AREA-AVERAGED Ap = .60 TOTAL AREA(ACRES) = 123.20 PEAK FLOW RATE(CFS) = 98.73 FLOW PROCESS FROM NODE 473.00 TO NODE 486.00 IS CODE = 4.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ELEVATION DATA: UPSTREAM(FEET) = 10.46 DOWNSTREAM(FEET) = 9.05 FLOW LENGTH(FEET) = 1081.00 MANNING'S N = .015 ASSUME FULL-FLOWING PIPELINE PIP£-FLOW VELOCITY(FEET/SEC. ) = 10.26 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 98.73 PIPE TRAVEL TIME(MIN. ) = 1.76 Tc(MIN. ) = 21.93 FLOW PROCESS FROM NODE 486.00 TO NODE 486.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ------------------ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 21. 93 RAINFALL INTENSITY(INCH/HR) = .97 AREA-AVERAGED Fm(INCH/HR) = .13 AREA-AVERAGED Fp(INCH/HR) = .21 AREA-AVERAGED Ap = . 60 EFFECTIVE STREAM AREA(ACRES) = 123.20 TOTAL STREAM AREA(ACRES) = 123.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 98.73 FLOW PROCESS FROM NODE 480.00 TO NODE 481.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ---------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 970.00 ELEVATION DATA: UPSTREAM(FEET) = 40.80 DOWNSTREAM(FEET) = 18.70 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 12. 976 w 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.309 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN fMIN. ) 6 RESIDENTIAL "5-7 DWELLINGS/ACRE" D 3.80 .20 .50 57 12. 98 RESIDENTIAL "5-7 DWELLINGS/ACRE" C 1.00 .25 .50 50 12. 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .21 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) = 5.20 TOTAL AREA(ACRES) = 4.80 PEAK FLOW RATE(CFS) = 5.20 FLOW PROCESS FROM NODE 481.00 TO NODE 483.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 3 USED)««< ------------ UPSTREAM ELEVATION(FEET) = 18.70 DOWNSTREAM ELEVATION(FEET) = 17.00 STREET LENGTH(FEET) = 1000.00 CURB HEIGHT(INCHES) . = 8.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .017 OUTSIDE STREET CROSSFALL(DECIMAL) _ .017 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.74 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .52 HALFSTREET FLOOD WIDTH(FEET) = 12.76 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.36 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .71 STREET FLOW TRAVEL TIME(MIN. ) = 12.26 TQ MIN. ) = 25.23 * 2 YEAR RAINFALL INTENSITY(INCH/HR) _ .894 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SAS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C 14.10 .25 .50 50 RESIDENTIAL "5-7 DWELLINGS/ACRE" D 1.40 .20 .50 57 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 15.50 SUBAREA RUNOFF(CFS) = 10.76 EFFECTIVE AREA(ACRES) = 20.30 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .24 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 20.30 PEAK FLOW RATE(CFS) = 14.16 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) _ .56 HALFSTREET FLOOD WIDTH(FEET) = 14.53 FLOW VELOCITY(FEET/SEC. ) = 1.52 DEPTH*VELOCITY(FT*FT/SEC. ) _ .85 FLOW PROCESS FROM NODE 483.00 TO NODE 484 .00 IS CODE = 4.1 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREP.««< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ------- ------- ELEVATION DATA: UPSTREAM(FEET) = 12.82 DOWNSTREAM(FEET) = 10.74 FLOW LENGTH (FEET) = 296.61 MANNING'S N = .015 DEPTH OF FLOW IN 30. 0 INCH PIPE IS 15.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 5.76 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = , 7 PIPE-FLOW(CFS) = 14 .16 PIPE TRAVEL TIME(MIN. ) _ .86 TO MIN. ) = 26.09 --FLOW PROCESS FROM NODE 484.00 TO NODE 484 .00 IS CODE = 8.1 ---------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 26.09 * 2 YEAR RAINFALL INTENSITY(INCH/HR) _ .877 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" D 2.90 .20 .50 57 RESIDENTIAL "5-7 DWELLINGS/ACRE" C 17.50 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .24 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 20.40 SUBAREA RUNOFF(CFS) = 13.87 EFFECTIVE AREA(ACRES) = 40.70 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .24 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 40.70 PEAK FLOW RATE TFS) = 27.72 FLOW PROCESS FROM NODE 484.00 TO NODE 486.00 IS CODE = 4.1 -------=-------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ELEVATION DATA: UPSTREAM(FEET) = 9.99 DOWNSTREAM(FEET) = 9.46 FLOW LENGTH(FEET) = 201.83 MANNING'S N = .015 DEPTH OF FLOW IN 39.0 INCH PIPE IS 26.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 4.66 GIVEN PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 27.72 PIPE TRAVEL TIME(MIN. ) _ .72 TQ MIN. ) = 26.81 FLOW PROCESS FROM NODE 486.00 TO NODE 486.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 26.81 RAINFALL INTENSITY(INCH/HR) _ .86 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .24 AREA-AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 40.70 TOTAL STREAM AREA(ACRES) = 40.70 PEAK F:OW RATE(CFS) AT CONFLUENCE = 27.72 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 98.73 21.93 .969 .21 ( . 13) . 60 123.2 460.00 2 27.72 26.81 .863 .24 ( . 12) .50 40.7 480.00 RAINFAL! INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. 8 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 124. 63 21.93 .969 .21 ( . 12) .58 156.5 460.00 2 114.07 26.81 .863 .22 ( .12) .58 163.9 480.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 124 . 63 TW MIN. ) = 21. 93 EFFECTIVE AREA(ACRES) = 156.48 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) = .21 AREA-AVERAGED Ap = .58 TOTAL AREA(ACRES) = 163.90 FLOW PROCESS FROM NODE 486.00 TO NODE 486.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 21.93 * 2 YEAR RAINFALL INTENSITY(INCH/HR) _ . 969 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fly Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL C .90 .25 .10 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = . 90 SUBAREA RUNOFF(CFS) _ .76 EFFECTIVE AREA(ACRES) = 157.38 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) = .21 AREA-AVERAGED Ap = .58 TOTAL AREA(ACRES) = 164 .80 PEAK FLOW RATE(CFS) = 124. 63 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE FLOW PROCESS FROM NODE 486.00 TO NODE 486.10 IS CODE = 4.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 8. 92 DOWNSTREAM(FEET) = 8.70 FLOW LENGTH(FEET) = 190.00 MANNING'S N = .015 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC. ) = 6.35 GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 124 .63 PIPE TRAVEL TIME(MIN. ) _ .50 Tc(MIN. ) = 22.43 FLOW PROCESS FROM NODE 486.10 TO NODE 486.10 IS CODE = 8.1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 22.43 2 YEAR RAINFALL INTENSITY(INCH/HR) _ . 957 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL C .30 .25 . 10 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .30 SUBAREA RUNOFF(CFS) _ .25 EFFECTIVE AREA(ACRES) = 157. 68 AREA-AVERAGED Fm(INCH/HR) _ . 12 AREA-AVERAGED Fp(INCH/HR) = .21 AREA-AVERAGED Ap = .58 TOTAL AREA(ACRES) = 165. 10 PEAK FLOW RATE(CFS) = 124 . 63 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE 9 FLOW PROCESS FROM NODE 486.10 TO NODE 504 .00 IS CODE = 4.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ELEVATION DATA: UPSTREAM(FEET) = 8.70 DOWNSTREAM(FEET) = 8.40 FLOW LENGTH(FEET) = 254.00 MANNING'S N = .015 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC. ) = 6.35 GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 124 .63 PIPE TRAVEL TIME(MIN. ) _ .67 Tc(MIN. ) = 23.09 FLOW PROCESS FROM NODE 490.00 TO NODE 491.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 760.00 ELEVATION DATA: UPSTREAM(FEET) = 78. 60 DOWNSTREAM(FEET) = 40.90 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) ]** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 8.390 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.682 SUBAREA. Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) APARTMENTS D 6.10 .20 .20 57 8.39 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .20 SUBAREA RUNOFF(CFS) = 9.01 TOTAL AREA(AGRES) = 6.10 PEAK FLOW RATE(CFS) = 9.01 FLOW PROCESS FROM NODE 491.00 TO NODE 492.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 4 USED)<<<<< UPSTREAM ELEVATION(FEET) = 40.90 DOWNSTREAM ELEVATION(FEET) = 36.00 STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .017 OUTSIDE STREET CROSSFALL(DECIMAL) _ .017 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.06 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = . 47 ?ALFSTREET FLOOD WIDTH(FEET) = 19.88 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 3.18 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) = 1. 49 STREET FLOW TRAVEL TIME(MIN. ) = 2.36 Tc(MIN. ) = 10.75 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.459 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp An SCS LAND USE GROUP (ACRES) (INCH/:liR) (DECIMAL) CN APARTMENTS D 3.20 .20 .20 57 10 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .20 SUBAREA AREA(ACRES) = 3.20 SUBAREA RUNOFF(CFS) 4.09 EFFECTIVE AREA(ACRES) 9.30 AREA-AVERAGED Fm(INCH/HR) _ .04 AREA-AVERAGED Fp(INCH/HR) = .20 AREA-AVERAGED Ap = .20 is TOTAL AREA(ACRES) = 9.30 PEAK FLOW RATE(CFS) 11.87 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .47 HALFSTREET FLOOD WIDTH(FEET) = 20.00 FLOW VELOCITY(FEET/SEC. ) = 3.19 DEPTH*VELOCITY(FT*FT/SEC. ) 1.50 FLOW PROCESS FROM NODE 492.00 TO NODE 493.00 IS CODE = 4.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ELEVATION DATA: UPSTREAM(FEET) 29.58 DOWNSTREAM(FEET) 13.80 FLOW LENGTH(FEET) 318.00 MANNING'S N = .015 DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 11.39 GIVEN PIPE DIAMETER(INCH) = 24 .00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 11.87 PIPE TRAVEL TIME(MIN. ) _ .47 Tc(MIN. ) = 11.22 FLOW PROCESS FROM NODE 493.00 TO NODE 493.00 IS CODE 8.1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 11.22 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.424 SUBAREA LOSS RATE DATA(AMC I ) : . DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN CONDOMINIUMS D 12.50 .20 .35 57 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .35 SUBAREA AREA(ACRES) = 12.50 SUBAREA RUNOFF(CFS) 15.23 EFFECTIVE AREA(ACRES) 21.80 AREA-AVERAGED Fm(INCH/HR) _ .06 AR=A-AVERAGED Fp(INCH/HR) = .20 AREA-AVERAGED Ap = .29 TOTAL AREA(ACRES) 21.80 PEAK FLOW RATE(CFS) 26.81 END OF STUDY SUMMARY: TOTAL AREA(ACRES) 21.80 TC(MIN. ) 11.22 EFFECTIVE AREA(ACRES) 21.80 AREA-AVERAGED Fm(INCH/HR)= .06 AREA-AVERAGED Fp(INCH/HR) _ .20 AREA-AVERAGED Ap .29 PEAK FLOW RATE(CFS) 26.81 END OF RATIONAL METHOD ANALYSIS ) RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 OCEMA HYDROLOGY CRITERION) (c) Copyright 1983-96 Advanced Engineering Software (aes) Ver. 6.1 Release Date: 01/01/96 License ID 1239 Analysis prepared by: HUNSAKER & ASSOCIATES Irvine, Inc. Planning * Engineering * Surveying Three Hughes * Irvine, California 92718 * (714)583-1010 ++++*+++++++++++++++++++++ DESCRIPTION OF STUDY ++++++++++++++++++++++++++ * 2-YEAR HYDROLOGY STUDY + * FOR THE ON-SITE AREA + * TO TRACTS 15377 & 15419 + FILE NAME: H:\AES96\HYDROSFT\RATSC6\D\61\15377\15377.TT1 TIME/DATE OF STUDY: 16:58 10/ 1/1998 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL*-- USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC I) ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 20.0 10.0 .020/ .020/ .020 .50 1.50 .03125 .1250 .01500 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = .00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 504.00 TO NODE 504.00 IS CODE = 7 ---------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN. ) = 23.09 RAINFALL INTENSITY(INCH/HR) _ . 94 EFFECTIVE AREA(ACRES) = 157. 68 TOTAL AREA(ACRES) = 165.10 PEAK FLOW RATE(CFS) = 124.63 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .21 AREA-AVERAGED Ap = .58 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. FLOW PROCESS FROM NODE 504 .00 TO NODE 101.00 IS CODE = 3. 1 ----------------------------------------------=----------------------------- 2 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<< ELEVATION DATA: UPSTREAM(FEET) = 9.20 DOWNSTREAM(FEET) = 8.10 FLOW LENGTH(FEET) = 220.00 MANNING'S N = .013 DEPTH OF FLOW IN 54 .0 INCH PIPE IS 41.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = - 9.43 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 124.63 PIPE TRAVEL TIME(MIN. ) _ .39 Tc(MIN. ) = 23.48 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 10 ---------------------------------------------------------------------------- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 2.1 --------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 324.00 ELEVATION DATA: UPSTREAM(FEET) = 35.50 DOWNSTREAM(FEET) = 24.30 Tc = K*[ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 6.017 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.036 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) COMMERCIAL C .30 .25 .10 50 6.02 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .54 TOTAL AREA(ACRES) _ .30 PEAK FLOW RATE(CFS) = 54 FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 6.02 RAINFALL INTENSITY(INCH/HR) = 2.04 AREA-AVERAGED Fm(INCH/HR) = .03 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) _ .30 TOTAL STREAM AREA(ACRES) = .30 PEAK FLOW RATE(CFS) AT CONFLUENCE _ .54 FLOW PROCESS FROM NODE 102.00 TO NODE 101. 00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 228 .00 ELEVATION DATA: UPSTREAM(FEET) = 27 . 60 DOWNSTREAM(FEET) = 24.30 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) ] '- .20 3 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 8.432 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1. 677 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL "3-4 DWELLINGS/ACRE" C .40 .25 .60 50 8.43 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA RUNOFF(CFS) _ .55 TOTAL AREA(ACRES) _ .40 PEAK FLOW RATE(CFS) _ .55 FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 8.43 RAINFALL INTENSITY(INCH/HR) = 1.68 AREA-AVERAGED Fm(INCH/HR) = .15 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .60 EFFECTIVE STREAM AREA(ACRES) _ .40 TOTAL-STREAM AREA(ACRES) = .40 PEAK FLOW RATE(CFS) AT CONFLUENCE _ .55 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) .NODE 1 .54 6.02 2.036 .25( .03) .10 .3 100.00 2 .55 8.43 1.677 .25( .15) .60 .4 102.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 1.03 6.02 2.036 .25 ( .09) .34 . 6 100.00 2 1.00 8.43 1. 677 .25 ( .10) .39 .7 102.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1.03 Tc(MIN. ) = 6.02 EFFECTIVE AREA(ACRES) _ .59 AREA-AVERAGED Fm(INCH/HR) _ .09 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED An = .34 TOTAL AREA(ACRES) _ .70 FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 11 ---------------------------------------------------------------------------- »»>CONFLUENCE MEMORY BANK T 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 1.03 6.02 2.036 .25 ( .09) .34 . 6 100.00 2 1.00 8.43 1. 677 .25 ( . 10) .39 .7 102.00 MEMORY BANK n 1 CONFLUENCE DATA *- STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER 4 NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 124 .63 23.48 .932 .21 ( .12) .58 157.7 504.00 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 76.50 6.02 2.036 .21 ( .12) .58 41.0 100.00 2 86.95 8.43 1.677 .21 ( .12) .58 57.3 102.00 3 125.16 23.48 .932 .21 ( . 12) .58 158.4 504.00 TOTAL AREA(ACRES) = 165.80 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 125.16 TQ MIN. ) = 23.479 EFFECTIVE AREA(ACRES) 158.38 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .21 AREA-AVERAGED Ap = .58 TOTAL AREA(ACRES) = 165.80 FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 12 ---------------------------------------------------------------------------- »»>CLEAR MEMORY BANK # 1 ««< FLOW PROCESS FROM NODE 101.00 TO NODE 108.00 IS CODE = 3.1 ---------7------------------------------------------------------------------ »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 8.10 DOWNSTREAM(FEET) = 5.50 FLOW LENGTH(FEET) = 522.00 MANNING'S N = .013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 42.0 INCHES PIP£-FLOW VELOCITY(FEET/SEC. ) = 9.42 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPS-FLOW(CFS) = 125.16 PIPE TRAVEL TIME(MIN. ) _ . 92 TQ MIN. ) = 24.40 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 24.40 RAINFALL INTENSITY(INCH/HR) = .91 AREA-AVERAGED Fm(INCH/HR) = .12 AREA-AVERAGED Fp(INCH/HR) = .21 AREA-AVERAGED Ap = .58 EFFECTIVE STREAM AREA(ACRES) = 158.38 TOTAL STREAM AREA(ACRES) = 165.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 125.16 FLOW PROCESS FROM NODE 103. 00 TO NODE 104 .00 IS CODE = 2. 1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< -->>USE-TIME-OF-CONCENTRATION-NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 155.00 ELEVATION DATA: UPSTREAM(FEET) = 27. 90 DOWNSTREAM(FEET) = 26. 90 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 8.020 5 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.726 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL 40 "5-7 DWELLINGS/ACRE" C .20 .25 .50 50 8.02 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) _ .29 TOTAL AREA(ACRES) _ .20 PEAK FLOW RATE(CFS) _ .29 FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 6.2 ----------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 26.90 DOWNSTREAM ELEVATION(FEET) 26.00 STREET LENGTH(FEET) = 230.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET'.PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .70 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .26 HALFSTREET FLOOD WIDTH(FEET) = 6.91 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.17 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .31 STREET FLOW TRAVEL TIME(MIN. ) = 3.27 Tc(MIN. ) = 11.29 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.418 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .70 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) _ .81 EFFECTIVE AREA(ACRES) _ .90 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) = 25 AREA-AVERAGED Ap = 50 TOTAL AREA(ACRES) _ . 90 PEAK FLOW RATE(CFS) = 1.05 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .29 HALFSTREET FLOOD WIDTH(FEET) = 8.37 FLOW VELOCITY(FEET/SEC. ) = 1.28 DEPTH*VELOCITY(FT*FT/SEC. ) _ .38 FLOW PROCESS FROM NODE 105.00 TO NODE 108.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) 26`00 DOWNSTREAM ELEVATION(FEET) = 25.20 STREET 1ENGTH(FEET) = 180.00 CURB HEIGHT(INCHES) = 6.0 STREET ALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFP.LL(DECIMAL) _ . 020 6 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.31 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 8.97 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.42 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .43 STREET FLOW TRAVEL TIME(MIN. ) = 2.12 TO MIN. ) = 13.41 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.285 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .50 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) _ .52 EFFECTIVE AREA(ACRES) = 1.40 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 1.46 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.44 FLOW VELOCITY(FEET/SEC. ) = 1.45 DEPTH*VELOCITY(FT*FT/SEC. ) _ .46 --FLOW-PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 8.1 -------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 13.41 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.285 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .70 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) _ .73 EFFECTIVE AREA(ACRES) = 2.10 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 2.19 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 13.41 RAINFALL INTENSITY(INCH/HR) = 1.29 AREA-AVERAGED Fm(INCH/HR) = . 13 AREA-AVERAGED Fo(INCH/HR) = .25 AREA-AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 2. 10 TOTAL STREAM AREA(ACRES) = 2. 10 PEA H FLOW RATE(CFS) AT CONFLUENCE = 2.19 7 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 76.50 7.06 1.857 .21( .12) .58 41.0 100.00 1 86. 95 9.44 1.572 .21 ( .12) .58 57.3 102.00 1 125.16 24.40 .911 .21 ( .12) .58 158.4 504.00 2 2.19 13.41 1.285 .25( .13) .50 2.1 103.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 78.22 7.06 1.857 .21( .12) .57 42.1 100.00 2 98.88 9.44 1.572 .21( .12) .58 58.8 102.00 3 126. 64 24.40 .911 .21( .12) .58 160.5 504.00 4 99.28 13.41 1.285 .21 ( . 12) .58 86.2 103.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 126.64 TWIN. ) = 24.40 EFFECTIVE AREA(ACRES) = 160.48 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) = .21 AREA-AVERAGED Ap = .58 TOTAL AREA(ACRES) = 167.90 FLOW PROCESS FROM NODE 108.00 TO NODE 111.00 IS CODE = 3.1 ---------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< --- -- -------------------- -------- ELEVATION DATA: UPSTREAM(FEET) = 5.50 DOWNSTREAM(FEET) 1 3.20 FLOW LENGTH(FEET) = 470.00 MANNING'S N = .013 DEPTH OF FLOW IN 54 .0 INCH PIPE IS 42. 9 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 9.35 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 126.64 PIPE TRAVEL TIME(MIN. ) _ .84 TO MIN. ) = 25.24 FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 1 ---------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 25.24 RAINFALL INTENSITY(INCH/HR) = .89 AREA-AVERAGED Fm(INCH/HR) = .12 AREA-AVERAGED Fp(INCH/HR) = .21 AREA-AVERAGED Ap = .58 EFFECTIVE STREAM AREA(ACRES) = 160.48 TOTAL STREAM AREA(ACRES) = 167. 90 PEAK :LOW RATE(CFS) AT CONFLUENCE = 126. 64 FLOW PROCESSFROM- --NODE 109.00 TO NODE I10.00 IS CODE = 2.1 - ------------------ »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< T_NITIAL SUBAREA FLOW-LENGTH (FEET) = 120.00 ELEVATION DATA: UPSTREAM(FEET) = 28.00 DOWNSTREAM(FEET) 25.90 8 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 5. 929 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.053 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : 0 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL "5-7 DWELLINGS/ACRE" C .20 .25 .50 50 5. 93 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) _ .35 TOTAL AREA(ACRES) _ .20 PEAK FLOW RATE(CFS) _ .35 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION n 1 USED)««< ------------------ UPSTREAM ELEVATION(FEET) = 25.90 DOWNSTREAM ELEVATION(FEET) = 25.10 STREET LENGTH(FEET) = 175.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .70 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .26 HALFSTREET FLOOD WIDTH(FEET) = 6.65 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.25 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .32 STREET FLOW TRAVEL TIME(MIN. ) = 2.33 Tc(MIN. ) = 8.26 * 2 YE_3R RAINFALL INTENSITY(INCH/HR) = 1.697 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .50 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SU3YR?3 AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA A_REA(ACRES) _ .50 SUBAREA RUNOFF(CFS) _ .71 EFFECTIVE AREA(ACRES) _ .70 AREA-AVERAGED Fm(INCH/HR) _ .13 ARIA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) _ .70 PEAK FLOW RAT£(CFS) _ . 99 END 0- SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .28 HALFSTREET FLOOD WIDTH(F£ET) = 7.84 FLOW VELOCITY(FEET/SEC. ) = 1.35 DEPTH*VELOCITY(FT*FT/SEC. ) _ .38 FLOW PROCESS FROM NODE 111.00 TO NODE I11.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAK! VALUES««< - --------- TOTAL NUMBER OF STREAMS = 2 CONF.JEN= VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME 0- CONCENTRATION(MIN. ) = 8.26 9 RAINFALL INTENSITY(INCH/HR) = 1.70 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) _ .70 TOTAL STREAM AREA(ACRES) _ .70 PEAK FLOW RATE(CFS) AT CONFLUENCE _ .99 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 78.22 8.01 1.728 .21( .12) .57 42.1 100.00 1 88.88 10.35 1.491 .21( .12) .58 58.8 102.00 1 126. 64 25.24 .894 .21 ( .12) .58 160.5 504.00 1 99.28 14.29 1.239 .21 ( .12) .58 86.2 103.00 2 . 99 8.26 1.697 .25( .13) .50 .7 109.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap An HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 79.20 8.01 1.728 .21( .12) .57 42.8 100.00 2 89.74 10.35 1.491 .21 ( .12) .57 59.5 102.00 3 99.98 14.29 1.239 .21 ( .12) .58 86. 9 103.00 4 -. 127.13 25.24 .894 .21 ( .12) .58 161.2 504.00 5 80.35 8.26 1.697 .21( .12) .57 44. 6 109.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: _ PEAK FLOW RATE(CFS) = 127.13 Tc(MIN. ) = 25.24 EFFECTIVE AREA(ACRES) = 161.18 AREA-AVERAGED F&INCH AR) _ .12 AREA-AVERAGED Fp(INCH/HR) = .21 AREA-AVERAGED Ap .58 TOTAL AREA(ACRES) = 168.60 FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 10 ---------------------------------------------------------------------------- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK u 1 ««< FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE T=ME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 230.00 r ELEVATION DATA: UPSTREAM(FEET) = 29.40 DOWNSTREAM(FEET) = 21.20 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 5.214 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.210 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) CONMERCIAL C .20 .25 . 10 50 5.21 RESIDENTIAL "5-7 DWELLINGS/ACRE" C .20 .25 .50 50 6. 67 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .30 SUBAREA RUNOFF(CFS) _ .77 TOTAL AREA(ACRES) _ .40 PEAK FLOW RATE(CFS) _ .77 10 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED) <<< UPSTREAM ELEVATION(FEET) = 21.20 DOWNSTREAM ELEVATION(FEET) = 19.70 STREET LENGTH(FEET) = 258.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.86 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .32 HALFSTREET FLOOD WIDTH(FEET) = 9.90 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.70 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .55 STREET FLOW TRAVEL TIME(MIN. ) = 2.53 Tc(MIN. ) = 7.75 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.761 SUBAREA .LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA F P AP SCS LAND USE GROUP ACRES (INCH AR) (ACRES) {IN / ) (DECIMAL) CN RESIDENTIAL "3-4 DWELLINGS/ACRE" C 1.50 .25 .60 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .60 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 2.17 EFFECTIVE AREA(ACRES) = 1.90 AREA-AVERAGED F&INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .54 TOTAL AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) = 2.76 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .36 HALFSTREET FLOOD WIDTH(FEET) = 11.68 FLOW VELOCITY(FEET/SEC. = 1.8 E F*V-' CITY *F =) 8 D PT . ..LO _ (r T _T/SEC. ) . 68 FLOW PROCESS FROM NODE 202.00 TO NODE 210.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED) <<< UPSTREAM ELEVATION(FEET) = 19.70 DOWNSTREAM ELEVATION(FEET) = 18.50 STREET LENGTH(FEET) = 220.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.29 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) = .38 HALFSTREET FLOOD WIDTH (FEET) = 12.70 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1. 90 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) - .72 it STREET FLOW TRAVEL TIME(MIN. ) = 1.93 Tc(MIN. ) 9. 67 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.550 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .80 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .80 SUBAREA RUNOFF(CFS) = 1.03 EFFECTIVE AREA(ACRES) = 2.70 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .53 TOTAL AREA(ACRES) = 2.70 PEAK FLOW RATE(CFS) = 3.45 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .38 HALFSTREET FLOOD WIDTH(FEET) = 12.93 FLOW VELOCITY(FEET/SEC. ) = 1.93 DEPTH*VELOCITY(FT*FT/SEC. ) _ .74 FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 9. 67 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.550 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .40 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .40 SUBAREA RUNOFF(CFS) _ .51 EFFECTIVE AREA(ACRES) = 3.10 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .52 TOTAL AREA(ACRES) = 3.10 PEAK FLOW RATE(CFS) = 3.96 FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 10 ---------------------------------------------------------------------------- »»>MAIN-STREAM! MEMORY COPIED ONTO MEMORY BANK 7 2 <<<<< FLOW PROCESS FROM NODE 203.00 TO NODE 204 .00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 130.00 ELEVATION DATA: UPSTREAM(FEET) = 25.40 DOWNSTREAM(FEET) = 23.00 Tc = K*[ (LENGTH** 3.00) / (ELEVA.TION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 6.057 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.028 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc _AND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL "5-7 DWELLINGS/ACRE" C .20 .25 .50 50 6.06 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 50 SUBAREA RUNOFF(CFS) _ .34 TOTAL AREA(ACRES) _ .20 PEAK FLOW RATE(CFS) _ .34 12 FLOW PROCESS FROM NODE 204.00 TO NODE 207.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>>WSTREET TABLE SECTION # 1 USED)««< ------------------------------------- UPSTREAM ELEVATION(FEET) = 23.00 DOWNSTREAM ELEVATION(FEET) = 19.20 STREET LENGTH(FEET) = 187.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .80 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .22 HALFSTREET FLOOD WIDTH(FEET) = 4 .72 AVERAGE FLOW VELOCITY(FEET./SEC. ) = 2.34 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .52 STREET FLOW TRAVEL TIME(MIN. ) = 1.33 TWIN. ) = 7.39 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.809 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RES_TDENTIRL "5-7 DWELLINGS/ACRE" C . 60 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .60 SUBAREA RUNOFF(CFS) _ .91 EFFECTIVE AREA(ACRES) _ .80 AREA-AVERAGED FNINCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = .80 PEAK FLOW RATE(CFS) = 1.21 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .25 HALFSTREET FLOOD WIDTH(FEET) = 5.98 FLOW VELOCITY(FEET/SEC. ) = 2.55 DEPTH*VELOCITY(FT*FT/SEC. ) _ . 63 FLOW PROCESS FROM NODE 207.00 TO NODE 207.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ------------------------ TOT_L NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 7.39 RAINFALL INTENSITY(INCH/HR) = 1.81 ARIA-AVERAGED Fm(INCH/HR) = . 13 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) _ .80 TOTAL STREAM AREA(ACRES) = .80 PEAK FLOW RATE CFS AT CONFLUENCE = 1( ) NCB 1.2_ FLOW PROCESS FROM NODE 205.00 TO NODE 206. 00 IS CODE = 2. 1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA« 13 INITIAL SUBAREA FLOW-LENGTH(FEET) = 234.00 ELEVATION DATA: UPSTREAM(FEET) = 26.10 DOWNSTREAM(FEET) = 22.50 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) ) ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 7. 947 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.735 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL "5-7 DWELLINGS/ACRE" C .40 .25 .50 50 7.95 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) _ .58 TOTAL AREA(ACRES) _ .40 PEAK FLOW RATE(CFS) _ .58 FLOW PROCESS FROM NODE 206.00 TO NODE 207.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 22.50 DOWNSTREAM ELEVATION(FEET) = 19.20 STREET LENGTH(FEET) = 150.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .85 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .22 HALFSTREET FLOOD WIDTH(FEET) = 4.79 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 2.44 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .54 STREET FLOW TRAVEL TIME(MIN. ) = 1.02 Tc(MIN. ) = 8.97 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.618 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .40 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .40 SUBAREA RUNOFF(CFS) _ .54 EFFECTIVE AREA(ACRES) _ .80 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) _ .80 PEAK FLOW RATE(CFS) = 1.08 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .24 HALFSTREET FLOOD WIDTH(FEET) = 5.52 FLOW VELOCITY(FE£T/SEC. ) = 2.54 DEPTH*VELOCITY(FT*FT/SEC. ) _ .60 FLOW PROCESS FROM NODE 207.00 TO NODE 207.00 IS CODE = 8. 1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<<< ---------------------- --------- -------------- MAINLINE Tc(MIN) = 8. 97 ' 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1. 618 14 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP . (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .50 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) _ . 67 EFFECTIVE AREA(ACRES) = 1.30 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 1.75 FLOW PROCESS FROM NODE 207.00 TO NODE 207.00 IS CODE = 1 --------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 8. 97 RAINFALL INTENSITY(INCH/HR) = 1.62 AREA-AVERAGED Fm(INCH/HR) = .13 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 1.30 TOTAL STREAM AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.75 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 1.21 7.39 1.809 .25 ( .13) .50 .8 203.00 2 1.75 8.97 1. 618 .25( .13) .50 1.3 205.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ' *� PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 2.84 7.39 1.809 .25 ( .13) .50 1.9 203.00 2 2.82 8. 97 1.618 .25 ( .13) .50 2.1 205.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2.84 Tc(MIN. ) = 7.39 EF:ECT_IVE AREA(ACRES) = 1.87 AREA-AVERAGED Fm(INCH/HR) _ .13 _ _ _ _ AREA-AVERAGED Fp(INCH/HR) - .25 AREA AVERAGED Ap - .50 TOTAL AREA(ACRES) = 2.10 FLOW PROCESS FROM NODE 207.00 TO NODE 210.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>WSTREET TABLE SECTION n 1 USED)««< --------------------- UPSTREAM ELEVATION(FEET) = 19.20 DOWNSTREAM ELEVATION(FEET) = 18.50 STREET LENGTH(FEET) = 150.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 15 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.91 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .38 HALFSTREET FLOOD WIDTH(FEET) = 12.46 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.74 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .65 STREET FLOW TRAVEL TIME(MIN. ) = 1.44 TW MIN. ) = 8.83 * 2 YEAR RAINFALL. INTENSITY(INCH/HR) = 1.634 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL C .10 .25 .10 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) _ .14 EFFECTIVE AREA(ACRES) = 1.97 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .48 TOTAL AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) = 2.84 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .37 HALFSTREET FLOOD WIDTH(FEET) = 12.38 FLOW VELOCITY(FEET/SEC. ) = 1.72 DEPTH*VELOCITY(FT*FT/SEC.) _ .64 FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 8.83 RAINFALL INTENSITY(INCH/HR) = 1.63 AREA-AVERAGED Fm(INCH/HR) = .12 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .48 EFFECTIVE STREAM AREA(ACRES) = 1.97 TOTAL STREAM AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.84 FLOW PROCESS FROM NODE 208.00 TO NODE 209.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 282.00 ELEVATION DATA: UPSTREAM(FEET) = 26.30 DOWNSTREAM(FEET) = 23.50 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 7.305 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.821 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (T_NCH/HR) (DECIMAL) CN (MIN. ) COMMERCIAL C .20 .25 . 10 50 7.30 RESIDENTIAL "5-7 DWELLINGS/ACRE" C .20 .25 .50 50 9.35 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .30 SUBAREA RUNOFF(CFS) _ .63 16 TOTAL AREA(ACRES) _ .40 PEAK FLOW RATE(CFS) _ .63 FLOW-PROCESS FROM NODE 209.00 TO NODE 210.00 IS CODE = 6.2 -- --------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>>MSTREET TABLE SECTION # 1 USED) <<< UPSTREAM ELEVATION(FEET) = 23.50 DOWNSTREAM ELEVATION(FEET) = 18.50 STREET LENGTH(FEET) = 372.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.13 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) = .26 HALFSTREET FLOOD WIDTH(FEET) = 6.45 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 2.11 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .54 STREET FLOW TRAVEL TIME(MIN. ) = 2.94 T Q MIN. ) = 10.24 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.500 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .80 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) _ .99 EFFECTIVE AREA(ACRES) = 1.20 AREA-AVERAGED Fm(INCH/HR) = 11 AREA-AVERAGED Fp(INCHIHR) = .25 AREA-AVERAGED Ap = .43 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 1.50 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .28 HALFSTREET FLOOD WIDTH(FE£T) = 7.44 FLOW VELOCITY(FEET/SEC. ) = 2.24 DEPTH*VELOCITY(FT*FT/SEC. ) _ .62 FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 10.24 RAINFALL INTENSITY(INCH/HR) = 1.50 AREA-AVERAGED FO INCH/HR) = . 11 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .43 EFFECTIVE STREAM AREA(ACRES) = 1.20 TOTAL STREAM AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.50 '- CONFLUENCE DATA ** STREAK' Q Tc intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 2.84 6.83 1.634 .25 ( . 10 . 48 2.0 203.00 1 2.82 10.42 1.485 .25 ( . 12) .48 2.2 205.00 17 2 1.50 10.24 1.500 .25 ( . 11) .43 1.2 208.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Alp Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 4.25 8.83 1.634 .25( .12) .46 3.0 203.00 2 4.31 10.42 1.485 .25 ( . 12) .46 3.4 205.00 3 4 .33 10.24 1.500 .25 ( . 12) .46 3.4 208.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.33 TQ MIN. ) = 10.24 EFFECTIVE AREA(ACRES) = 3.38 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Alp = .46 TOTAL AREA(ACRES) = 3.40 FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 11 ------------------------------------------------- »»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY««< --------------- ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Alp Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 4.25 8.83 1.634 .25 12 ( . ) .46 3.0 203.00 2 4.33 10.24 1.500 .25 ( .12) .46 3.4 20 8.00 3 4.31 10.42 1.485 .25( .12) .46 3.4 205.00 ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Alp Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 3. 96 9.67 1.550 .25 ( .13) .52 3.1 200.00 *' PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Alp Ae HEADWATER NUMBER (CFS) (MIN. ) (INCHAR) (INCHAR) (ACRES) NODE 1 8.08 8.83 1.634 .25( . 12) .49 5.8 203.00 2 8.15 10.24 1.500 .25 ( .12) .49 6.5 208.00 3 8.09 10.42 1.485 .25 ( . 12) .49 6.5 205.00 4 8.2 6 9.67 1.550 .25 ( . 12) . 49 6.3 200.00 TOTAL AREA(ACRES) = 6.50 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.26 TW MIN. ) = 9.673 EFFECTIVE AREA(ACRES) = 6.33 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Alp = .49 TOTAL AREA(ACRES) = 6.50 FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 12 ------------------------------------------------------------------- »»>CLEAR MEMORY BANK # 2 ««< FLOW PROCESS FROM NODE 210.00 10 NODE 218.00 IS CODE 3.1 -------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< 18 ELEVATION DATA: UPSTREAM(FEET) = 9.50 DOWNSTREAM(FEET) = 8.80 FLOW LENGTH (FEET) = 145.00 MANNING'S N = .013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 4.81 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.26 PIPE TRAVEL TIME(MIN. ) _ .50 Tc(MIN. ) = 10.18 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 10 ---------------------------------------------------------------------------- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00 ELEVATION DATA: UPSTREAM(FEET) = 26.20 DOWNSTREAM(FEET) = 25.20 Tc = K*[ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM TW MIN. ) = 8.147 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.710 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) COMMERCIAL C .10 .25 .10 50 8.15 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) _ .15 TOTAL AREA(ACRES) _ .10 PEAK FLOW RATE(CFS) _ .15 FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>>WSTREET TABLE SECTION # 1 USED) <<< UPSTREAM ELEVATION(FEET) = 25.20 DOWNSTREAM ELEVATION(FEET) = 20.10 STREET LENGTH(FEET) = 249.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .66 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .21 HALFSTREET FLOOD WIDTH(FEET) = 4.06 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 2.32 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) = .48 STREET FLOW TRAVEL TIME(MIN. ) = 1.79 T O MIN. ) = 9. 93 - 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.527 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fo Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .80 .25 .50 50 19 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) = 1.01 EFFECTIVE AREA(ACRES) _ .90 AREA-AVERAGED FN INCH/HR) = lI AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .46 TOTAL AREA(ACRES) = .90 PEAK FLOW RATE(CFS) = 1.14 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .24 HALFSTREET FLOOD WIDTH(FEET) = 5.78 FLOW VELOCITY(FEET/SEC. ) = 2.53 DEPTH*VELOCITY(FT*FT/SEC. ) _ .61 FLOW PROCESS FROM NODE 213.00 TO NODE 218.00 IS CODE = 6.2 -------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 20.10 DOWNSTREAM ELEVATION(FEET) = 19.10 STREET LENGTH(FEET) = 160.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFEED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.37 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 8.51 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.63 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .48 STREET FLOW TRAVEL TIME(MIN. ) = 1.63 TO MIN. ) = 11.57 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.399 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .40 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .40 SUBAREA RUNOFF(CFS) _ .46 EFFECTIVE AREA(ACRES) = 1.30 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .47 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 1.50 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 8.84 FLOW VELOCITY(FEET/SEC. ) = 1.67 DEPTH*VELOCITY(FT*FT/SEC. ) _ .31 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 1 --------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 11.57 RAINFALL INTENSITY(INCH/HR) = 1.40 AREA-AVERAGED Fm(INCH/HR) = .12 AREA-AVERAGED Fp(INCH/HR) = .25 20 AREA-AVERAGED Ap = .47 EFFECTIVE STREAM AREA(ACRES) = 1.30 TOTAL STREAM AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.50 FLOW PROCESS FROM NODE 214 .00 TO NODE 215.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 125.00 ELEVATION DATA: UPSTREAM(FEET) = 27.00 DOWNSTREAM(FEET) = 25.20 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) )** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 6.267 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.988 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL "5-7 DWELLINGS/ACRE" C .20 .25 .50 50 6.27 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) _ .34 TOTAL AREA(ACRES) _ .20 PEAK FLOW RATE(CFS) _ .34 FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>>WSTREET TABLE SECTION # 1 USED) <<< ------ -- -------- UPSTREAM ELEVATION(FEET) = 25.20 DOWNSTREAM ELEVATION(FEET) = 21.20 STREET LENGTH(FEET) = 270.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .83 STREET_LOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .23 HALFSTREET FLOOD WIDTH(FEET) = 5.25 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 2.10 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .48 STREET FLOW TRAVEL TIME(MIN. ) = 2.15 TQMIN. ) = 8.41 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1. 679 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .70 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp (INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap _ .50 SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) _ . 98 EFFECTIVE AREA(ACRES) _ . 90 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) _ . 90 PEAK FLOW RATE(CFS) _ 1.26 21 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .26 HALFSTREET FLOOD WIDTH(FEET) = 6.65 FLOW VELOCITY(FEET/SEC. ) = 2.25 DEPTH*VELOCITY(FT*FT/SEC. ) _ .58 0 FLOW PROCESS FROM NODE 216.00 TO NODE 217.00 IS CODE = 6.2 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 21.20 DOWNSTREAM ELEVATION(FEET) = 20.00 STREET LENGTH(FEET) = 136.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.52 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .29 HALFSTREET FLOOD WIDTH(FEET) = 8.24 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.90 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .55 STREET FLOW TRAVEL TIME(MIN. ) = 1.19 Tc(MIN. ) = 9.61 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.556 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .40 .25 .50 50' SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .40 SUBAREA RUNOFF(CFS) _ .52 EFFECTIVE, AREA(ACRES) = 1.30 AREA-AVERAGED Fm(INCH/HR) _ . 13 ARE_.-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED An = .50 TOTL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 1. 67 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .30 HALFSTREET FLOOD WIDTH(FEET) = 8.57 FLOW VELOCITY(FEET/SEC. ) = 1.96 DEPTH*VELOCITY(FT*FT/SEC. ) _ .58 FLOW PROCESS FROM NODE 217.00 TO NODE 218.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 20.00 DOWNSTREAM ELEVATION(FEET) = 19.10 STREET LENGTH(FEET) = 180.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.74 S-_REETFLOW MODEL RESULTS USING ESTIMATED FLOW: 22 STREET FLOW DEPTH(FEET) _ .32 HALFSTREET FLOOD WIDTH(FEET) = 9.90 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.58 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .51 STREET FLOW TRAVEL TIME(MIN. ) = 1.90 TQ MIN. ) = 11.50 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.403 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL C .10 .25 .10 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) _ .12 EFFECTIVE AREA(ACRES) = 1.40 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .47 TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 1.67 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .32 HALFSTREET FLOOD WIDTH (FEET) 9.77 FLOW VELOCITY(FEET/SEC. ) = 1.56 DEPTH*VELOCITY(FT*FT/SEC. ) _ .50 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 1 ---------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 11.50 RAINFALL INTENSITY(INCH/HR) = 1.40 AREA-AVERAGED Fm(INCH/HR) = .12 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .47 EFFECTIVE STREAM AREA(ACRES) = 1.40 TOTAL STREAM AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1. 67 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1.50 11.57 1.399 .25( .12) .47 1.3 21E 00 2 1. 67 11.50 1.403 .25 ( .12) .47 1.4 214.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ++ PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 3. 17 11.57 1.399 .25 ( .12) .47 2.7 211.00 2 3. 17 11.50 1.403 .25 ( .12) .47 2.7 214.00 COMPU_ED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 3.17 TW MIN. ) = 11.50 EFFECTIVE AREA(ACRES) = 2. 69 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) = .25 -AREA-AVERAGED Ap = .47 TOTAL AREA(ACRES) = 2.70 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 1 -------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< 23 ----------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 11.50 RAINFALL INTENSITY(INCH/HR) = 1.40 AREA-AVERAGED Fm(INCH/HR) = .12 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .47 EFFECTIVE STREAM AREA(ACRES) = 2.69 TOTAL STREAM AREA(ACRES) = 2.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.17 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ FLOW PROCESS FROM NODE 219.00 TO NODE 220.00 IS CODE = 2.1 ---------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ------------------------------------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 140.00 ELEVATION DATA: UPSTREAM(FEET) = 21.30 DOWNSTREAM(FEET) = 20.30 Tc = K*[ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM TW MIN. ) = 7.544 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.788 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL "5-7 DWELLINGS/ACRE" C .20 .25 .50 50 7.54 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 • SUBAREA RUNOFF(CFS) _ .30 TOTAL AREA(ACRES) _ .20 PEAK FLOW RATE(CFS) _ .30 FLOW PROCESS FROM NODE 220.00 TO NODE 218.00 IS CODE = 6.2 -------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 20.30 DOWNSTREAM ELEVATION(FEET) = 19.10 STREET LENGTH(FEET) = 180.00 CURB H£IGHT(INCHES) = 6.0 STREET ALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ . 69 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .25 HALFSTREET FLOOD WIDTH(FEET) = 5. 98 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1. 44 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .35 STREET FLOW TRAVEL TIME(MIN. ) = 2.08 Tc(MIN- ) = 9. 63 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.554 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH AR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C . 60 .25 .50 50 24 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .60 SUBAREA RUNOFF(CFS) _ .77 EFFECTIVE AREA(ACRES) _ .80 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) _ .80 PEAK FLOW RATE(CFS) = 1.03 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .27 HALFSTREET FLOOD WIDTH(FEET) = 7.31 FLOW VELOCITY(FEET/SEC. ) = 1.58 DEPTH*VELOCITY(FT*FT/SEC. ) _ .43 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 9.63 RAINFALL INTENSITY(INCH/HR) = 1.55 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) .25 AREA-AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) _ .80 TOTAL STREAM AREA(ACRES) = .80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.03 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 3.17 11.57 1.399 .25( .12) .47 2.7 211.00 1 3.17 11.50 1.403 .25 ( .12) .47 2.7 214.00 2 1.03 9.63 1.554 .25( .13) .50 .8 219.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION Ra.TIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM. Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 4 .09 11.50 1.403 .25 ( .12) .48 3.5 214.00 2 4.09 11.57 1.399 .25( .12) .48 3.5 211.00 3 3.99 9.63 1.554 .25( .12) .48 3.1 219.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.09 Tc(MIN. ) = 11.50 EFFECTIVE AREA(ACRES) = 3.49 AREA-AVERAGED Fm(INCH/HR) _ . 12 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .48 TOTAL AREA(ACRES) = 3.50 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 11 ---------------------------------------------------------------------------- »»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN.-STREAM MEMORY<<<<< ** !..AIN STREAM CONFLUENCE DATA ** STREAM Q Inc Intensity Fp(Fm) Ap Ae HEADWATER NUV,�BER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 3. 99 9. 63 1.554 .25 ( . 12) -48 3.1 219.00 2 4 .09 11.50 1.403 .25 ( . 12) .48 3.5 214.00 3 4 .09 !1.57 1.399 .25 ( . 12) _48 3.5 211.00 25 ** MEMORY BANK # 2 CONFLUENC£ DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 8.08 9.33 1.582 .25 ( .12) .49 5.8 203.00 2 8.26 10.18 1.506 .25 ( .12) .49 6.3 200.00 3 8.15 10.75 1.459 .25 ( .12) .49 6.5 208.00 4 8.09 10.92 1.446 .25 ( .12) .49 6.5 205.00 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 12.14 9.63 1.554 .25 ( .12) .49 9.1 219.00 2 11.92 11.50 1.403 .25 ( .12) .49 10.0 214.00 3 11.89 11.57 1.399 .25 ( .12) .49 10.0 211.00 4 12.03 9.33 1.582 .25( .12) .49 8.8 203.00 5 12.28 10.18 1.506 .25( .12) .49 9.5 200.00 6 12.20 10.75 1.459 .25 ( .12) .49 9.8 208.00 7 12.15 10.92 1.446 .25 ( .12) .49 9.9 205.00 TOTAL AREA(ACRES) = 10.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.28 TQ MIN. ) = 10.175 EFFECTIVE AREA(ACRES) = 9.51 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .49 TOTAL AREA(ACRES) = 10.00 FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 12 ------------------------------------------------------------------------ »»>CLEAR MEMORY BANK # 2 ««< FLOW PROCESS FROM NODE 218.00 TO NODE 227.00 IS CODE = 3.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 8.80 DOWNSTREAM(FEET) = 6.60 FLOW LENGTH(FEET) = 440.00 MANNING'S N = .013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16. 4 INCHES PIPE-_LOW VELOCITY(FEET/SEC. ) = 5.38 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.28 PIPE TRAVEL TIME(MIN. ) = 1.36 Tc(MIN. ) = 11.54 FLOW PROCESS FROM NODE 227.00 TO NODE 227.00 IS CODE = 10 ---------------------------------------------------------------------------- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< FLOW PROCESS FROM NODE 221.00 TO NODE 222.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00 ELEVATION DATA: UPSTREAM(FEET) = 27. 10 DOWNSTREAM(FEET) = 25.30 .c = K* ( (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM TQ MIN. ) = 6.115 " 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.017 26 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL "5-7 DWELLINGS/ACRE" C .20 .25 .50 50 6.12 SUBAREA AVERAGE PERVIOUS LOSS RATE FP( )INCH/HR = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) .34 TOTAL AREA(ACRES) _ .20 PEAK FLOW RATE(CFS) _ .34 FLOW PROCESS FROM NODE 222.00 TO NODE 223.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED) <<< UPSTREAM ELEVATION(FEET) = 25.30 DOWNSTREAM ELEVATION(FEET) = 22.10 STREET LENGTH(FEET) = 240.00 CURB HEIGHT(INCHES) = 6.0 STREET RALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .84 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .24 HALFSTREET FLOOD WIDTH(FEET) = 5.52 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.99 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .47 STREET FLOW TRAVEL TIME(MIN. ) = 2.01 TQ MIN. ) = 8.12 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.714 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .70 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 1.00 EFFECTIVE AREA(ACRES) _ . 90 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = . 90 PEAK FLOW RATE(CFS) = 1.29 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .26 HALFSTREET FLOOD WIDTH(FEET) = 6. 91 FLOW VELOCITY(FEET/SEC. ) = 2.16 DEPTH*VELOCITY(FT*FT/SEC. ) _ .57 FLOW PROCESS FROM NODE 223.00 TO NODE 227.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>>WSTREET TABLE SECTION # 1 USED) <<< UPSTREAM ELEVATION(FEET) = 22. 10 DOWNSTREAM ELEVATION(FEET) = 19.10 STREET LENGTH (FEET) = 372.00 CURB HEIGH^_ (INCHES) = 6.0 STREET H_LFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFAi_: GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 27 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.69 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .30 HALFSTREET FLOOD WIDTH(FEET) = 8.84 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.88 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .57 STREET FLOW TRAVEL TIME(MIN. ) = 3.29 TO MIN. ) = 11.42 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.409 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .70 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) _ .81 EFFECTIVE AREA(ACRES) = 1. 60 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) = 1.85 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .31 HALFSTREET FLOOD WIDTH(FEET) = 9.17 FLOW VSLOCITY(FEET/SEC. ) = 1.93 DEPTH*VELOCITY(FT*FT/SEC. ) _ .60 FLOW PROCESS FROM NODE 227.00 TO NODE 227.00 IS CODE = 1 -------------- ----------------------- ----- ---------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 11.42 RAINFALL INTENSITY(INCH/HR) = 1.41 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 1.60 TOTAL STREAM AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.85 FLOW PROCESS FROM NODE 247.00 TO NODE 248.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 210.00 ELEVATION DATA: UPSTREAM(FEET) = 26.20 DOWNSTREAM(FEET) = 24.40 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA =.NALYSIS USED MINIMUM TO MIN. ) = 6.686 ' 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.916 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAUD USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) COMMERCIAL C .10 .25 .10 50 6.69 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA RUNOFF(CFS) = i7 TOTAL AREA(ACRES) = 10 PEAK FLOW RATE(CFS) _ .17 28 FLOW PROCESS FROM NODE 248.00 TO NODE 249.00 IS CODE = 6.2 ------------------------------------------------ ---------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED) <<< UPSTREAM ELEVATION(FEET) = 24 .40 DOWNSTREAM ELEVATION(FEET) 22 40 STREET LENGTH (FEET) = 141.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .46 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .20 HA_LFSTREET FLOOD WIDTH(FEET) = 3.53 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.90 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .37 STREET FLOW TRAVEL TIME(MIN. ) = 1.24 TWIN. ) = 7.92 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.738 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .40 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) _ .40 SUBAREA RUNOFF(CFS) _ .58 EFFECTIVE AREA(ACRES) _ .50 AREA-AVERAGED Fm(INCH/HR) = 11 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .42 TOTAL_0:._� :.REP_(ACRES) _ .50 PEAK FLOW RATE(C FS) _ .73 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .23 HALFSTREET FLOOD WIDTH(FEET) = 4 . 99 FLOW VELOCITY(FEET/SEC. ) = 2.00 DEPTH*VELOCITY(FT*FT/SEC. ) _ .45 FLOW PROCESS FROM NODE 249.00 TO NODE 227.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COM?UTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) <<< ------------- UPSTREAM ELEVATION(FEET) = 22.40 DOWNSTREAM ELEVATION(FEET) = 19.10 STREET LENGTH(FEET) = 492.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFA.LL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 'TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1. 44 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) _ .30 RAW FSRREET FLOOD WIDTH (FEET) = 8.57 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1. 69 29 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .50 STREET FLOW TRAVEL TIME(MIN. ) = 4.85 Tc(MIN. ) = 12.77 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.321 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C 1.30 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 1.40 EFFECTIVE AREA(ACRES) = 1.80 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .48 TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) = 1.95 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .32 HALFSTREET FLOOD WIDTH(FEET) = 9.77 FLOW VELOCITY(FEET/SEC. ) = 1.82 DEPTH*VELOCITY(FT*FT/SEC. ) _ .58 FLOW PROCESS FROM NODE 227.00 TO NODE 227.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ---------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 12.77 RAINFALL INTENSITY(INCH/HR) = 1.32 AREA-AVERAGED Fm(INCH/HR) = .12 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .48 EFFECTIVE STREAM AREA(ACRES) = 1.80 TOTAL STREAM AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.95 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 1. 85 11.42 1.409 .25 ( .13) .50 1. 6 221.00 2 1. 95 12.77 1.321 .25 ( . _2) .48 1.8 247.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 3.72 11.42 1.409 .25( . 12) .49 3.2 221.00 2 3. 67 12.77 1.321 .25 ( . 12) .49 3.4 247.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEA{ FLOW RATE(CFS) = 3.72 Tc(MIN. ) = 11. 42 EFFECTIVE AREA(ACRES) = 3.21 AREA-AVERAGED Fm(INCH/HR) _ . 12 AR v-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .49 TOTF? P_REA(ACRES) = 3.40 FLOW PROCESS FROM NODE 227.00 TO NODE 227.00 IS CODE = 11 ---- ------------------------------------------- >>>>>CONFLUENCE MEMORY BANK n 2 WITH THE M_nIN-STREAM MEMORY««< '* 'FAIN STREAM CONFLUENCE DATA ** 30 STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 3.72 11.42 1.409 .25 ( .12) .49 3.2 221.00 2 3.67 12.77 1.321 .25 ( .12) .49 3.4 247.00 ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 12.03 10.70 1.463 .25 ( .12) .49 8.8 203.00 2 12.14 10.99 1.440 .25 ( .12) .49 9.1 219.00 3 12.28 11.54 1.401 .25 ( .12) .49 9.5 200.00 4 12.20 12.11 1.362 .25 ( .12) .49 9.8 208.00 5 12.15 12.29 1.351 .25 ( .12) .49 9.9 205.00 6 11.92 12.87 1.315 .25 ( .12) .49 10.0 214.00 7 11.89 12. 94 1.312 .25 ( .12) .49 10.0 211.00 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 15.96 11.42 1.409 .25 ( .12) .49 12.6 221.00 2 15.63 12.77 1.321 .25 ( .12) .49 13.4 247.00 3 15.66 10.70 1.463 .25( .12) .49 11.8 203.00 4 15.80 10. 99 1.440 .25 ( .12) .49 12.1 219.00 5 15.99 11.54 1.401 .25 ( .12) .49 12.7 200.00 6 15.89 12.11 1.362 .25 ( .12) .49 13.1 208.00 7 _ 15.84 12.29 1.351 .25 ( .12) .49 13.2 205.00 8 15.57 12.87 1.315 .25 ( .12) .49 13.4 214.00 9 15.53 12.94 1.312 .25 ( .12) .49 13.4 211.00 TOTAL AREA(ACRES) = 13.40 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 15.99 Tc(MIN. ) = 11.539 EFFECTIVE AREA(ACRES) = 12.73 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .49 TOTAL AREA(ACRES) = 13.40 FLOW PROCESS FROM NODE 227.00 TO NODE 227.00 IS CODE = 12 ---------------------------------------------------------------------------- »»>CL E_.R MEMORY BANK # 2 ««< FLOW PROCESS FROM NODE 227.00 TO NODE 246.00 IS CODE = 3.1 ---------------------------------------------------------------------------- >>>>>COM=UTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 6.60 DOWNSTREAM(FEET) = 6.40 FLOW LENGTH(FEET) = 45.00 MANNING'S N = .013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.5 INCHES PIPE-F-LOW VELOCITY(F£ET/SEC. ) = 5.49 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 15. 99 PIPE 'RAVEL TIME(MIN. ) _ . 14 Tc(MIN. ) = 11. 68 FLOW PROCESS FROM NODE 246. 00 TO NODE 246.00 IS CODE = 10 ---------------------------------------------------------------------------- »»>UnIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< FLOW PROCESS FROM NODE 225.00 TO NODE 226.00 IS CODE = 2. 1 31 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 ELEVATION DATA: UPSTREAM(FEET) = 70.00 DOWNSTREAM(FEET) = 26.30 Tc = K*[ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 7.361 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.813 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) PUBLIC PARK D 1.10 .20 .85 57 7.36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .85 SUBAREA RUNOFF(CFS) = 1.63 TOTAL AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) = 1.63 FLOW PROCESS FROM NODE 226.00 TO NODE 227.00 IS CODE = 5.1 ---------------------------------------------------------------------------- »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< -------------- ELEVATION DATA: UPSTREAM(FEET) = 26.30 DOWNSTREAM(FEET) = 19.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 108.00 CHANNEL SLOPE _ .0630 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 2.000 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.63 FLOW VELOCITY(FEET/SEC) = 3.71 FLOW DEPTH(FEET) _ .47 TRAVEL TIME(MIN. ) _ .49 Tc(MIN. ) = 7.85 FLOW PROCESS FROM NODE 227.00 TO NODE 227.00 IS CODE = 8.1 ---------------------------------------------------------------------------- »»>F_DDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 7.85 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.748 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS NAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK D 1. 60 .20 .85 57 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .85 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 2.27 EFFECTIVE AREA(ACRES) = 2.70 AREA-AVERAGED Fm(INCH/HR) _ .17 AREA-AVERAGED Fp(INCH/HR) _ .20 AREA-AVERAGED Ap = .85 TOTAL AREA(ACRES) = 2.70 PEAK FLOW RATE(CFS) = 3.83 FLOW PROCESS FROM NODE 227.00 TO NODE 228.00 IS CODE = 5.1 ---------------------------------------------------------------------------- »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< -------------------- ELEVATION DATA: UPSTREAM(FEET) 19.50 DOWNSTREAM(FEET) = 18.30 0 CHANNEL LENGTH THRU SUBAREA(FEET) 250.00 CHANNEL SLOPE _ .0048 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 2.000 M.ANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) 2 . 00 CHANNEL FLOW THRU SUBAREA(CFS) = 3.83 FLOW VELOCITY(FEET/SEC) = 1.76 FLOW DEPTH (FEET) 1.04 TRAVEL TIME(MIN. ) = 2.36 Tc(MIN. ) = 10.21 32 FLOW PROCESS FROM NODE 228.00 20 NODE 228.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ------------------- MAINLINE Tc(MIN) = 10.21 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.503 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK D 1. 60 .20 .85 57 PUBLIC PARK C .10 .25 .85 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .85 SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) = 2.04 EFFECTIVE AREA(ACRES) = 4.40 AREA-AVERAGED Fm(INCH/HR) _ .17 AREA-AVERAGED Fp(INCH/HR) _ .20 AREA-AVERAGED Ap = .85 TOTAL AREA(ACRES) = 4.40 PEAK FLOW RATE(CFS) = 5.27 FLOW PROCESS FROM NODE 228.00 TO NODE 226.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< ----------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 10.21 RAINFALL INTENSITY(INCH/HR) = 1.50 AREA-AVERAGED Fm(INCH/HR) = .17 AREA-AVERAGED Fp(INCH/HR) = .20 AREA-AVERAGED Ap = .85 EFFECTIVE STREAM AREA(ACRES) = 4.40 TOTAL STREAM AREA(ACRES) = 4 .40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.27 FLOW PROCESS FROM NODE 229.00 TO NODE 230.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ----------------------- INITIAL SUBAREA FLOW-LENGTH(FEET) 204.00 ELEVATION DATA: UPSTREAM(FEET) = 25.00 DOWNSTREAM(FEET) 23.70 Tc = 3* [ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM TO MIN. ) = 7.012 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.864 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) COMMERCIAL D .20 .20 .10 57 7.01 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap .10 SUBAREA RUNOFF(CFS) _ .33 TOTAL AREA(ACRES) _ .20 PEAK FLOW RATE(CFS) _ .33 FLOW PROCESS FROM NODE 230.00 TO NODE 228.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>>WSTREET TABLE SECTION # 1 USED)««< - ------------------ UpSTR_AM ELEVATION(FEET) 23.70 DOWNSTREAM ELEVATION(FEET) _ 19.30 33 STREET LENGTH (FEET) = 365.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ - .020 OUTSIDE STREET CROSSFALL(DECIMAL) .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .46 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .20 HALFSTREET FLOOD WIDTH(FEET) = 3.79 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.77 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) _ .36 STREET FLOW TRAVEL TIME(MIN. ) = 3;44 Tc(MIN. ) = 10.45 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.483 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL D .20 .20 .10 57 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SUBAREA AREA(ACRES) _ .20 SUBAREA RUNOFF(CFS) _ .26 EFFECTIVE AREA(ACRES) _ .40 AREA-AVERAGED Fm(INCH/HR) _ .02 AREA-ATERAGED Fp(INCH/HR) _ .20 AREA-AVERAGED Ap = .10 TOTAL AREA(ACRES) _ .40 PEAK FLOW RATE(CFS) _ .53 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .21 HALFSTREET FLOOD WIDTH(FEET) FLOW VELOCITY(FEET/SEC. ) = 1.79 DEPTH*VELOCITY(FT*FT/SEC. ) _ .38 FLOW PROCESS FROM NODE 228.00 TO NODE 228.00 .IS CODE = 8.1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ua_NL=NE TW MIN) = 10.45 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.483 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN CO_ERCIAL C .10 .25 .10 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 10 SUBAREA AREA(ACRES) _ .10 SUBAREA RUNOFF(CFS) _ .13 EFFECTIVE AREA(ACRES) _ .50 AREA-AVERAGED Fm(INCH/HR) _ .02 AREA-AVERAGED Fp(INCH/HR) _ .21 AREA-AVERAGED Ap = .10 TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS) _ .66 FLOW PROCESS FROM NODE 228.00 TO NODE 228.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ---------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 10.45 RAINFALL INTENSITY(INCH/HR) = 1.48 AREA-AVERAGED Fm(INCH/HR) _ .02 AREA-AVERAGED Fp(INCH/HR) _ .21 AREA-AVERAGED Ap = .10 34 EFFECTIVE STREAM AREA(ACRES) _ .50 TOTAL STREAM AREA(ACRES) _ .50 PEAK FLOW RATE(CFS) AT CONFLUENCE _ .66 ** CONFLUENCE DATA ** 0 STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 5.27 10.21 1.503 .20 ( .17) .85 4.4 225.00 2 .66 10.45 1.483 .21 ( .02) .10 .5 229.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 5.93 10.21 1.503 .20( .16) .78 4.9 225.00 2 5.85 10.45 1.483 .20 ( .16) .77 4.9 229.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 5. 93 TO MIN. ) 10.21 EFFECTIVE AREA(ACRES) 4.89 AREA-AVERAGED Fm(INCH/HR) _ .16 AREA-AVERAGED Fp(INCH/HR) _ .20 AREA-AVERAGED Ap .78 TOTAL AREA(ACRES) 4.90 FLOW PROCESS FROM NODE 228.00 TO NODE 228.00 IS CODE 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 10.21 RAINFALL INTENSITY(INCH/HR) = 1.50 AREA-AVERAGED Fm(INCH/HR) _ .16 ARE__-AVERAGED Q(INCH/HR) _ .20 AREA-AVERAGED Ap = .78 ' EFFECTIVE STREAM AREA(ACRES) 4 .89 TOTAI STREAM AREA(ACRES) = 4. 90 PEAK FLOW RATE(CFS) AT CONFLUENCE 5.93 FLOW PROCESS FROM NODE 231.00 TO NODE 232.00 IS CODE 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< - --------------------------------- INIT_=.L SUBAREA FLOW-LENGTH (FEET) 159.00 ELEVATION DATA: UPSTREAM(FEET) 25.00 DOWNSTREAM(FEET) 23.70 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 7.727 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.763 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RES=DENTiAL "5-7 DWELLINGS/ACRE" D .30 .20 .50 57 7.73 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap .50 SUBAREA RUNOFF(CFS) _ . 45 TOTAL AREA(ACRES) _ .30 PEAK FLOW RATE(CFS) _ . 45 35 FLOW PROCESS FROM NODE 232.00 TO NODE 228.00 IS CODE = 6.2 --------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>W STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 23.70 DOWNSTREAM ELEVATION(FEET) = 19.30 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.06 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .25 HALFSTREET FLOOD WIDTH(FEET) = 6.38 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 2.02 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .51 STREET FLOW TRAVEL TIME(MIN. ) = 2.97 TO MIN. ) = 10.70 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.463 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS IAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" D .70 .20 .50 57 RESIDENTIAL "5-7 DWELLINGS/ACRE" C .30 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .22 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 1.22 EFFECTIVE AREA(ACRES) = 1.30 AREA-AVERAGED Fm(INCH/HR) AREA-AVERAGED Fp(INCH/HR) = .21 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 1.59 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .28 HALFSTREET FLOOD WIDTH(FEET) = 7.78 FLOW VELOCITY(FEET/SEC. ) = 2.20 DEPTH*VELOCITY(FT*FT/SEC. ) _ .62 FLOW PROCESS FROM NODE 228.00 TO NODE 228.00 IS CODE = 8.1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< --------------------------------- MP_INLINE Tc(MIN) = 10.70 ----- * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.463 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C . 60 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .60 SUBAREA RUNOFF(CFS) _ .72 EFFECTIVE AREA(ACRES) = 1.90 AREA-AVERAGED Fm(INCH/HR) = 11 AREA-AVERAGED Fp(INCH/HR) = .22 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1. 90 PEAK FLOW RATE(CFS) = 2.31 FLOW PROCESS FROM NODE 228.00 TO NODE 228.00 IS CODE = i ---------------------------------------------------------------------------- 36 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 10.70 RAINFALL INTENSITY(INCH/HR) = 1.46 AREA-AVERAGED Fm INCH/HR = 11 AREA-AVERAGED Fp(INCH/HR) = .22 AREA-AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 1.90 TOTAL STREAM AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.31 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 5. 93 10.21 1.503 .20( .16) .78 4 . 9 225.00 1 5.85 10.45 1.483 .20( .16) .77 4.9 229.00 2 2.31 10.70 1.463 .22 ( .11) .50 1.9 231.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM_ Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 8.20 10.21 1.503 .21 ( .14) .70 6.7 225.00 2 8.14 10.45 1.483 .21 ( .14) .70 6.8 229.00 3 8.08 10.70 1.463 .21 ( . 14) .70 6.8 231.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.20 TQ MIN. ) = 10.21 ^ EFrFECTIVE AREA(ACRES) = 6.70 AREA-AVERAGED Fm(INCH/HR) _ .14 AREA-AVERAGED Fp(INCH/HR) _ .21 AREA-AVERAGED Ap = .70 TOTAL AREA(ACRES) = 6.80 FLOW PROCESS FROM NODE 228.00 TO NODE 236.00 IS CODE = 3.1 ----------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 14.40 DOWNSTREAM(FEET) 12.80 FLOW LENGTH(FEET) = 300.00 MANNING'S N = .013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.5 INCHES PIPE-_LOW VELOCITY(FEET/SEC. ) = 5.00 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.20 PIPS TRAVEL TIME(MIN. ) = 1.00 TW MIN. ) = 11.21 FLOW PROCESS FROM NODE 236.00 TO NODE 236.00 IS CODE = 10 ---------------------------------------' ----------- ------------------------- »»>MIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 ««< *+++++*++** FLOW PROCESS FROM NODE 233.00 TO NODE 234.00 IS CODE = 2.1 -------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIM£-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 37 ELEVATION DATA: UPSTREAM(FEET) = 70.00 DOWNSTREAM(FEET) = 27.50 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM TO MIN. ) = 7.402 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.807 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) PUBLIC PARK D .80 .20 .85 57 7.40 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .85 SUBAREA RUNOFF(CFS) = 1.18 TOTAL AREA(ACRES) _ .80 PEAK FLOW RATE(CFS) = 1.18 FLOW PROCESS FROM NODE 234.00 TO NODE 235.00 IS CODE = 5.1 ------------------------------------------------------ --------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ELEVATION DATA: UPSTREAM(FEET) = 27.50 DOWNSTREAM(FEET) = 19.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 57.00 CHANNEL SLOPE = .1368 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.000 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.18 FLOW VELOCITY(FEET/SEC) = 4.66 FLOW DEPTH(FEET) _ .36 TRAVEL-TIME(MIN. ) _ .20 TO MIN. ) = 7. 61 FLOW PROCESS FROM NODE 235.00 TO NODE 235.00 IS CODE = 8.1 ----------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 7.61 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.779 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK D . 60 .20 .85 57 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .85 SUBAREA AREA(ACRES) = . 60 SUBAREA RUNOFF(CFS) _ .87 EFFECTIVE AREA(ACRES) = 1.40 AREA-AVERAGED Fm(INCH/HR) _ .17 AREA-AVERAGED Fp(INCH/HR) _ .20 AREA-AVERAGED Ap = .85 TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 2.03 FLOW PROCESS FROM NODE 235.00 TO NODE 236.00 IS CODE = 5.1 ---------------------------------------------------------------------------- »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ELEVATION DATA: UPSTREAM(FEET) = 19.70 DOWNSTREAM(FEET) = 18.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 295.00 CHANNEL SLOPE = .0047 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.000 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 2.03 FLOW VELOCITY(FEET/SEC) = 1.50 FLOW DEPTH(FEET) _ .82 TRAVEL TIME(MIN. ) = 3.27 Tc(MIN. ) = 10.88 FLOW PROCESS FROM NODE 236_00 TO NODE 236.00 IS CODE = 8.1 --------------------------0------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 38 MAINLINE Tc(MIN) = 10.88 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.449 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS 4b LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK D 1.70 .20 .85 57 PUBLIC PARK C .20 .25 .85 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .21 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .85 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 2.18 EFFECTIVE AREA(ACRES) = 3.30 AREA-AVERAGED Fm(INCH/HR) _ .17 AREA-PVERAGED Fp(INCH/HR) _ .20 AREA-AVERAGED Ap = .85 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 3.79 FLOW PROCESS FROM NODE 236.00 TO NODE 236.00 IS CODE = 1 j --L------------------------------------------------------------------------- >>>>>Dv_SIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFL'.JENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 10.88 RAINF:ALL INTENSITY(INCH/HR) = 1.45 AREA-AVERAGED Fm(INCH/HR) = .17 AREA-AVERAGED Fp(INCH/HR) = .20 AREA-AVERAGED Ap = .85 EFFECTIVE STREAM AREA(ACRES) = 3.30 TOTAL STREAM AREA(ACRES) = 3.30 PEAK :LOW RATE(CFS) AT CONFLUENCE = 3.79 FLOW PROCESS FROM NODE 237.00 TO NODE 236.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RAT_IONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< iN7-717 SUBAREA FLOW-LENGTH(FEET) = 170.00 =':r=ION DATA: UPSTREAM(FEET) = 20.50 DOWNSTREAM(FEET) = 19.40 Tc = K= [ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 S U3 AREA =ANALYSIS USED MINIMUM Tc(MIN. ) 6.499 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.947 SU==RSA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) CO"=ERCIAL D .10 .20 .10 57 6.50 CO_-_^E_RC IAL C .10 .25 .10 50 6.50 SU=;R?A AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .22 SU3__3?A AVERAGE PERVIOUS AREA FRACTION, Ap = .10 SU3_A3,=A RUNOFF(CFS) _ .35 TO!_;• AREA(ACRES) _ .20 PEAK FLOW RATE(CFS) _ .35 =LG:: -cROCESS FROM NODE 236.00 TO NODE 236.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>I=SIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>tND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOT NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: T_N? O^ CONCENTRATION(MIN. ) = 6.50 �A_ci=_.. INTENSITY(T_NCH/HR) = _. 95 ZL RE=-=VERAGED Fm(INCH/HR) = 02 39 AREA-AVERAGED Fp(INCH/HR) _ .22 AREA-AVERAGED Ap = .10 EFFECTIVE STREAM AREA(ACRES) _ .20 TOTAL STREAM AREA(ACRES) = .20 PEAK FLOW RATE(CFS) AT CONFLUENCE _ .35 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 3.79 10.88 1.449 .20( . 17) .85 3.3 233.00 2 .35 6.50 1.947 .22 ( . 02) .10 .2 237.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 4.05 10.88 1.449 .20( .16) .81 3.5 233.00 2 3.50 6.50 1.947 .20( .16) .78 2.2 237.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4 .05 TO MIN.) = 10.88 EFFECTIVE AREA(ACRES) = 3.50 AREA-AVERAGED Fm(INCH/HR) _ .16 AREA-AVERAGED Fp(INCH/HR) _ .20 AREA-AVERAGED Ap = .81 TOTAL AREA(ACRES) = 3.50 FLOW PROCESS FROM NODE 236.00 TO NODE 236.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 10.88 RAINFALL INTENSITY(INCH/HR) = 1.45 AREA-AVERAGED Fm(INCH/HR) = .16 ?R?A-AVERAGED Fp(INCH/HR) = .20 AREA-AVERAGED Ap = .81 EFFECTIVE STREAM AREA(ACRES) = 3.50 TOTAL STREAM AREA(ACRES) = 3.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.05 FLOW PROCESS FROM NODE 238.00 TO NODE 239.00 IS CODE = 2.1 ------------- ------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ------------------- INITI=L SUBAREA FLOW-LENGTH(FEET) 150.00 ELEVATION DATA: UPSTREAM(FEET) = 21.50 DOWNSTREAM(FEET) 20.30 Tc = K* [ (LENGTH** 3.00) /(ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM T W MIN. ) = 7.582 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.783 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc -AND USE GROUP (ACRES) (INCH AR) (DECIMAL) CN (MIN. ) RESIDENTIAL "5-7 DWELLINGS/ACRE" C .20 .25 .50 50 7.58 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap . 50 SUBAREA RUNOFF(CFS) _ .30 TOTAL AREA(ACRES) _ .20 PEAK FLOW RATE(CFS) _ .30 40 FLOW PROCESS FROM NODE 239.00 TO NODE 236.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION n 1 USED)««< UPSTREAM ELEVATION(FEET) = 20.30 DOWNSTREAM ELEVATION(FEET) = 19.40 STREET LENGTH(FEET) = 130.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .70 S=REETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .25 HALFSTREET FLOOD WIDTH(FEET) = 5.98 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.47 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .36 STREET FLOW TRAVEL TIME(MIN. ) = 1.47 Tc(MIN. ) = 9.06 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.610 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .60 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = . 60 SUBAREA RUNOFF(CFS) .80 EFFECTIVE AREA(ACRES) _ .80 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fo(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TO^_=L AR=A(ACRES) = .80 PEAK FLOW RATE(CFS) = 1:07 END OF SUBAREA STREET FLOW HYDRAULICS: D=_:H(FEET) = .27 HALFSTREET FLOOD WIDTH(FEET) = 7.38 FLC"r: VELOCITY(FEET/SEC. ) = 1.61 DEPTH*VELOCITY(FT*FT/SEC.) _ .44 FLOW PROCESS FROM NODE 236.00 TO NODE 236.00 IS CODE = 8.1 ------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 9.06 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.610 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp An SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .30 .25 .50 50 SUBR=A AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBREA AVERAGE PERVIOUS AREA FRACTION, An = .50 SUBAREA AREA(ACRES) = .30 _ SUBAREA F RUNOF (CFS) _ .40 ECTIVE AREA(ACRES) = 1.10 AREA-AVERAGED Fm(INCH/HR) _ .13 AR_:_-AVC:,AGED Fp(INCH/HR) _ .23 AREA AVERAGED Ao = .50 TOTAL AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) = 1.47 FLO:; PROCESS FROM NODE 236.00 TO NODE 236. 00 IS CODE = 1 ----- ---------------------------------- ---- ----- ------------- 41 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 9.06 RAINFALL INTENSITY(INCH/HR) = 1.61 AREA-AVERAGED Fm(INCH/HR) = .13 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 1.10 TOTAL STREAM AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.47 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 4.05 10.88 1.449 . .20( .16) .81 3.5 233.00 1 3.50 6.50 1.947 .20( .16) .78 2.2 237.00 2 1.47 9.06 1. 610 .25 ( .13) .50 1.1 238.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 4.79 6.50 1.947 .21( .15) .71 3.0 237.00 2 5.36 10.88 1.449 .21( . 15) .73 4.6 233.00 3 5.29 9.06 1.610 .21( .15) .72 4.0 238.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.36 TO MIN. ) = 10.88 EFFECTIVE AREA(ACRES) = 4.60 AREA-AVERAGED Fm(INCH/HR) _ .15 AREA-AVERAGED Fp(INCH/HR) _ .21 AREA-AVERAGED Ap = .73 TOTAL AREA(ACRES) = 4.60 FLOW PROCESS FROM NODE 236.00 TO NODE 236.00 IS CODE = 11 ---------------------------------------------------------------------------- »»>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 4.79 6.50 1.947 .21 ( .15) .71 3.0 237.00 2 5.29 9.06 1.610 .21 ( .15) .72 4 .0 238.00 3 5.36 10.88 1.449 .21 ( .15) .73 4.6 233.00 ** MEMORY BANK # 3 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 8.20 11.21 1.424 .21 ( . 14) .70 6.7 225.00 2 8.14 11.45 1.407 .21 ( . 14) .70 6.8 229.00 3 8.08 11.70 1.390 .21 ( . 14) .70 6.8 231.00 I PEAK F OW RATE TABLETREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER UMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 11.49 6.50 1. 947 .21 ( . 15) .70 6.8 237.00 2 12.87 9.06 1. 6i0 .21 ( . 15) .71 9.5 238.00 3 13.47 10. 88 1.449 .21 ( . 15) .71 11.1 233.00 4 13.45 11.21 1. 424 .21 ( . 15) .71 11.3 225.00 42 5 13.33 11.45 1.407 .21 ( . 15) .71 11.4 229.00 6 13.19 11.70 1.390 .21 ( . 15) .71 11.4 231.00 TOTAL AREA(ACRES) = 11.40 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 13.47 Tc(MIN. ) = 10.876 EFFECTIVE AREA(ACRES) = 11.10 AREA-AVERAGED Fm(INCH/HR) _ .15 AREA-AVERAGED Fp(INCH/HR) _ .21 AREA-AVERAGED Ap = .71 TOTAL AREA(ACRES) = 11.40 FLOW PROCESS FROM NODE 236.00 TO NODE 236.00 IS CODE = 12 ---------------------------------------------------------------------------- »»>CLEAR MEMORY BANK # 3 ««< FLOW PROCESS FROM NODE 236.00 TO NODE 240.00 IS CODE = 3.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 12.80 DOWNSTREAM(FEET) = 11.90 FLOW LENGTH(FEET) = 186.00 MANNING'S N = .013 DEPTH OF FLOW IN 24 .0 INCH PIPE IS 17.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 5.38 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 13.47 PIPE TRAVEL TIME(MIN. ) _ .58 Tc(MIN. ) = 11.45 FLOW PROCESS FROM NODE 240.00 TO NODE 240.00 IS CODE = 10 ---------------------------------------------------------------------------- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 ««< FLOW PROCESS FROM NODE 493.00 TO NODE 493.00 IS CODE = 7 ---------------------------------------------------------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< - ------------------------- USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN. ) = 11.22 RAINFALL INTENSITY(INCH/HR) = 1.42 EFFECTIVE AREA(ACRES) = 21.80 TOTAL AREA(ACRES) = 21.80 PEAK FLOW RATE(CFS) = 26.81 AREA-AVERAGED Fm(INCH/HR) _ .06 AREA-AVERAGED Fp(INCH/HR) _ .20 AREA-AVERAGED Ap = .29 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. FLOW PROCESS FROM NODE 493.00 TO NODE 240.00 IS CODE = 3.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 13.80 DOWNSTREAM(FEET) = 11.90 FLOW LENGTH(FEET) = 150.00 MANNING'S N = .013 DEPTH OF FLOW IN 27 . 0 INCH PIPE IS 18.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 9.26 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = _ PIPE-FLOW(CFS) = 26.81 PIPE TRAVEL TIME(MIN. ) _ .27 W MIN. ) = 11.49 43 FLOW PROCESS FROM NODE 240.00 TO NODE 240.00 IS CODE = 11 ------------------------------------------------------------------------- »»>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 26.81 11.49 1.404 .20( .06) .29 21.8 233.00 ** MEMORY BANK # 3 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 11.49 7.09 1.852 .21( .15) .70 6.8 237.00 2 12.87 9.64 1.553 .21 ( .15) .71 9.5 238.00 3 13.47 11.45 1.407 .21 ( . 15) .71 11.1 233.00 4 13.45 11.78 1.384 .21 ( . 15) .71 11.3 225.00 5 13.33 12.03 1.368 .21 ( .15) .71 11.4 229.00 6 13.19 12.28 1.352 .21 ( .15) .71 11.4 231.00 ** PEAT{ FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 40.27 11.49 1.404 .20 ( .09) .43 32.9 233.00 2 33.54 7.09 1.852 .20( .09) .43 20.3 237.00 3 37.85 9.64 1.553 .20 ( .09) .43 27.7 238.00 4 40.24 11.45 1.407 .20 ( .09) .43 32.8 233.00 5 39.86 11.78 1.384 .20( .09) .43 33.1 225.00 6 39.41 12.03 1.368 .20( .09) .43 33.2 229.00 7 38. 96 12.28 1.352 .20 ( .09) .43 33.2 231.00 TOTAL AREA(ACRES) = 33.20 - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 40.27 TW MIN. ) = 11.490 EFFECTIVE AREA(ACRES) = 32.93 AREA-AVERAGED Fm(INCH/HR) _ .09 AREA-AVERAGED Fp(INCH/HR) _ .20 AREA-AVERAGED Ap = .43 TOTAL ?mac A(ACRES) = 33.20 FLOW PROCESS FROM NODE 240.00 TO NODE 240.00 IS CODE = 12 ---------------------------------------------------------------------------- »»>CLEAR MEMORY BANK # 3 ««< FLOW PROCESS FROM NODE 240.00 TO NODE 245.00 IS CODE = 3.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ------------------------ ELEVATION DATA: UPSTREAM(FEET) = 11.90 DOWNSTREAM(FEET) = 7.60 FLOW LZNGTH(FEET) = 223.00 MANNING'S N = .013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 11.70 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 40.27 PIPE TRAVEL TIME(MIN. ) _ .32 Tc(MIN. ) = 11.81 FLOW PROCESS FROM NODE 245.00 TO NODE 245.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< 44 TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 11.81 RAINFALL INTENSITY(INCH/HR) = 1.38 AREA-AVERAGED Fm(INCH/HR) = .09 AREA-AVERAGED Fp(INCH/HR) = .20 AREA-AVERAGED Ap = .43 EFFECTIVE STREAM AREA(ACRES) = 32.93 TOTAL STREAM AREA(ACRES) = 33.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 40.27 FLOW PROCESS FROM NODE 241.00 TO NODE 242.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< -------------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 175.00 ELEVATION DATA: UPSTREAM(FEET) = 21.90 DOWNSTREAM(FEET) = 21.30 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM TQ MIN. ) = 9.553 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.561 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA F A p p SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL "5-7 DWELLINGS/ACRE" C .30 .25 .50 50 9.55 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) _ .39 TOTAL AREA(ACRES) _ .30 PEAK FLOW RATE(CFS) _ .39 FLOW PROCESS FROM NODE 242.00 TO NODE 245.00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COM=UTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>> (STREET TABLE SECTION # 1 USED) <<< UPSTREAM ELEVATION(FEET) = 21.30 DOWNSTREAM ELEVATION(FEET) = 19.00 STREET LENGTH(FEET) = 243.00 CURB HEIGHT (INCHES) = 6.0 ^T T.T = STREET H.�FWIDTH(FEET) 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .73 STREET:LOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .24 HALFSTREET FLOOD WIDTH(FEET) = 5.58 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.69 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .40 STREET FLOW TRAVEL TIME(MIN. ) = 2.40 T O MIN. ) = 11.95 ' 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.373 SUBAREA LOSS RATE DATA(AMC I ) : 10 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS T ND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C . 60 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .23 45 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .60 SUBAREA RUNOFF(CFS) _ .67 EFFECTIVE AREA(ACRES) _ .90 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = .90 PEAK FLOW RATE(CFS) = 1.01 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .26 HALFSTREET FLOOD WIDTH(FEET) = 6.65 FLOW VELOCITY(FEET/SEC.) = 1.80 DEPTH*VELOCITY(FT*FT/SEC. ) _ .47 FLOW PROCESS FROM NODE 245.00 TO NODE 245.00 IS CODE = 8.1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 11.95 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.373 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .30 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .30 SUBAREA RUNOFF(CFS) _ .34 EFFECTIVE AREA(ACRES) = 1.20 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-A`d.ERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 1.35 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ FLOW PROCESS. FROM NODE 245.00 TO NODE 245.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 11.95 RAINFALL !NTENSITY(INCH/HR) = 1.37 AREA-AVERAGED Fm(INCH/HR) = .13 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 1.20 TOTAL STREAM AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.35 FLOW PROCESS FROM NODE 243.00 TO NODE 244.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ----------- ------------- - -------- - ----------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 140.00 ELEVATION DATA: UPSTREAM(FEET) = 21.30 DOWNSTREAM(FEET) = 20.10 Tc = S* ( (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM TO MIN. ) = 7.274 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.825 SUBAREA Tc AND LOSS RATE DATW AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL "5-7 DWELLINGS/ACRE" C .20 .25 .50 50 7.27 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 46 SUBAREA RUNOFF(CFS) _ .31 TOTAL AREA(ACRES) _ .20 PEAK FLOW RATE(CFS) _ .31 FLOW PROCESS FROM NODE 244 .00 TO NODE 245.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 20.10 DOWNSTREAM ELEVATION(FEET) = 19.00 STREET LENGTH(FEET) = 240.00 CURB HEIGHT (INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .80 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .27 HALFSTREET FLOOD WIDTH(FEET) = 7.11 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.28 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .34 STREET FLOW TRAVEL TIME(MIN. ) = 3.12 Tc(MIN. ) = 10.40 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.487 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .80 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .80 SUBAREA RUNOFF(CFS) _ .98 E:F_CTIVE AREA(ACRES) = 1.00 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) 1.23 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH (FEET) = 8.64 FLOW VELOCITY(FEET/SEC. ) = 1.42 DEPTH*VELOCITY(FT*FT/SEC. ) _ .42 FLOW PROCESS FROM NODE 245.00 TO NODE 245.00 IS CODE = 8.1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ----------------- MAINLINE Tc(MIN) = 10.40 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.487 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN CON_^ERCIAL D .20 .20 .10 57 RESIDENTIAL "5-7 DWELLINGS/ACRE" C .70 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .41 SUBAREA AREA(ACRES) = . 90 SUBAREA RUNOFF(CFS) = 1.12 -_FECTIVE AREA(ACRES) = 1. 90 AREA-AVERAGED Fm(INCH/HR) = 11 AREA-AVERAGED Fp (INCH/HR) _ .25 AREA-AVERAGED An = .46 TOTAL AREA(ACRES) = 1. 90 PEAK FLOW RATE (CFS) = 2.35 47 FLOW PROCESS FROM NODE 245.00 TO NODE 245.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN. ) = 10.40 RAINFALL INTENSITY(INCH/HR) = 1.49 AREA-AVERAGED Fm(INCH/HR) = .11 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .46 EFFECTIVE STREAM AREA(ACRES) = 1.90 TOTAL STREAM AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.35 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 40.27 11.81 1.382 .20( .09) .43 32.9 233.00 1 33.54 7.42 1.805 .20( .09) .43 20.3 237.00 1 37.85 9.95 1.525 .20 ( .09) .43 27.7 238.00 1 40.24 11.77 1.385 .20( .09) .43 32.8 233.00 1 39.86 12.10 1.363 .20( .09) .43 33.1 225.00 1 39.41 12.34 1.347 .20 ( .09) .43 33.2 229.00 1 38.96 12.59 1.332 .20( .09) .43 33.2 231.00 2 1.35 11.95 1.373 .25 ( .13) .50 1.2 241.00 3 2.35 10.40 1.487 .25 ( .11) .46 1.9 243.00 RAINFPLIL, INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEEK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 36.73 7.42 1.805 .21 ( . 09) .43 22.4 237.00 2 41.41 9.95 1.525 .21( .09) .44 30.6 238.00 3 43.75 11.77 1.385 .21 ( . 09) .44 35.9 233.00 4 43.78 11.81 1.382 .21 ( . 09) .44 36.0 233.00 5 43.57 11. 95 1.373 .21 ( .09) .44 36.1 241.00 6 43.33 12.10 - 1.363 .21 ( .09) .44 36.2 225.00 7 42.84 12.34 1.347 .21 ( .09) .44 36.3 229.00 8 42.34 12.59 1.332 .21( .09) .44 36.3 231.00 9 42.05 10.40 1.487 .21 ( .09) .44 31.9 243.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK :LOW RATE(CFS) = 43.78 Tc(MIN. ) = 11.81 EFFECTIVE AREA(ACRES) = 36.01 AREA-AVERAGED Fm(INCH/HR) _ .09 AREA-AVERAGED Fp(INCH/HR) = .21 AREA-AVERAGED Ap = .44 TOTAL AREA(ACRES) = 36.30 FLOW PROCESS FROM NODE 245.00 TO NODE 246.00 IS CODE = 3.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ---------------------- ELEVATION DATA: UPSTREAM(FEET) = 7. 60 DOWNSTREAM(FEET) 6.40 FLOW LENGTH(FEET) = 66. 00 MANNING'S N = .013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20. 9 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 11. 96 7S7IM=T7D PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 43.78 48 PIPE TRAVEL TIME(MIN. ) _ .09 Tc(MIN. ) = 11. 90 FLOWPROCESS-FROM- ----NODE246_ - -00TONODE 246.00 IS CODE -- - = 11 »»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 36.73 7.51 1.792 .21 ( .09) .43 22.4 237.00 2 41.41 10.05 1.517 .21 ( .09) .44 30. 6 238.00 3 42.05 10.49 1.480 .21 ( .09) .44 31. 9 243.00 4 43.75 11.86 1.379 .21( .09) .44 35. 9 233.00 5 43.78 11. 90 1.376 .21( .09) .44 36.0 233.00 6 43.57 12.05 1.367 .21 ( .09) .44 36.1 241.00 7 43.33 12.19 1.357 .21 ( .09) .44 36.2 225.00 8 42.84 12.44 1.342 .21( .09) .44 36.3 229.00 9 42.34 12. 69 1.327 .21 ( .09) .44 36.3 231.00 ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 15. 66 10.83 1.452 .25 ( .12) .49 11.8 203.00 2 15.80 11.13 1.430 .25 ( .12) .49 12. 1 219.00 3 15. 96 11.55 1.400 .25 ( .12) .49 12.6 221.00 4 15.99 11.68 1.391 .25 ( .12) .49 12.7 200.00 5 15.89 12.25 1.354 .25 ( .12) .49 13.1 208.00 6 15.84 12.42 1.343 .25( .12) .49 13.2 205.00 7 15. 63 12.91 1.313 .25 ( .12) .49 13.4 247.00 . 8 15.57 13.01 1.307 .25 ( .12) .49 13.4 214 .00 9 15.53 13.08 1.304 .25 ( .12) .49 13.4 211.00 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 50.36 7.51 1.792 .22 ( .10) .45 30. 6 237.00 2 56. 63 10.05 1.517 .22 ( .10) .45 41.5 238.00 57.52 10.49 1.480 .22 ( . 10) .45 43.3 243.00 4 59.71 11.86 1.379 .22 ( .10) .45 48.8 233.00 5 59.74 11. 90 1.376 .22 ( . 10) .45 48. 9 233.00 6 59.49 12.05 1.367 .22 ( .10) .45 49.1 241.00 7 59.23 12.19 1.357 .22 ( .10) .45 49.3 225.00 8 58.67 12.44 1.342 .22 ( . 10) .45 49.4 229.00 9 58.07 12. 69 1.327 .22 ( .10) .45 49.6 231.00 =0 58.14 10.83 1.452 .22 ( .10) .45 44.7 203.00 -1 58. 65 11.13 1.430 .22 ( .10) .45 45.9 219.00 12 59.34 11.55 1.400 .22 ( . 10) .45 47.6 221.00 13 59.52 11. 68 1.391 .22( .10) .45 48.1 200.00 14 59.11 12.25 1.354 .22 ( .10) .45 49.3 208.00 15 58.71 12.42 1.343 .22 ( .10) .45 49.4 205.00 16 57.52 12. 91 1.313 .22 ( .10) .45 49.7 247.00 -7 57.26 13.01 1.307 .22 ( .10) .45 49.7 214.00 -8 57.09 13.08 1.304 .22 ( . 10) .45 49.7 211.00 TV_.^-_J AREA(ACRES) = 49.70 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEA-C FLOWRATE (CFS) = 59.74 Tc(MIN. ) = 11. 900 -�FECTIV_ AREA(ACRES) = 48.89 AREA-AVERAGED Fm(INCH/HR) _ .10 AR=A-AV=RAGED Fp(INCH/HR) _ .22 AREA-AVERAGED An = .45 T07AL AREA(ACRES) = 49.70 FLOW PROCESS FROM NODE 246.00 TO NODE 246.00 IS CODE = 12 49 ------------------------------------------------------------------ »»>CLEAR MEMORY BANK # 2 <<<<< FLOW PROCESS FROM NODE 246.00 TO NODE 250.00 IS CODE = 3.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 6.40 DOWNSTREAM(FEET) = 4.40 FLOW LENGTH(FEET) = 412.00 MANNING'S N = .013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 31.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 7.82 ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 59.74 PIPE TRAVEL TIME(MIN. ) _ .88 TQMIN. ) = 12.78 FLOW PROCESS FROM NODE 250.00 TO NODE 250.00 IS CODE = 10 -------------------------------------------------------------------------- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00 ELEVATION DATA: UPSTREAM(FEET) = 29.50 DOWNSTREAM(FEET) 27.80 Tc = K* [ (LENGTH** 3.00)/(ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM TQ MIN. ) = 9.375 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.578 SUBAREA Tc AND LOSS RATE DATA(PMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc 'AND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL "5-7 DWELLINGS/ACRE" D .40 .20 .50 57 9.38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) _ .53 TOTAL AREA(ACRES) _ .40 PEAK FLOW RATE(CFS) _ .53 FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>>WSTREET TABLE SECTION # 1 USED) <<< UPSTREAM ELEVATION(FEET) = 27.80 DOWNSTREAM ELEVATION(FEET) = 24.90 STREET LENGTH(FEET) = 426.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 50 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.21 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .28 HALFSTREET FLOOD WIDTH(FEET) = 7.84- AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.65 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) - .47 STREET FLOW TRAVEL TIME(MIN. ) = 4.29 TW MIN. ) = 13.67 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.271 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" D .50 .20 .50 57 RESIDENTIAL "5-7 DWELLINGS/ACRE" C .80 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .23 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 1.35 EFFECTIVE AREA(ACRES) = 1.70 AREA-AVERAGED Fm(INCH/HR) _ .11 AREA-AVERAGED Fp(INCH/HR) = .22 AREA-AVERAGED Ap = .50 TOTAL AR£A(ACRES) = 1.70 PEAK FLOW RATE(CFS) = 1.77 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.37 FLOW VELOCITY(FEET/SEC. ) = 1.78 DEPTH*VELOCITY(FT*FT/SEC. ) _ .56 FLOW PROCESS FROM NODE 302.00 TO NODE 302.10 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>>WSTREET TABLE SECTION # 1 USED) <<< UPSTREAM ELEVATION(FEET) = 24.90 DOWNSTREAM ELEVATION(FEET) = 24.10 STREET LENGTH(FEET) = 170.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE EBREAK FEET = 10.00 Dl„___?�C� FROM CROWN TO CROSSFALL GRAD ( ) INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 -*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.01 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .34 HALFSTREET FLOOD WIDTH(FEET) = 10.66 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.60 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .54 STREET FLOW TRAVEL TIME(MIN. ) = 1.77 Tc(MIN. ) = 15.44 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.185 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .50 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .50 SUBAREA RUNOFF(CFS) _ . 48 EFFECTIVE AREA(ACRES) = 2.2C AREA-AVERAGED Fm(INCH/HR) AREA-AVERAGED FD(INCH/HR) = .23 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.20 PEAK :LOW RATE(CFS) = 2.12 END OF SUBAREA STREET FLOW HYDRAULICS: 51 DEPTH(FEET) _ .34 HALFSTREET FLOOD WIDTH(FEET) = 10.90 FLOW VELOCITY(FEET/SEC. ) = 1.62 DEPTH*VELOCITY(FT*FT/SEC. ) _ .56 FLOW PROCESS FROM NODE 302.10 TO NODE 302.10 IS CODE = 8.1 -- ---------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 15.44 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.185 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C 1.00 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) _ .95 EFFECTIVE AREA(ACRES) = 3.20 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .24 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.20 PEAK FLOW RATE(CFS) = 3.07 FLOW PROCESS FROM NODE 302.10 TO NODE 302.20 IS CODE = 3.1 ----------7----------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 10.70 DOWNSTREAM(FEET) = 10.10 FLOW LENGTH(.FEET) = 150.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCI EPE IS 8.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC 3.54 ESTIMATED PIPE DIAMETER(INCI ) A.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.07 PIPE TRAVEL TIME(MIN. ) _ .71 Tc(MIN. ) = 16.14 FLOW ?ROCESS FROM NODE 302.20 TO NODE 302.20 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 16.14 RAINFALL INTENSITY(INCH/HR) = 1.16 AREA-AVERAGED Fm(INCH/HR) = .12 AREA-AVERAGED Fp(INCH/HR) = .24 AREA-AVERAGED AD = .50 EFFECTIVE STREAM AREA(ACRES) = 3.20 TOTAL STREAM AREA(ACRES) = 3.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.07 :LOW PROCESS FROM NODE 305.00 TO NODE 306.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATI_ONAL METHOD INITIAL SUBAREA ANALYSIS««< -->>USE-TIME-OF-CONCENTRATION-NOMOGRAPH-FOR-INITIAL-SUBAREA«--------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 130.00 ELEVATION DATA: UPSTREAM(FEET) = 28. 80 DOWNSTREAM(FEET) = 27.80 Tc = K* f (LENGTH** 3. 00) /'(ELEVATION CHANGE) ) ** .20 SUBAREA"ANALYSIS USED MINIMUM Tc(MIN. ) = 7.216 52 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.834 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL "5-7 DWELLINGS/ACRE" D .20 .20 .50 57 7.22 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) _ .31 TOTAL AREA(ACRES) _ .20 PEAK FLOW RATE(CFS) _ .31 FLOW PROCESS FROM NODE 306.00 TO NODE 307.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 27.80 DOWNSTREAM ELEVATION(FEET) = 26.60 STREET LENGTH(FEET) = 126.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .74 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .24 HALFSTREET FLOOD WIDTH(FEET) = 5.65 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1. 69 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .40 STREET FLOW TRAVEL TIME(MIN. ) = 1.24 Tc(MIN. ) = 8.46 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1. 674 _ SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS "_AND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" D .60 .20 .50 57 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = . 60 SUBAREA RUNOFF(CFS) _ .85 AFFECTIVE AREA(ACRES) _ .80 AREA-AVERAGED Fm(INCH/HR) _ .10 AREA-AVERAGED Fp(INCH/HR) _ .20 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = .80 PEAK FLOW RATE(CFS) = 1.13 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .27 HALFSTREET FLOOD WIDTH(FEET) = 7.04 FLOW VELOCITY(FEET/SEC. ) = 1.84 DEPTH*VELOCITY(FT*FT/SEC. ) _ .49 FLOW PROCESS FROM NODE 307.00 TO NODE 308.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>WSTREET TABLE SECTION # 1 USED) <<< UPSTREAM ELEVATION(FEET) = 26. 60 DOWNSTREAM ELEVATION(FEET) = 24 .20 STREET LENGTH(FEET) = 428.00 CURB HEIGHT(INCHES) = 6.0 STREET HA.LFWIDTH (FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = .020 53 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.19 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .34 HALFSTREET FLOOD WIDTH(FEET) = 10.66 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.75 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .59 STREET FLOW TRAVEL TIME(MIN. ) = 4.08 Tc(MIN. ) = 12.55 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.335 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" D 1.60 .20 .50 57 RESIDENTIAL "5-7 DWELLINGS/ACRE" C .30 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .21 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 2.11 EFFECTIVE AREA(ACRES) = 2.70 AREA-AVERAGED Fm(INCH/HR) _ .10 AREA-AVERAGED Fp(INCH/HR) _ .21 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.70 PEAK FLOW RATE(CFS) = 2.99 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .37 HALFSTREET FLOOD WIDTH(FEET) = 12.15 FLOW VELOCIT.Y(FEET/SEC.) = 1.88 DEPTH*VELOCITY(FT*FT/SEC. ) = .69 FLOW PROCESS FROM NODE 308.00 TO NODE 302.20 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 24.20 DOWNSTREAM ELEVATION(FEET) = 21.00 STREET LENGTH(FEET) = 100.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE SROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.17 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 8.57 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 3.71 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) = 1.11 STREET FLOW TRAVEL TIME(MIN. ) = .45 Tc(MIN. ) = 12. 99 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.308 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "11+ DWELLINGS/ACRE" D .20 .20 .20 57 COMIMERCI::L C 10 .25 .10 0 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .21 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .17 54 SUBAREA AREA(ACRES) _ .30 SUBAREA RUNOFF(CFS) _ .34 EFFECTIVE AREA(ACRES) = 3.00 AREA-AVERAGED Fm(INCH/HR) _ .10 AREA-AVERAGED Fp(INCH/HR) _ .21 AREA-AVERAGED Ap = .47 TOTAL AREA(ACRES) = 3.00 PEAK FLOW RATE(CFS) = 3.27 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .30 HALFSTREET FLOOD WIDTH(FEET) = 8.71 FLOW VELOCITY(FEET/SEC. ) = 3.74 DEPTH*VELOCITY(FT*FT/SEC. ) = 1.12 FLOW PROCESS FROM NODE 302.20 TO NODE 302.20 IS CODE = 8.1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 12.99 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.308 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" D .70 .20 .50 57 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) _ .76 EFFECTIVE AREA(ACRES) = 3.70 AREA-AVERAGED F&INCH/HR) _ .10 AREA-AVERAGED Fp(INCH/HR) _ .20 AREA-AVERAGED Ap = .47 TOTAL AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) = 4.03 FLOW PROCESS FROM NODE302� - - -20TONODE 302.20 IS CODE- ---- = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 12. 99 RAINFALL INTENSITY(INCH/HR) = 1.31 AREA-AVERAGED Fm(INCH/HR) = .10 AREA-AVERAGED Fp(INCH/HR) = .20 AREA-:AVERAGED Ap = .47 EFFECTIVE STREAM AREA(ACRES) = 3.70 TOTAL STREAM AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.03 FLOW PROCESS FROM NODE 309.00 TO NODE 310.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 119.00 ELEVATION DATA: UPSTREAM(FEET) = 28.60 DOWNSTREAM(FEET) = 26.60 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 5. 958 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.047 SUBAREA Tc AND LOSS RATE DATA(A.MC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL "5-7 DWELLINGS/ACRE" C . 10 .25 .50 50 5.96 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - .50 SUBAREA RUNOFF(CFS) = i7 55 TOTAL AREA(ACRES) _ .10 PEAK FLOW RATE(CFS) _ .17 FLOW PROCESS FROM NODE 310.00 TO NODE 311.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 26.60 DOWNSTREAM ELEVATION(FEET) = 25.40 STREET LENGTH(FEET) = 150.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 D =DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .47 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .22 HALFSTREET FLOOD WIDTH(FEET) = 4.52 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.46 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .32 STREET FLOW TRAVEL TIME(MIN. ) = 1.72 Tc(MIN. ) = 7.67 * 2 SEAR RAINFALL INTENSITY(INCH/HR) = 1.770 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .40 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .40 SUBAREA RUNOFF(CFS) _ .59 EFFECTIVE AREA(ACRES) _ .50 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = .50 PEAK FLOW RATE(CFS) _ .74 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .24 HALFSTREET FLOOD WIDTH(FEET) = 5.92 FLOW VELOCITY(FEET/SEC. ) = 1.58 DEPTH*VELOCITY(FT*FT/SEC. ) _ .39 FLOW PROCESS FROM NODE 311.00 TO NODE 312.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 25.40 DOWNSTREAM ELEVATION(FEET) = 21.00 STREET LENGTH(FEET) = 321.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = _ STREET PARKWAY CROSSFALL(DECIMAL) .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.18 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .26 .;:.AL-STREET FLOOD WIDTH(FEET) = 6.58 56 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 2.14 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .55 STREET FLOW TRAVEL TIME(MIN. ) = 2.50 T W MIN. ) = 10.17 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.506 SUBAREA LOSS RATE DATA(AMC I ) : 0 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL D .10 .20 .10 57 RESIDENTIAL "5-7 DWELLINGS/ACRE" C .60 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .44 SUBAREA AREA(ACRES) _ .70 SUBAREA RUNOFF(CFS) _ .88 EFFECTIVE AREA(ACRES) = 1.20 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .47 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 1.50 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .27 HALFSTREET FLOOD WIDTH(FEET) = 7.38 FLOW VELOCITY(FEET/SEC. ) = 2.27 DEPTH*VELOCITY(FT*FT/SEC. ) _ . 62 FLOW PROCESS FROM NODE 302.20 TO NODE 302.20 IS CODE = 1 ---------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND'COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN. ) = 10.17 RAINFALL INTENSITY(INCH/HR) = 1.51 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .47 EFFECTIVE STREAM AREA(ACRES) = 1.20 TOTAL STREAM AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.50 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUM3ER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 3.07 16.14 1.155 .24 ( . 12) .50 3.2 30V 00 2 4.03 12.99 1.308 .20( .10) .47 3.7 305.00 3 1.50 10.17 1.506 .25( .12) .47 1.2 309.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 8.16 12. 99 1.308 .22 ( . 11) .48 7.5 305.00 2 7.72 16.14 1.155 .22 ( .11) .48 8.1 300.00 3 7.76 10. 17 1.506 .22 ( .11) .48 6.1 309.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.16 TO MIN. ) = 12.99 EFFECTIVE AREA(ACRES) = 7.48 AREA-AVERAGED Fm(INCH/HR) _ . 11 AREA-AVERAGED Fp(INCH/HR) _ .22 AREA-AVERAGED Ap = . 48 TOTAL AREA(ACRES) = 6.10 FLOW PROCESS FROM NODE 302.20 TO NODE 312.00 IS CODE = 3.1 57 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 10.10 DOWNSTREAM(FEET) = 9.70 FLOW LENGTH(FEET) = 51.00 MANNING'S N = .013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 5.67 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.16 PIPE TRAVEL TIME(MIN. ) _ .15 Tc(MIN. ) = 13.14 FLOW PROCESS FROM NODE 312.00 TO NODE 312.00 IS CODE = 10 ---------------------------------------------------------------------------- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 ««< FLOW PROCESS FROM NODE 303.10 TO NODE 303.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< -------------------------------------------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 222.00 ELEVATION DATA: UPSTREAM(FEET) = 34.00 DOWNSTREAM(FEET) = 26.50 Tc = K*-[ (LENGTH** 3.00) /(ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 6.649 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1- 922 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL "5-7 DWELLINGS/ACRE D .60 .20 .50 57 6. 65 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) _ .98 TOTAL AREA(ACRES) _ .60 PEAK FLOW RATE(CFS) _ . 98 FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 5.1 ---------------------------------------------------------------------------- »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ELEVATION DATA: UPSTREAM(FEET) = 26.50 DOWNSTREAM(FEET) = 22.40 CHANNEL LENGTH THRU SUBAREA(FEET) = 183.00 CHANNEL SLOPE _ .0224 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 2.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) _ . 98 FLOW VELOCITY(FEET/SEC) = 4.24 FLOW DEPTH(FEET) _ .34 TRAVEL TIME(MIN. ) _ .72 Tc(MIN. ) = 7.37 FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 8.1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN) = 7.37 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.812 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL 58 "5-7 DWELLINGS/ACRE" D 1.30 .20 .50 57 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 2.00 EFFECTIVE AREA(ACRES) = 1.90 AREA-AVERAGED Fm(INCH/HR) _ .10 is AREA-AVERAGED Fp(INCH/HR) _ .20 AREA-AVERAGED Ap .= .50 TOTAL AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) = 2.93 FLOW PROCESS FROM NODE 304 .00 TO NODE 312.00 IS CODE = 3.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 22.40 DOWNSTREAM(FEET) = 21.00 FLOW LENGTH(FEET) = 115.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 5.26 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2. 93 PIPE TRAVEL TIME(MIN. ) _ .36 TQ MIN. ) = 7.73 FLOW PROCESS FROM NODE 312.00 TO NODE 312.00 IS CODE = 11 ---------------------------------------------------------------------------- »»>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 2. 93 7.73 1.763 .20( .10) .50 1.9 303.10 ** MEMORY BANK # 3 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 7.76 10.32 1.493 .22 ( .11) . 48 6.1 309.00 2 8.16 13.14 1.300 .22 ( .11) .48 7.5 305.00 3 7.72 16.29 1.149 .22( .11) .48 8.1 300.00 ** PEAK :LOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 9.88 7.73 1.763 .22 ( .11) .49 6.5 303.10 2 10.22 10.32 1.493 .22 ( .11) .49 8.0 309.00 3 10.27 13.14 1.300 .22 ( .11) .49 9.4 305.00 4 9.57 16.29 1.149 .22 ( .11) .49 10.0 300.00 TOTAL AREA(ACRES) = 10.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.27 TOMIN. ) = 13.145 EFFECTIVE AREA(ACRES) = 9.38 AREA-AVERAGED Fm(INCH/HR) _ .11 AREA-AVERAGED Fp(INCH/HR) _ .22 AREA-AVERAGED Ap = . 49 TOTAL AREA(ACRES) = 10.00 FLOW PROCESS FROM NODE 312.00 TO NODE 312.00 IS CODE = 12 ---------------------------------------------------------------------------- »»>CLE-.R MEMORY BANK # 3 ««< CLOY: PROCESS FROM NODE 312.00 TO NODE 319.00 IS CODE = 3.1 59 --------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 9.70 DOWNSTREAM(FEET) = 6.00 FLOW LENGTH(FEET) = 735.00 MANNING'S N = .013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 16. 6 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 5.05 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.27 PIPE TRAVEL TIME(MIN. ) = 2.43 TQ MIN. ) = 15.57 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ FLOW PROCESS FROM NODE 319.00 TO NODE 319.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 15.57 RAINFALL INTENSITY(INCH/HR) = 1.18 AREA-AVERAGED Fm(INCH/HR) = .11 AREA-AVERAGED Fp(INCH/HR) = .22 AREA-AVERAGED Ap = .49 . EFFECTIVE STREAM AREA(ACRES) = 9.38 TOTAL STREAM AREA(ACRES) = 10.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.27 FLOW PROCESS".FROM NODE 313.00 TO NODE 314.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< --------------------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 135.00 ELEVATION DATA: UPSTREAM(FEET) = 25.20 DOWNSTREAM(FEET) = 23.20 Tc = K* ( (LENGTH** 3.00)/ (ELEVATION CHANGE) ] ** .20 SU3ARZA =.NALYSIS USED MINIMUM TO MIN. ) = 6.426 ' 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1. 960 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL "5-7 DWELLINGS/ACRE" D .20 .20 .50 57 6.43 RESIDENTIAL "5-7 DWELLINGS/ACRE" C .10 .25 .50 50 6.43 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .22 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap .50 SUBAREA RUNOFF(CFS) _ .50 TOTAL AREA(ACRES) _ .30 PEAK FLOW RATE(CFS) _ .50 FLOW PROCESS FROM NODE 314.00 TO NODE 315.00 IS CODE = 6.2 -------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>>>(STREET TABLE SECTION # 1 USED)«<<< UPSTREAM ELEVATION(FEET) = 23.10 DOWNSTREAM ELEVATION(FEET) = 21.30 STREET L_NGTH (FEET) = 353.00 CURB HEIGHT(INCHES) = 6.0 STREET -ALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 60 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 ** W CFS - 1.18 TRAVEL TIME COMPUTED USING ESTIMATED FLO ( ) -. STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .29 HALFSTREET FLOOD WIDTH(FEET) _ ' 8.31 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.46 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .43 STREET FLOW TRAVEL TIME(MIN. ) = 4.04 TQ MIN. ) = 10.46 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.482 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C 1.10 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 1.34 EFFECTIVE AREA(ACRES) = 1.40 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .24 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 1.71 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .32 HALFSTREET FLOOD WIDTH(FEET) = 9.83 FLOW VELOCITY(FEET/SEC. ) = 1.58 DEPTH*VELOCITY(FT*FT/SEC. ) _ .51 --FLOW PROCESS FROM NODE 315.00 TO NODE 319.00 IS CODE = 6.2 -------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>>WSTREET TABLE SECTION # 1 USED) <<< UPSTREAM ELEVATION(FEET) = 21.30 DOWNSTREAM ELEVATION(FEET) = 20.30 STREET LENGTH(FEET) = 190.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBR.EAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.04 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) _ .34 HALFSTREET FLOOD WIDTH (FEET) = 10.51 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.67 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .56 STREET FLOW TRAVEL TIME(MIN. ) = 1.89 Tc(h_•IN. ) = 12.36 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.347 SUBARE-'. LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS 'SAND USE GROUP (ACRES) (INCHAR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C . 60 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = . 50 SUBAREA AREA(ACRES)) = . 60 SUBAREA RffTOFF(CFS) . 66 EFFECTIVE AREA(ACRES) = 2.00 AREA-AVERAZ£D Fm(INCH/HR) _ . 12 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 61 TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) = 2.20 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) _ .34 HALFSTREET FLOOD WIDTH(FEET) = 10.82 FLOW VELOCITY(FEET/SEC. ) = 1.71 DEPTH*VELOCITY(FT*FT/SEC. ) _ .59 FLOW PROCESS FROM NODE 319.00 TO NODE 319.00 IS CODE = 8.1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ------------------ MAINLINE Tc(MIN) = 12.36 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.347 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C 1.00 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .2-5 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 1.10 EFFECTIVE AREA(ACRES) = 3.00 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.00 PEAK FLOW RATE(CFS) = 3.30 FLOW PROCESS FROM NODE 319.00 TO NODE 319.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 40 TOTAL NUMBER-OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 12.36 RAINFALL INTENSITY(INCH/HR) = 1.35 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.00 TOTAL STREAM AREA(ACRES) = 3.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.30 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 9.88 10.17 1.506 .22( .11) .49 6.5 303.10 1 10.22 12.75 1.323 .22 ( .11) .49 8.0 309.00 1 10.27 15.57 1.179 .22( .11) .49 9.4 305.00 1 9.57 18.74 1.060 .22 ( . 11) .49 10.0 300.00 2 3.30 12.36 1.347 .25 ( .12) .50 3.0 313.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 12. 95 10.17 1.506 .23 ( . 11) .49 8. 9 303.10 2 13.46 12.75 1.323 .23( . 11) .49 11.0 309.00 3 13.13 15.57 1.179 .23 ( .11) . 49 12.4 305.00 4 12. 10 18.74 1.060 .23 ( . 11) .49 13.0 300.00 5 _3.47 12.36 1.347 .23 ( . 11) .49 10.8 313.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 62 PEAK FLOW RATE(CFS) = 13.47 TW MIN. ) = 12.36 EFFECTIVE AREA(ACRES) = 10.78 AREA-AVERAGED Fm(INCH/HR) = lI AREA-AVERAGED Fp(INCH/HR) _ .23 AREA-AVERAGED Ap = .49 TOTAL AREA(ACRES) = 13.00 FLOW PROCESS FROM NODE 319.00 TO NODE 323.00 IS CODE = 3.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< --------------------------- ELEVATION DATA: UPSTREAM(FEET) = 6.00 DOWNSTREAM(FEET) = 5.50 FLOW LENGTH (FEET) = 100.00 MANNING'S N = .013 DEPTH OF FLOW IN 24 .0 INCH PIPE IS 17. 6 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 5.46 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 13.47 PIPE TRAVEL TIME(MIN. ) _ .31 Tc(MIN. ) = 12.66 FLOW PROCESS FROM NODE 323.00 TO NODE 323.00 IS CODE = I ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 12.66 RAINFALL INTENSITY(INCH/HR) = 1.33 AREA-AVERAGED Fm(INCH/HR) = .11 AREA-AVERAGED Fp(INCH/HR) = .23 AREA-AVERAGED Ap = .49 EFFECTIVE STREAM AREA(ACRES) = 10.78 TOTAL STREAM AREA(ACRES) = 13.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.47 FLOW PROCESS FROM NODE 316.00 TO NODE 317.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< --------------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 198.00 ELEVATION DATA: UPSTREAM(FEET) = 25.00 DOWNSTREAM(FEET) = 22.90 Tc = K* [ (LENGTH** 3.00) / (ELEVATION CHANGE) )** .20 SUBAREA ANALYSIS USED MINIMUM T W MIN. ) = 8.008 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.727 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp AP SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL "5-7 DWELLINGS/ACRE" D .30 .20 .50 57 8.01 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) _ .44 TOTAL AREA(ACRES) _ .30 PEAK FLOW RATE(CFS) _ .44 FLOW PROCESS FROM NODE 317. 00 TO NODE 318. 00 IS CODE = 6.2 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>>WSTREET TABLE SECTION ? 1 USED) <<<< --------------------- UPSTREAM ZLEVA.TION (FEET) = 22. 90 DOWNSTREAM ELEVATION(FEET) = 20. 90 63 STREET LENGTH(FEET) = 402.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ - .020 OUTSIDE STREET CROSSFALL(DECIMAL) .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.10 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .29 HALFSTREET FLOOD WIDTH(FEET) = 8.11 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.41 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .41 STREET FLOW TRAVEL TIME(MIN. ) = 4.74 Tc(MIN. ) = 12.74 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.323 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" D - .30 .20 .50 57 RESIDENTIAL "5-7 DWELLINGS/ACRE" C .90 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .24 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 1.30 EFFECTIVE AREA(ACRES) = 1.50 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) = .23 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .32 HALFSTREET FLOOD WIDTH(FEET) = 9.63 FLOW VELOCITY(FEET/SEC. ) = 1.56 DEPTH*VELOCITY(FT*FT/SEC. ) _ .50 FLOW PROCESS FROM NODE 318.00 TO NODE 323.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 20. 90 DOWNSTREAM ELEVATION(FEET) = 19.90 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6.0 STREET H-ALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 "*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.93 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .33 HALFSTREET FLOOD WIDTH(FEET) = 10.35 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1. 62 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) = .54 STREET FLOW TRAVEL TIME(MIN. ) = 2.06 Tc(MIN. ) = 14.80 ' 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.214 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN 64 RESIDENTIAL "5-7 DWELLINGS/ACRE" C .60 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .60 SUBAREA RUNOFF(CFS) _ .59 EFFECTIVE AREA(ACRES) 2.10 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) = .24 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) 2.07 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .34 HALFSTREET FLOOD WIDTH(FEET) = 10.66 FLOW VELOCITY(FEET/SEC. ) = 1.65 DEPTH*VELOCITY(FT*FT/SEC. ) _ .56 FLOW PROCESS FROM NODE 323.00 TO NODE 323.00 IS CODE = 8.1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 14.80 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.214 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .60 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .60 SUBAREA RUNOFF(CFS) _ .59 EFFECTIVE AREA(ACRES) 2.70 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .24 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) 2.70 PEAK FLOW RATE(CFS) 2.66 FLOW PROCESS FROM NODE 323.00 TO NODE 323.00 IS CODE 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ------------------------------- TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 14.80 RAINFALL INTENSITY(INCH/HR) = 1.21 AREA-AVERAGED Fm(INCH/HR) = .12 AREA-AVERAGED Fp(INCH/HR) = .24 AREA-AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) 2.70 TOTAL STREAM AREA(ACRES) = 2.70 PEAK FLOW RATE(CFS) AT CONFLUENCE 2.66 FLOC PROCESS FROM NODE 320.00 TO NODE 321.00 IS CODE 2.1 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< - ----------------------- INITIAL SUBAREA FLOW-LENGTH(FEET) 118.00 ELEVATION DATA: UPSTREAM(FEET) = 28.60 DOWNSTREAM(FEET) 26.70 Tc = W (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUB_.R=A ANALYSIS USED MINIMUM Tc(MIN. ) = 5. 989 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.041 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) RESIDENTIAL 65 "5-7 DWELLINGS/ACRE" C . 10 .25 .50 50 5. 99 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA RUNOFF(CFS) _ .17 TOTAL AREA(ACRES) _ .10 PEAK FLOW RATE(CFS) _ .17 FLOW PROCESS FROM NODE 321.00 TO NODE 322.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>>WSTREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 26.70 DOWNSTREAM ELEVATION(FEET) = 26.00 STREET LENGTH(FEET) = 150.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ .020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = .020 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ .46 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .23 HALF'STREET FLOOD WIDTH(FEET) = 5.25 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.16 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) = .27 STREET FLOW TRAVEL TIME(MIN. ) = 2.15 TQ MIN. ) = 8.14 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.712 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT-TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C .40 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = .40 SUBAREA RUNOFF(CFS) _ .57 EFFECTIVE AREA(ACRES) _ .50 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = .50 PEAK FLOW RATE(CFS) _ .71 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .26 HALFSTREET FLOOD WIDTH(FEET) = 6.65 FLOW VELOCITY(FEET/SEC. ) = 1.28 DEPTH*VELOCITY(FT*FT/SEC. ) _ .33 FLOW PROCESS FROM NODE 322.00 TO NODE 323.00 IS CODE = 6.2 ---------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>>WSTREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 26.00 DOWNSTREAM ELEVATION(FEET) = 20.40 STREET LENGTH(FEET) = 402.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) _ .020 OUTSIDE STREET CROSSFALL(DECIMAL) _ . 020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) _ .020 66 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1. 60 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = .28 HALFSTREET FLOOD WIDTH(FEET) = 7.58 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 2.32 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC. ) _ .64 STREET FLOW TRAVEL TIME(MIN. ) = 2.89 T O MIN. ) = 11.03 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.438 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C 1.50 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 1.77 EFFECTIVE AREA(ACRES) = 2.00 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) = 2.36 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = .31 HALFSTREET FLOOD WIDTH(FEET) = 9.04 FLOW VELOCITY(FEET/SEC. ) = 2.53 DEPTH*VELOCITY(FT*FT/SEC. ) _ .78 FLOW PROCESS FROM NODE 323.00 TO NODE 323.00 IS CODE = 8.1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< -- ---------------------------- --- ---------------- MAINLINE Tc(MIN) = 11.03 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.438 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C 1.40 .25 .50 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .50 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 1. 65 EFFECIVE AREA(ACRES) = 3.40 AREA-AVERAGED Fm(INCH/HR) _ .13 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .50 TOTAL AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) = 4.02 FLOW PROCESS FROM NODE 323.00 TO NODE 323.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 11.03 RAINFALL INTENSITY(INCH/HR) = 1.44 AREA-AVERAGED Fm(INCH/HR) = .13 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .50 EFFECTIVE STREAM AREA(ACRES) = 3.40 TOTAL STREAM AREA(ACRES) = 3.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4 .02 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 12. 95 10.47 1.481 .23 ( .11) .49 8. 9 303.10 67 1 13. 46 13.05 1.305 .23( 11) .49 11.0 309.00 1 13. 13 15.88 1.166 .23( . 11) .49 12.4 305.00 1 12.10 19.05 1.051 .23 ( .11) .49 13.0 300.00 1 13. 47 12.66 1.328 .23( . 11) .49 10.8 313.00 1 2. 66 14 .80 1.214 .24 ( . 12) .50 2.7 316.00 2 4.02 11.03 1.438 .25 ( .13) .50 3.4 316.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 19.23 10.47 1.481 .23( . 11) .49 14.1 303.10 2 19. 66 12. 66 1.328 .23( . 11) .49 16.5 313.00 3 19.61 13.05 1.305 .23 ( .11) .49 16.8 309.00 4 19.24 14.80 1.214 .23( . 11) .49 18.0 316.00 5 18.86 15.88 1.166 .23( .11) .49 18.5 305.00 6 17.19 19.05 1.051 .23 ( .11) .49 19.1 300.00 7 19.48 11.03 1.438 .23( .11) .49 14.8 316.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PE.kK FLOW RATE(CFS) = 19. 66 Tc(MIN. ) = 12.66 EFFECTIVE AREA(ACRES) = 16.49 AREA-AVERAGED Fm(INCH/HR) = 11 AREA-AVERAGED Fp(INCH/HR) _ .23 AREA-AVERAGED Ap = .49 TOTAL AREA(ACRES) = 19.10 FLOW PROCESS FROM NODE 323.00 TO NODE 250.00 IS CODE = 3.1 ---------------------------------------------------------------------------- >>>>>COMPUTE'..PIPE-FLOW TRAVEL TIME THRU SUBAREA««< _-»»>USING-COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 5.50 DOWNSTREAM(FEET) =r 4.40 FLOW LENGTH(FEET) = 222.00 MANNING'S N = .013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.0 INCHES ?IPE-FLOW VELOCITY(FEET/SEC. ) = 5.92 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 =IPE-FLOW(CFS) = 19.66 _7_7 TRAVEL TIME(MIN. ) _ .62 Tc(MIN. ) = 13.29 FLOW PROCESS FROM NODE 250.00 TO NODE 250.00 IS CODE = 11 ---------------------------------------------------------------------------- »»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY««< '* MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity. Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 19.23 11.10 1.432 .23( .11) .49 14.1 303.10 2 19.48 11. 65 1.393 .23 ( . 11) .49 14.8 316.00 3 19. 66 13.29 1.292 .23 ( . 11) .49 16.5 313.00 4 19. 61 13. 68 1.270 .23( .11) .49 16.8 309.00 5 19.24 15.43 1.186 .23( . 11) .49 18.0 316.00 6 18.86 16.50 1.141 .23( . 11) .49 18.5 305.00 7 17. 19 19. 68 1.031 .23 ( . 11) .49 19.1 300.00 MEMORY BANK # 2 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 50.36 8.43 1.677 .22 ( . 10) . 45 30.6 237. 00 2 56. 63 10. 93 1.445 .22 ( . 10) .45 41.5 238.00 3 57.52 11.37 1.413 .22 ( . 10) .45 43. 3 243.00 68 4 58.14 11.72 1.368 .22( .10) .45 44.7 203.00 5 58.65 12.01 1.369 .22 ( .10) .45 45. 9 219.00 6 59.34 12.43 1.342 .22 ( .10) .45 47. 6 221.00 7 59.52 12.55 1.335 .22 ( .10) .45 48.1 200.00 8 59.71 12.74 1.323 .22 ( .10) .45 48.8 233.00 9 59.74 12.78 1.321 .22 ( .10) .45 48. 9 233.00 10 59.49 12.92 1.312 .22 ( .10) .45 49.1 241.00 11 59.23 13.07 1.304 .22 ( .10) .45 49.3 225.00 12 59.11 13.13 1.301 .22 ( .10) .45 49.3 208.00 13 58.71 13.30 1.291 .22 ( .10) .45 49.4 205.00 14 58.67 13.32 1,290 .22 ( .10) .45 49.4 229.00 15 58.07 13.57 1.276 .22 ( .10) .45 49. 6 231.00 16 57.52 13.79 1.264 .22( .10) .45 49.7 247.00 17 57.26 13.89 1.259 .22 ( .10) .45 49.7 214.00 18 57.09 13.96 1.256 .22 ( .10) .45 49.7 211.00 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 76.20 11.10 1.432 .22 ( .10) .46 56.3 303.10 2 77.51 11.65 1.393 .22 ( .10) .46 59.3 316.00 3 78.41 13.29 1.292 .22 ( .10) .46 65.9 313.00 4 77.41 13.68 1.270 .22 ( .10) .46 66.4 309.00 5 72.87 15.43 1.186 .22 ( .10) .46 67.7 316.00 6 70.26 16.50 1.141 .22 ( .10) .46 68.2 305.00 7 63.18 19.68 1.031 .22 ( .10) .46 68.8 300.00 8 67.68 8.43 1.677 .22 ( .10) .46 41.3 237.00 9 75.75 10.93 1.445 .22 ( .10) .46 55.4 238.00 10 . 76.87 11.37 1.413 .22 ( .10) .46 57.8 243.00 11 77.63 11.72 1.388 .22 ( .10) .46 59.6 203.00 12 78.17 12.01 1.369 .22 ( .10) .46 61.1 219.00 13 78.90 12.43 1.342 .22 ( .10) .46 63.2 221.G0 14 79.10 12.55 1.335 .22( .10) .46 63.8 200.00 15 79.32 12.74 1.323 .22 ( .10) .46 64.7 233.00 16 79.34 12.78 1.321 .22( .10) .46 64.9 233.00 17 79.12 12. 92 1.312 .22 ( .10) .46 65.2 241.00 18 78.87 13.07 1.304 .22 ( .10) .46 65.5 225.00 19 78.76 13.13 1.301 .22 ( .10) .46 65.6 208.00 20 78.37 13.30 1.291 .22 ( .10) .46 65.9 205.00 21 78.33 13.32 1.290 .22 ( .10) .46 66.0 229.00 22 77.69 13.57 1.276 .22 ( .10) .46 66.3 231.00 23 77.10 13.79 1.264 .22 ( .10) .46 66.5 247.00 24 76.82 13.89 1.259 .22 ( .10) .46 66.6 214.00 25 76.64 13.96 1.256 .22 ( .10) . 46 66.7 211.00 TOTAL AREA(ACRES) = 68.80 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 79.34 Tc(MIN. ) = 12.778 EFFECTIVE AREA(ACRES) = 64.86 AREA-AVERAGED Fm(INCH/HR) _ .10 AREA-AVERAGED Fp(INCH/HR) _ .22 AREA-AVERAGED Ap = .46 TOTAL AREA(ACRES) = 68.80 FLO . _ROCESS FROM NODE 250.00 TO NODE 250.00 IS CODE = 12 ---------------------------------------------------------------------------- --»»>-LEAR MEMORY BANK # 2 ««< FLO"v7 PROCESS FROM NODE 250. 00 TO NODE 111.00 IS CODE = 3.1 ---------------------------------------------------------------------------- »»>COMPUTE_ PIPE-FLOW TRAVEL TIME THRU SUBAP: A««< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< 69 ELEVATION DATA: UPSTREAM(FEET) = 4 . 40 DOWNSTREAM(FEET) = 3.20 FLOW LENGTH(FEET) = 235.00 MANNING'S N = .013 DEPTH OF FLOW IN 45.0 INCH PIPE IS 35. 6 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 8.46 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 79.34 PIPE TRAVEL TIME(MIN. ) _ .46 Tc(MIN. ) = 13.24 FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 11 ---------------------------------------------------------------------------- »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 67.68 8.92 1.624 .22 ( .10) .46 41.3 237.00 2 75.75 11.40 1.411 .22( .10) .46 55.4 238.00 3 76.20 11.56 1.399 .22( .10) .46 56.3 303.10 4 76.87 11.83 1.381 .22( .10) .46 57.8 243.00 5 77.51 12.12 1.362 .22( .10) .46 59.3 316.00 6 77. 63 12.18 1.358 .22 ( .10) .46 59. 6 203.00 7 78.17 12.47 1.340 .22 ( .10) .46 61.1 219.00 8 78.90 12.89 1.314 .22 ( .10) . 46 63.2 221.00 9 79.10 13.02 1.307 .22( .10) .46 63.8 200.00 10 79.32 13.20 1.296 .22( .10) .46 64.7 233.00 11 79.34 13.24 1.294 .22 ( .10) .46 64.9 233.00 12 79.12 13.39 1.286 .22( .10) .46 65.2 241.00 13 78.87 13.54 1.278 .22( .10) .46 65.5 225.00 14 78.76 13.59 1.275 .22( . 10) .46 65.6 208.00 15 78.41 13.75 1.267 .22( .10) .46 65.9 313.00 16 78.37 13.77 1.266 .22( .10) .46 65. 9 205.00 17 78.33 13.78 1.265 .22 ( .10) .46 66.0 229.00 18 77.69 14.03 1.252 .22( .10) .46 66.3 231.00 19 77.41 14.14 1.246 .22 ( . 10) .46 66.4 309.00 20 77.10 14.26 1.241 .22 ( .10) .46 66.5 247.00 21 76.82 14.36 1.235 .22 ( .10) .46 66. 6 214.00 22 76. 64 14.42 1.232 .22 ( .10) .46 66.7 211.00 23 72.87 15. 90 1.165 .22 ( .10) .46 67.7 316.00 24 70.26 16.97 1.122 .22 ( .10) .46 68.2 305.00 25 63.18 20.17 1.017 .22 ( .10) .46 68.8 300.00 ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 79.20 8.01 1.728 .21 ( . 12) .57 42.8 100.00 2 80.35 8.26 1.697 .21 ( .12) .57 44. 6 109.00 3 89.74 10.35 1.491 .21( .12) .57 59.5 102.00 4 99. 98 14.29 1.239 .21 ( . 12) .58 86. 9 103.00 5 127.13 25.24 .894 .21 ( .12) .58 161.2 504 .00 ** PEAK :LOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 151.00 8. 92 1.624 .22 ( . 11) .52 90. 6 237.00 2 168.22 11. 40 1.411 .22 ( . 11) .52 122.2 238.00 3 169.11 11.56 1.399 .22 ( .11) .52 124.3 303.10 4 170. 48 11.83 1.381 .22 ( . 11) .52 127.7 243.00 5 171.85 12.12 1.362 .22 ( . 11) .52 131.1 316.00 6 172.13 12. 18 1.358 .22 ( . 11) .52 131. 9 203.00 7 173.44 12.47 1.340 .22 ( -1) .52 135. 4 219.00 8 175.27 12.89 1.314 .22 ( . 11) .52 140.5 221.00 9 175.78 13.02 1.307 .22 ( . 11) .52 142. 0 200.CC 70 10 176.48 13.20 1.296 .22 ( 11) .52 144 .1 233.00 11 176.61 13.24 1.294 .22 ( .11) .52 144.5 233.00 12 176.77 13.39 1.286 .22 ( .11) .52 145.9 241.00 13 176.91 13.54 1.278 .22 ( .11) .52 147.3 225.00 14 176.94 13.59 1.275 .22 ( .11) .52 147.8 208.00 15 177.00 13.75 1.267 .22 ( .11) .53 149.1 313.00 16 177.00 13.77 1.266 .22 ( .11) .53 149.3 205.00 17 177.00 13.78 1.265 .22 ( .11) .53 149.4 229.00 18 177.02 14.03 1.252 .22 ( .11) .53 151.5 231.00 19 177.02 14.14 1.246 .22 ( .11) .53 152.4 309.00 20 177.01 14.26- 1.241 .22 ( .11) .53 153.3 247.00 21 176.99 14.36 1.235 .22 ( .11) .53 154.1 214.00 22 176. 97 14 .42 1.232 .22 ( .11) .53 154.6 211.00 23 176.85 15.90 1.165 .22 ( .11) .53 165.5 316.00 24 176.91 16. 97 1.122 .22 ( .11) .53 173.3 305.00 25 177.75 20.17 1.017 .21 ( .12) .54 195. 6 300.00 26 144.10 8.01 1.728 .22 ( .11) .52 79.8 100.00 27 146.04 8.26 1. 697 .22 ( .11) .52 82.8 109.00 28 162.07 10.35 1.491 .22 ( .11) .52 108. 9 102.00 29 177.01 14.29 1.239 .22 ( .11) .53 153.5 103.00 30 181.81 25.24 .894 .21 ( .12) .54 230.0 504.00 TOTAL AREA(ACRES) = 237.40 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 181.81 TO MIN. ) = 25.240 EFFECTIVE AREA(ACRES) = 229.98 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .21 AREA-AVERAGED Ap = .54 TOTAL AREA(ACRES) = 237.40 FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 12 --- ---- - - --------7----------------- »»>CLEAR MEMORY BANK # 1 ««< FLOW PROCESS FROM NODE 111.00 TO NODE 608.00 IS CODE = 3.1 --------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< --------- ------------ ----------------------------- ELEVATION DATA: UPSTREAM(FEET) = 3.20 DOWNSTREAM(FEET) = 2.60 FLOW LENGTH(FEET) = 115.00 MANNING'S N = .013 DEPTH OF FLOW IN 63.0 INCH PIPE IS 46.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 10.62 ESTIMATED PIPE DIAMETER(INCH) = 63.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 181.81 PIPE TRAVEL TIME(MIN. ) _ .18 TO MIN. ) = 25.42 FLOW PROCESS FROM NODE 608.00 TO NODE 608.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 25.42 RAINFALL INTENSITY(INCH/HR) _ .89 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .21 AREA-AVERAGED Ap = .54 EFFECTIVE STREAM AREA(ACRES) = 229.98 TOTAL STREAM AREA(ACRES) = 237.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 181.81 71 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ FLOW PROCESS FROM NODE 600.00 TO NODE 601.00 IS CODE = 2.1 ---------------------------------------------------------------------------- >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ------------- INITIAL SUBAREA FLOW-LENGTH(FEET) = 400.00 ELEVATION DATA: UPSTREAM(FEET) = 27.90 DOWNSTREAM(FEET) = 24.00 Tc = K*[ (LENGTH** 3.00) / (ELEVATION CHANGE) ] ** .20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN. ) = 13.396 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.286 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN. ) PUBLIC PARK C .40 .25 .85 50 13.40 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .85 SUBAREA RUNOFF(CFS) _ .39 TOTAL AREA(ACRES) _ .40 PEAK FLOW RATE(CFS) _ .39 FLOW PROCESS FROM NODE 601.00 TO NODE 602.00 IS CODE = 3.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 22.00 DOWNSTREAM(FEET) _ 20.00 FLOW LENGTH(FEET) = 400.00 MANNING'S N = .012 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW- IN 18.0 INCH PIPE IS 2.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 2.25 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = .39 PIPE TRAVEL TIME(MIN. ) = 2.96 TO MIN. ) = 16.36 FLOW PROCESS FROM NODE 602.00 TO NODE 602.00 IS CODE = 8.1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< --------------- MAINLINE TQ MIN) = 16.36 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.146 SUBAREA LOSS RATE DATA(AMC I ): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK C .10 .25 .85 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .85 SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) _ .08 EFFECTIVE AREA(ACRES) _ .50 AREA-AVERAGED Fm(INCH/HR) _ .21 AREA-AVERAGED Fp(INCH/HR) _ .25 AREA-AVERAGED Ap = .85 TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS) _ .42 FLOW PROCESS FROM NODE 602.00 TO NODE 608.00 IS CODE = 3.1 ---------------------------------------------------------------------------- 40 »>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 20.00 DOWNSTREAM(FEET) = 17.20 FLOW LZNGTH(FEET) = 285.00 MANNING'S N = . 012 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 72 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 2.95 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = .42 PIPE TRAVEL TIME(MIN. ) = 1. 61 TQ MIN. ) = 17. 97 FLOW PROCESS FROM NODE 608.00 TO NODE 608.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 17.97 RAINFALL INTENSITY(INCH/HR) = 1.09 AREA-AVERAGED Fm(INCH/HR) = .21 AREA-AVERAGED Fp(INCH/HR) = .25 AREA-AVERAGED Ap = .85 EFFECTIVE STREAM AREA(ACRES) _ .50 TOTAL STREAM AREA(ACRES) = .50 PEAK FLOW RATE (CFS) AT CONFLUENCE _ .42 FLOW PROCESS FROM NODE 603.00 TO NODE 604.00 IS CODE = 2.1 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL, SUBAREA FLOW-LENGTH(FEET) = 475.00 ELEVATION DATA: UPSTREAM(FEET) = 29.30 DOWNSTREAM(FEET) = 25.00 Tc = K* ( (LENGTH** 3.00) / (ELEVATION CHANGE) ]** .20 SUBAREA ANALYSIS USED MINIMUM T W MIN. ) = 14.564 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.225 SUBAREA Tc AND LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc 7AND USE GROUP (ACRES) (INCH/ R) (DECIMAL) CN (MIN. ) PUB11C PARK D .20 .20 .85 57 14.56 PUBIC PARK C .20 .25 .85 50 14.56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .22 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .85 SUBAREA RUNOFF(CFS) _ .37 TOTAL AREA(ACRES) _ .40 PEAK FLOW RATE(CFS) _ .37 FLOW PROCESS FROM NODE 604.00 TO NODE 605.00 IS CODE = 3.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<< ELEVATION DATA: UPSTREAM(FEET) = 23.00 DOWNSTREAM(FEET) = 21.10 FLOW LENGTH(FEET) = 190.00 MANNING'S N = .012 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DE?7H OF FLOW IN 18.0 INCH PIPE IS 2.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 2.84 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-=LOW(CFS) = .37 PIPE TRAVEL TIME(MIN. ) = 1.11 T W MIN. ) = 15.68 FLOW PROCESS FROM NODE 605.00 TO NODE 605.00 IS CODE = 8.1 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 73 MAINLINE TQMIN) = 15. 68 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.175 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK C .10 .25 .85 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .85 SUBAREA AREA(ACRES) = .10 SUBAREA RUNOFF(CFS) _ .09 EFFECTIVE AREA(ACRES) _ .50 AREA-AVERAGED Fm(INCH/HR) _ .20 AREA-AVERAGED Fp(INCH/HR) _ .23 AREA-AVERAGED Ap = .85 TOTAL AREA(ACRES) _ .50 PEAK FLOW RATE(CFS) _ .44 FLOW PROCESS FROM NODE 605.00 TO NODE 606.00 IS CODE = 3.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 21.10 DOWNSTREAM(FEET) = 19.40 FLOW LENGTH(FEET) = 165.00 MANNING'S N = .012 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 3.05 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = .44 PIPE HAVEL TIME(MIN. ) _ .90 Tc(MIN. ) = 16.58 FLOW PROCESS -FROM NODE 606.00 TO NODE 606.00 IS CODE = 8.1 -------- --------------------------------- ------ ---------------- ------------- -_»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE TOMIN) = 16.58 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.138 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN ' PUBLIC PARK C .30 .25 .85 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .85 SUBAREA AREA(ACRES) = .30 SUBAREA RUNOFF(CFS) _ .25 EFFECTIVE AREA(ACRES) _ .80 AREA-AVERAGED Fm(INCH/HR) _ .20 AREA-AVERAGED Fp(INCH/HR) _ .24 AREA-AVERAGED Ap = .85 TOTAL AREA(ACRES) _ .80 PEAK FLOW RATE(CFS) _ .67 FLOW PROCESS FROM NODE 606.00 TO NODE 607.00 IS CODE = 3.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 19.40 DOWNSTREAM(FEET) = 13.60 FLOW LENGTH(FEET) = 585.00 MANNING'S N = .012 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 3.39 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PE-FLOW(CFS) = . 67 PIPE TRAVEL TIME(MIN. ) = 2.88 Tc(MIN. ) = 19.46 FLOW PROCESS FROM NODE 607.00 TO NODE 607.00 IS CODE = 8.1 ---------------------------------------------------------------------------- 74 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN) = 19.46 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.038 SUBAREA LOSS RATE DATA(AMC I ) : 0 DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK C .30 .25 .85 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .85 SUBAREA AREA(ACRES) _ .30 SUBAREA RUNOFF(CFS) _ .22 EFFECTIVE AREA(ACRES) 1.10 AREA-AVERAGED Fm(INCH/HR) _ .20 AREA-AVERAGED Fp(INCH/HR) _ .24 AREA-AVERAGED Ap = .85 TOTAL AREA(ACRES) 1.10 PEAK FLOW RATE(CFS) _ .82 FLOW PROCESS FROM NODE 607.00 TO NODE 608.00 IS CODE = 3.1 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) 13.60 DOWNSTREAM(FEET) 10.20 FLOW LENGTH(FEET) = 340.00 MANNING'S N = .012 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 3.62 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIP£-FLOW(CFS) _ .82 PIPE TRAVEL TIME(MIN. ) 1.57 T Q MIN. ) = 21.02 FLOW PROCESS FROM NODE 608.00 TO NODE 608.00 IS CODE 8.1 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< MAINLINE Tc(MIN) = 21.02 * 2 YEAR RAINFALL INTENSITY(INCH/HR) _ . 993 SUBAREA LOSS RATE DATA(AMC I ) : DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK C .30 .25 .85 50 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) _ .25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = .85 SUBAREA AREA(ACRES) _ .30 SUBAREA RUNOFF(CFS) _ .21 EFFECTIVE AREA(ACRES) 1.40 AREA-AVERAGED F&INCH/HR) _ .21 AREA-AVERAGED Fp(INCH/HR) _ .24 AREA-P.VERAGED Ap = .85 TOTAL AREA(ACRES) 1.40 PEAK FLOW RATE(CFS) _ .99 FLOW PROCESS FROM NODE 608.00 TO NODE 608.00 IS CODE 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAK` 3 ARE: TIME OF CONCENTRATION(MIN. ) = 21.02 RAINFALL INTENSITY(INCH/HR) _ . 99 AREA-AVERAGED Fm(INCH/HR) _ .21 ARE!-AVERAGED Fp(INCH/HR) _ .24 AREA-AVERAGED Ap = .85 .AFFECTIVE STREAM AREA(ACRES) 1.40 TOTAL STREAM AREA(ACRES) _ 1.40 PEAK FLOW RATE(CFS) AT CONFLUENCE _ .9-9 75 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 151.00 9.11 1.604 .22( .11) .52 90.6 237.00 1 168.22 11.58 1.398 .22 ( .11) .52 122.2 238.00 1 169.11 11.75 1.386 .22 ( .11) .52 124.3 303.10 1 170.48 12.02 1.368 .22 ( . 11) .52 127.7 243.00 1 171.85 12.30 1.350 .22 ( .11) .52 131.1 316.00 1 172.13 12.37 1.346 .22 ( .11) .52 131. 9 203.00 1 173.44 12.66 1.328 .22 ( .11) .52 135.4 219.00 1 175.27 13.08 1.303 .22 ( .11) .52 140.5 221.00 1 175.78 13.20 1.297 .22 ( .11) .52 142.0 200.00 1 176.48 13.39 1.286 .22( .11) .52 144.1 233.00 1 176.61 13.43 1.284 .22 ( .11) .52 144.5 233.00 1 176.77 13.57 1.276 .22 ( .11) .52 145.9 241.00 1 176.91 13.72 1.268 .22( .11) .52 147.3 225.00 1 176. 94 13.78 1.265 .22 ( . 11) .52 147.8 208.00 1 177.00 13.94 1.257 .22 ( .11) .53 149.1 313.00 1 177.00 13.95 1.256 .22 ( .11) .53 149.3 205.00 1 177.00 13.97 1.255 .22 ( .11) .53 149.4 229.00 1 177.02 14.22 1.243 .22 ( .11) .53 151.5 231.00 1 177.02 14.33 1.237 .22 ( .11) .53 152.4 309.00 1 177.01 14.44 1.231 .22 ( . 11) .53 153.3 247.00 1 176. 99 14.54 1.226 .22 ( .11) .53 154.1 214.00 1 176.97 14.61 1.223 .22( .11) .53 154.6 211.00 1 176.85 16.08 1.158 .22 ( . 11) .53 165.5 316.00 1 176.91 17.16 1.115 .22 ( .11) .53 173.3 305.00 1 177.75 20.35 1.011 .21 ( .12) .54 195.6 300.00 1 144.10 8.20 1.704 .22 ( .11) .52 79.8 100.00 1 146.-04 8.45 1.675 .22 ( .11) .52 82.8 109.00 1 162:07 10.53 1.476 .22 ( .11) .52 108.9 102.00 1 177:01 14.47 1.230 .22( . 11) .53 153.5 - 103.00 1 181.81 25.42 .890 .21 ( .12) .54 230.0 504.00 2 .42 17. 97 1.086 .25 ( .21) .85 .5 600.00 3 .99 21.02 .993 .24 ( .21) .85 1.4 603.00 RAINFP?�L INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 145.17 8.20 1.704 .22 ( .11) .52 80.6 100.00 2 147.12 8.45 1.675 .22 ( .11) .52 83.6 109.00 3 152.10 9.11 1.604 .22 ( .11) .53 91.4 237.00 4 163.22 10.53 1.476 .22 ( . 11) .53 109. 9 102.00 5 169.42 11.58 1.398 .22( .11) .53 123.3 238.00 6 170.31 11.75 1.386 .22 ( .11) .53 125.4 303.10 7 171. 69 12.02 1.368 .22 ( .11) .53 128.8 243.00 8 173.07 12.30 1.350 .22 ( .11) .53 132.3 316.00 9 173.35 12.37 1.346 .22 ( .11) .53 133.1 203.00 10 174 .67 12. 66 1.328 .22 ( . 11) .53 136. 6 219.00 1_1 176.51 13.08 1.303 .22 ( . 11) .53 141.7 221.00 12 177.03 13.20 1.297 .22 ( .11) .53 143.2 200.00 13 177.74 13.39 1.286 .22 ( . 11) .53 145.4 233.00 14 177.86 13.43 1.284 .22 ( .11) .53 145.8 233.00 15 178.02 13.57 1.276 .22 ( . 11) 53 147.2 241.00 16 178.17 13.72 1.268 .22 ( . 11) .53 148. 6 225.00 17 178.20 13.78 1.265 .22 ( . 11) .53 149.1 208.00 18 178.27 13. 94 1.257 .22 ( . 11) .53 150.5 313.00 19 178.27 13. 95 1.256 .22 ( . 11) .53 150.6 205.00 20 178.27 13.97 1.255 .22 ( . 11) .33 150.7 229.00 21 178.29 14 .22 1.243 .22 ( . 11) .53 152.8 231.00 76 22 178.30 14 .33 1.237 .22 ( . 11) .53 153.7 309.00 23 178.29 14 .44 1.231 .22 ( .11) .53 154.7 247.00 24 178.29 14 .47 1.230 .22( .11) .53 154.9 103.00 25 178.27 14 .54 1.226 .22 ( .11) .53 155.4 214 .00 26 178.25 14.61 1.223 .22 ( .11) .53 155. 9 211.00 27 178.17 16.08 1. 158 .22 ( .12) .53 . 167.0 316.00 28 178.26 17.16 1.115 .22 ( .12) .53 175.0 305.00 29 178.49 17. 97 1.086 .22( .12) .54 180.7 600.00 30 179. 11 20.35 1.011 .22( .12) .54 197.5 300.00 31 183.00 25.42 .890 .21 ( .12) .55 231.9 504.00 32 179.65 21.02 .993 .22( .12) .54 202.0 603 .00 COMPUTED CONFLUENCE ESTI MATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 183.00 Tc(MIN. ) = 25.42 EFFECTIVE AREA(ACRES) = 231.88 AREA-AVERAGED Fm(INCH/HR) _ .12 AREA-AVERAGED Fp(INCH/HR) _ .21 AREA-AVERAGED Ap = .55 TOTAL AREA(ACRES) = 239.30 FLOW PROCESS FROM NODE 608.00 TO NODE 609.00 IS CODE = 3.1 ----------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA. UPSTREAM(FEET) 2. 60 DOWNSTREAM(FEET) _ .00 FLOW LENGTH(FEET) = 340.00 MANNING'S N = .013 DEPTH OF FLOW IN 57.0 INCH PIPE IS 45.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 12.12 ESTIMATED PIPE DIAMETER(INCH) = 57.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 183.00 PIPE TRAVEL TIME(MIN. ) _ .47 Tc(MIN. ) = 25.89 - ---------------------------- END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 239.30 TC(MIN. ) = 25.89 EFFECTIVE AREA(ACRES) = 231.88 AREA-AVERAGED Fm(INCH/HR)= .12 AREA-AVERAGED Fp(INCH/HR) _ .21 AREA-AVERAGED Ap = .55 PEAK FLOW RATE(CFS) = 183.00 ** PEAK FLOW RATE TABLE ** S=RE=r4 Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NU:'3ER (CFS) (MIN. ) (INCH/HR) (INCH/HR) (ACRES) NODE 1 145. 17 8.69 1. 649 .22 ( .11) .52 80. 6 100.00 2 147.12 8. 94 1.622 .22 ( .11) .52 83.6 109.00 3 152.10 9.59 1.557 .22 ( .11) .53 91.4 237.00 4 163.22 11.00 1.439 .22 ( .11) .53 109. 9 102.00 5 169.42 12.05 1.366 .22( .11) .53 123.3 238.00 6 170.31 12.22 1.355 .22 ( .11) .53 125.4 303.10 7 171. 69 12.49 1.338 .22 ( .11) .53 128.8 243.00 8 173.07 12.77 1.321 .22 ( .11) .53 132.3 316.00 9 173.35 12.83 1.318 .22 ( .11) .53 133.1 203.00 10 174 . 67 13.13 1.301 .22 ( .11) .53 136.6 219.00 11 176.51 13.55 1.277 .22 ( .11) .53 141.7 221.00 12 177.03 13. 67 1.271 .22 ( .11) .53 143.2 200.00 13 177.74 13.86 1.261 .22 ( .11) .53 145.4 233.00 14 177. 86 13.89 1.259 .22 ( .11) .53 145.8 233.00 i5 178.02 14.04 1.251 .22 ( . 11) .53 147.2 241.00 76 178.17 14 .19 1.244 .22 ( .11) .53 148.6 225.00 -7 178.20 14 .24 1.241 .22 ( .11) .53 149.1 208.00 -3 178.27 14 . 40 1.233 .22 ( .11) .53 150.5 313.00 19 178.27 14 .42 1.232 .22 ( . 11) .53 150. 6 205.00 20 178.27 14 .43 1.232 .22 ( .11) .53 150.7 229.00 21 1_78.29 14 . 68 1.220 .22 ( .11) .53 152.8 231.00 22 178.30 14 .79 1.215 .22 ( .11) .53 153.7 309.00 23 178.29 14 . 91 1.209 .22 ( . 11) .53 154 .7 247.00 77 24 178 .29 14 .94 1.208 .22 ( 11) .53 154 . 9 103.00 25 178.27 15.01 1.204 .22 ( . 11) .53 155. 4 214.00 26 178.25 15.08 1.201 .22 ( . 11) .53 155. 9 211.00 27 178.17 16.55 1.139 .22 ( .12) .53 167.0 316.00 28 178.26 17. 63 1.098 .22( . 12) .53 175.0 305.00 29 178.49 18.44 1.070 .22 ( . 12) .54 180.7 600.00 30 179.11 20.82 .998 .22 ( .12) .54 197.5 300.00 31 179. 65 21.49 .980 .22 ( . 12) .54 202.0 603.00 32 183.00 25.89 .881 .21( . 12) .55 231. 9 504.00 ------------------------- END OF RATIONAL METHOD ANALYSIS NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS (C) Copyright 1989-96 Advanced Engineering Software (aes) Ver. 6.1 Release Date: 01/01/96 License ID 1239 Analysis prepared by: HUNSAKER & ASSOCIATES Irvine, Inc. Planning * Engineering * Surveying Three Hughes * Irvine, California 92718 * (714)583-1010 *** NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm) AND LOW LOSS FRACTION ESTIMATIONS FOR AMC I: TOTAL 24-HOUR DURATION RAINFALL DEPTH = 2.05 (inches) SOIL-COVER AREA PERCENT OF SCS CURVE LOSS RATE TYPE (Acres) PERVIOUS AREA NUMBER Fp(in./hr. ) YIELD 1 30.00 50.00 50. ( 69. ) .250 .445 2 7.70 50.00 57. ( 75. ) .200 .454 3 23. 60 20.00 57. ( 75. ) .200 .715 4 7.70 85.00 57. ( 75. ) .200 .148 TOTAL AREA (Acres) = 69.00 AREA-AVERAGED LOSS RATE, Fm (in./hr. ) _ .098 AREA-AVERAGED LOW LOSS FRACTION, Y = .495 SMALL AREA UNIT HYDROGRAPH MODEL (C) Copyright 1989-96 Advanced Engineering Software (aes) Ver. 6.1 Release Date: 01/01/96 License ID 1239 Analysis prepared by: HUNSAKER & ASSOCIATES Irvine,Inc. Planning * Engineering * Surveying Three Hughes * Irvine, California 92718 * (714)583-1010 RATIONAL METHOD CALIBRATION COEFFICIENT = . 90 TOTAL CATCHMENT AREA(ACRES) = 69.00 SOIL-LOSS RATE, Fm, (INCH/HR) _ .098 LOW LOSS FRACTION = .495 TIME OF CONCENTRATION(MIN. ) = 12.78 RATIONAL METHOD PEAK FLOW RATE (DEFINED BY USER) IS USED FOR SMALL AREA PEAK Q ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED RETURN FREQUENCY(YEARS) = 2 5-MIN _5-MINUTE POINT RAINFALL VALUE(INCHES) - UE(INCHES) .19 30-MINUTE POINT RAINFALL VALUE(INCHES) = .40 1-HOUR POINT RAINFALL VALUE(INCHES) = .53 3-HOUR POINT RAINFALL VALUE(INCHES) = .89 6-HOUR POINT RAINFALL VALUE(INCHES) = 1.22 24-HOUR POINT RAINFALL VALUE(INCHES) = 2.05 ---------------------------------------------------------------------------- TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 6.26 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 5.53 *##*##*#*#*#*#**#*##*#********#*##*####**#######**###*#**#*##*##**#**##**#*# TIME VOLUME Q 0. 20.0 40.0 60.0 80.0 (HOURS) (AF) (CFS) I'I ---- -------- ------------- ---------- ---------------------------- 03 0000 Q .24 .0088 1.00 Q .45 .0266 1.02 Q .67 .0445 1.02 Q •88 .0626 1.03 Q 1.09 .0808 1.04 Q 1.31 .0992 1.05 Q 1.52 . 1178 1.06 Q 1.73 .1365 1.07 Q 1.94 .1554 1.08 Q 2.16 . 1745 1.09 Q 2.37 . 1938 1. 10 Q 2.58 .2132 1.11 Q 2.80 .2329 1. 12 Q 3.01 .2527 1.13 Q 3.22 .2727 1.14 Q 3.43 .2930 1.16 Q 3.65 .3135 1.17 Q 3. .3 1.18 Q 4.07 07 .3550550 1.19 Q 4.29 .3762 1.21 Q 4.50 .3975 1.22 Q 4.71 .4192 1.24 Q 4.93 .4410 1.25 Q 5.14 .4632 1.27 Q 5.35 .4856 1.28 Q 5.56 .5082 1.30 Q 5.78 .5312 1.31 Q , 5.99 .5545 1.33 Q 6.20 .5780 1.34 Q 6.42 .6019 1.37 Q 6.63 .6261 1.38 Q , 6.84 .6507 1.41 Q 7.06 .6756 1.42 Q 7.27 .7009 1.45 Q 7.48 .7265 1.46 Q 7.69 .7526 1.50 Q 7.91 .7790 1.51 Q 8.12 .8059 1.54 Q 8.33 .8333 1.56 Q 8.55 .8611 1.60 Q 8.76 .8894 1.62 Q , 8.97 .9182 1.66 Q 9.19 .9475 1. 68 Q 9.40 .9775 1.72 Q 9.61 1.0080 1.74 Q 9.82 1.0391 1.79 Q 10.04 1.0709 1.82 Q 10.25 1.1034 1.87 Q 10.46 1.1366 1.90 Q 10. 68 1.1706 1.96 Q 10.89 1.2055 2.00 Q 11.10 1.2412 2.07 .Q 11.31 1.2779 2.10 Q 11.53 1.3157 2.18 Q 11.74 1.3545 2.23 Q 11.95 1.3945 2.32 Q 12.17 1.4365 2.46 Q 12.38 1.4846 3.00 Q 12.59 1.5379 3.06 Q 12.81 1.5931 3.20 Q 13.02 1.6501 3.28 •Q 13.23 1.7094 3.45 Q 13.44 1.7709 3.55 Q 13.66 1.8352 3.76 Q 13.87 1.9025 3.88 Q 14.08 1.9735 4.18 Q 14.30 2.0498 4.49 Q 14.51 2.1323 4 .89 Q 14.72 2.2205 5.13 Q 14.94 2.3161 5.73 Q 15. 15 2,4205 6.13 Q 15.36 2.5467 8.21 Q 15.57 2.6920 8.30 Q 15.79 2.8851 13.64 Q 16.00 3.1918 21.22 Q 16.21 4 .0768 79.34 Q. 16.43 4.8619 9.88 Q 16.64 5.0105 7.00 Q , 16.85 5.1197 5.41 Q 17.06 5.2084 4 .68 Q 17.28 5.2849 4 .02 Q 17.49 5.3524 3.65 .Q 17.70 5.4141 3.36 Q 17.92 5.4713 3.13 .Q 18.13 5.5247 2.94 .Q 18.34 5.5706 2.27 Q , 18.56 5. 6094 2.14 .Q 18.77 5.6461 2.03 .Q 18.98 5. 6810 1.93 Q 19. 19 5.7142 1.85 Q 19.41 5.7461 1.77 Q 19. 62 5.7766 1.70 Q 19.83 5.8059 1.64 Q 20.05 5.8342 1.58 Q 20.26 5.8616 1.53 Q 20.47 5.8881 1.48 Q 20.69 5. 9137 1.44 Q 20. 90 5. 9386 1.39 Q 21.11 5.9628 1.36 Q 21.32 5. 9864 1.32 Q 21.54 6.0094 1.29 Q 21.75 6.0318 1.26 Q 21.96 6.0537 1.23 Q 22.18 6.0750 1.20 Q 22.39 6.0959 1.17 Q 22.60 6.1164 1.15 Q 22.81 6. 1365 1.13 Q 23.03 6. 1561 1.11 Q 23.24 6. 1754 1.08 Q 23.45 6.1943 1.06 Q 23.67 6.2128 1.05 Q 23.88 6.2311 1.03 Q 24.09 6.2490 1.01 Q 24.31 6.2579 .00 Q ---------------------------------------------------------------------------- `ram Aff 2-YEAR HYDROGRAPH USING SWMM R/VERTECH Input File : C:\XPS\WORK\186-1YR2.XP Current Directory: C:\PROGRA-1\XPSWMM32\XP-SWM-1 Executable Name: C:\PROGRA-1\XPSWMM32\XP-SWM-1 Read 0 line(s) and found 0 items(s) from your cfg file. ----------------------------------------------- I XP - SWMM I Storm Water Management Model I I Version 5.30f (•__ ..__._I I Developed by l _______________________________________________1 I XP Software Inc. and Pty. Ltd. I I ( I Based on the U.S. EPA I ( Storm Water Management Model Version 4.40 I I l I Originally Developed by i I Metcalf i Eddy, Inc. I I University of Florida I I Camp Dresser 6 McKee Inc. I I September 1970 I ( I I EPA-SWMM is maintained by I I Oregon State University I I Camp Dresser 6 McKee Inc. I I---------------------- ---------I I XP Software August 7, 1997 1 Data File Version ---> 7.1 I I_____-----------___------_---------_-----_..... 1 I If problems occur in running this model I I please contact XP Software - Australia I I or XP Software - U.S.A. I I Phone +61-6 253-1844 in Australia I I Fax 1 +61-6 253-1847 in Australia 1 I 'Phone (813)-886-7724 in U.S.A. i I Fax / (813)-885-4198 in U.S.A. I •---------•-------------_____________------- ____: +--------------______------•----------------_.__--------- -* I Input- - and Output file names by Layer __ - - ---- I Input File to Layer t 1 JOT.US Output File to Layer / 1 JOT.US :...._------------------------------------------____________: I Special command line arguments in XP-SWMM. This section I I now includes program defaults. $Keywords are the program) I defaults. Other Keywords are from the SWMMCOM.CFG file.) I or the command line or any cfg file on the command line.) I Examples include these in the file xpswm.bat under the I I section :solve or in the windows version XPSWMM32 in thel 1 file solve.bat i 1 ( I Note: the cfg file should be in the subdirectory swmxp I I or defined by the set variable in the xpswm.bat I I file. Some examples of the command lines possiblel I are shown below: I I ) I swmmd swmmcom.cfg I I swmmd my.cfg I I swmmd nokeys nconv5 pery extranwq I ...__•_•........................ ._____+ $powerstation 0.0000 0 2 $pery 0.0000 0 4 $oldegg 0.0000 0 7 $as 0.0000 0 11 $noflat 0.0000 0 21 $oldomega 0.0000 0 24 $oldvol 0.0000 1 28 $implicit 0.0000 1 29 $oldhot 0.0000 1 31 $oldscs 0.0000 0 33 $flood 0.0000 1 40 $nokeys 0.0000 0 42 $pzero 0.0000 0 55 $oldvol2 0.0000 2 59 $storage_97 0.0000 1 62 $oldhotl 0.0000 0 63 1 $pumpwt 0.0000 1 70 $ecloss 0.0000 1 77 Sexout 0.0000 0 97 $ncmid 0.0000 0 164 $h_ellipse 0.0000 1 270 $v_ellipse 0.0000 1 271 $arch 0.0000 2 272 $new nl_97 0.0000 2 290 Sbest97 0.0000 1 294 $newbound 0.0000 1 295 •----------------------------------------------------------+ I Parameter Values on the Tapes Common Block.These are the I I values read from the data file and dynamically allocated I I by the model for this simulation. ) ►----------------------------------------------------------- Number of Subcatchments in the Runoff Block (NW).... 1 Number of Channel/Pipes in the Runoff Block (NG).... 0 Runoff Water quality constituents (NRQ)............. 8 Runoff Land Uses per Subcatchment (NLU)............. 3 Number of Elements in the Transport Block (NET)..... 0 Number of Storage Junctions in Transport (NTSE)..... 0 Number of Input Hydrographs in Transport (NTH)...... 0 Number of Elements in the Extran Block (NEE)........ 0 Number of Groundwater Subcatchments in Runoff (NGW). 0 Number of Interface locations for all Blocks (NIE).. 1 Number of Pumps in Extran (NEP)..................... 0 Number of Orifices in Extran (NEO).................. 0 Number of Tide Gates/Free Outfalls in Extran (NTG).. 0 Number of Extran Weirs (NEW)..................... 0 Number of scs hydrograph points................ 1091 Number of Extran printout locations (NPO)........... 0 Number of Tide elements in Extran (NTE)............. 0 Number of Natural channels (NNC).................... 0 Number of Storage junctions in Extran (NVSE)........ 0 Number of Time history data points in Extran(NTVAL). 0 Number of Variable storage elements in Extran (NVST) 0 Number of Input Hydrographs in Extran (NEH)......... 0 Number of Particle sizes in Transport Block (NPS)... 0 Number of User defined conduits (NHW)............... 31 Number of Connecting conduits in Extran (NECC)...... 20 Number of Upstream elements in Transport (NTCC)..... 10 Number of Storage/treatment plants (NSTU)........... 0 Number of Values for R1 lines in Transport (NR1).... 0 Number of Nodes to be allowed for (NNOD)............ 1 Number of Plugs in a Storage Treatment Unit......... 1 ####################################################### # Entry made to the Runoff Layer(Block) of SWMM # # Last Updated November, 1997 by XP Software # s----------------------------------------------------------+ I RUNOFF TABLES IN THE OUTPUT FILE. I These are the more important tables in the output file. I I You can use your editor to find the table numbers, I I for example: search for Table R3 to check continuity. I I This output file can be imported into a Word Processor I I and printed on US letter or A4 paper using portrait I I mode, courier font, a size of 8 pt. and margins of 0.75 I I ( 1 Table R1 - Physical Hydrology Data I Table R2 - Infiltration data i I Table R3 - Raingage and Infiltration Database Names I I Table R4 - Groundwater Data ) I Table R5 - Continuity Check for Surface Water 1 I Table R6 - Continuity Check for Channels/pipes I I Table R7 - Continuity Check for Subsurface Water 1 I Table R8 - Infiltration/Inflow Continuity Check I I Table R9 - Summary Statistics for Subcatchments i I Table R10 - Sensitivity anlysis for Subcatchments I t----------------------------------------------------------t DEVELOPED CONDITION, PARKSIDE ESTATES IN HUNTINGTON BEACH 2-YEAR HEAVY METALS ########################################### # RUNOFF JOB CONTROL # ########################################### Snowmelt parameter - ISNOW....................... 0 2 Number of rain gages - NRGAG............... 1 Quality is simulated - KWALTY................. 1 Read evaporation data on line(s) F1 (F2) - IVAP.. 1 Hour of day at start of storm - NHR........... 0 Minute of hour at start of storm - NMN........... 0 Time TZERO at start of storm (hours)............. 0.000 Use U.S. Customary units for most I/O - METRIC... 0 Runoff input print control... 0 Runoff graph plot control.... 1 Runoff output print control.. 0 Limit number of groundwater convergence messages to 10000 Month, day, year of start of storm is: 1/ 1/ 98 Wet time step length (seconds)....... 120.0 Dry time step length (seconds)....... 3600.0 Wet/Dry time step length (seconds)... 300.0 Simulation length is...... 36.0 Hours If Horton infiltration model is being used A mixture of infiltrat ion options may be used in XP-SWMM as a watershed specific p 1c option. Rate for regeneration 4 tion of infiltration a ion - REGEN Deco is DECAY y read in fo r r each subcatchment REGEN . ............................................. 0.01000 Raingage #.. ..... ...................... 1 KTYPE - Rainfall input type.............. 1 NHISTO - Total number of rainfall values.. 26 KINC - Rainfall values(pairs) per line.. 10 KPRINT - Print rainfall(0-Ye3,1-No)....... 0 KTIME - Precipitation time units 0 --> Minutes 1 --> Hours................ 0 KPREP - Precipitation unit type 0 --> Intensity 1 --> Volume............. 0 KTHIS - Variable rainfall intervals 0 --> No, > 1 --> Yes..................... 25 THISTO - Rainfall time interval........... 0.00 TZRAIN - Starting time(KTIME units)....... 0.00 ################################ # Variable Rainfall Intervals # --> Start/End/Time in Minutes <---- 1. Start Time 0.00000 End Time 0.10000 Time Interval 0.10 2. Start Time 0.10000 End Time 480.00000 Time Interval 479.90 3. Start Time 480.00000 End Time 480.10000 Time Interval 0.10 4. Start Time 480.10000 End Time 720.00000 Time Interval 239.90 5. Start Time 720.00000 End Time 720.10000 Time Interval 0.10 6. Start Time 720.10000 End Time 840.00000 Time Interval 119.90 7, Start Time 840.00000 End Time 840.10000 Time Interval 0.10 B. Start Time 840.10000 End Time 920.00000 Time Interval 79.90 9. Start Time 920.00000 End Time 920.10000 Time Interval 0.10 10. Start Time 920.10000 End Time 960.00000 Time Interval 39.90 11. Start Time 960.00000 End Time 960.10000 Time Interval 0.10 12. Start Time 960:10000 End Time 965.00000 Time Interval 4.90 13. Start Time 965.00000 End Time 965.10000 Time Interval 0.10 14. Start Time 965.10000 End Time 970.00000 Time Interval 4.90 15. Start Time 970.00000 End Time 970.10000 Time Interval 0.10 16. Start Time 970.10000 End Time 980.00000 Time Interval 9.90 17. Start Time 980.00000 End Time 980.10000 Time Interval 0.10 18. Start Time 980.10000 End Time 1020.00000 Time Interval 39.90 19. Start Time 1020.00000 End Time 1020.10000 Time Interval 0.10 20. Start Time 1020.10000 End Time 1080.00000 Time Interval 59.90 21. Start Time 1080.00000 End Time 1080.10000 Time Interval 0.10 22. Start Time 1080.10000 End Time 1200.00000 Time interval 119.90 23. Start Time 1200.00000 End Time 1200.10000 Time Interval 0.10 24. Start Time 1200.10000 End Time 1440.00000 Time Interval 239.90 25. Start Time 1440.00000 End Time 1440.20000 Time Interval 0.10 Rainfall printout for gage number.... 1 Time(mn)/Rain(in/hr) Time(mn)/Rain(in/hr) Time(mn)/Rain(in/hr) Time(mn)/Rain(in/hr) 0.00 0.0000 0.10 0.0600 480.00 0.0600 480.10 0.0900 720.00 0.0900 720.10 0.1300 840.00 0.1300 840.10 0.2000 920.00 0.2000 920.10 0.3800 960.00 0.3600 960.10 1.5800 965.00 1.5800 965.10 0.5700 970.00 0.5700 970.10 0.3800 980.00 0.3800 980.10 0.2000 1020.00 0.2000 1020.10 0.1300 1080.00 0.1300 1080.10 0.0900 1200.00 0.0900 1200.10 0.0600 1440.00 0.0600 1440.10 0.0000 3 # Rainfall input summary from Runoff # Total rainfall for gage # 1 is 2.5458 inches # Data Group F1 # # Evaporation Rate (in/day) # ############################# JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV DEC. ---- ---- ---- ---- ---- ---- ---- ---- ---- 0.040 0.040 0.060 0.100 0.120 0.140 0.150 0.160 0.140 0.100 0 070 0.050 * No Channel or Pipe Network + * This is a good idea, the hydraulic routing * in your network should be done in either * the Transport Layer or Extran Layer of SWMM. # TableRl. S U B CATCHMENT DATA # # Physical Hydrology Data # ######################!###!######################## Deprs Deprs Prent Per- -sion -sion Zero Subcatchmeftt Channel Width Area cent Slope "n" "n" Storge Strge Deten Numberion ------ - ---- -------- --- "_""_ Imp=r_ ft/ft I.P.. �P��"ry ImP�" "ry P��� �ezv t��_ 1 Node 250#1 Node 250 0.500E+04 69.0 70-0 0.09 0.014 0.030 0.050 0.050 0.00 ############################################################################################ # Table R2. SUBCATCHMENT DATA # # Infiltration Data # # Infiltration Type Infl #1 Infl #2 Infl #3 Infl #4 # # SCS -> Comp CN Time Conc Shape Factor Depth or Fraction # # SBUH -> Comp CN Time Conc N/A N/A # # Green Ampt -> Suction Hydr Cond Initial MD N/A # # Horton -> Max Rate Min Rate Decay Rate (1/see) N/A # # Proportional -> Constant N/A N/A N/A # # Initial/Cont Loss -> Initial Continuing N/A N/A # # Initial/Proportional-> Initial Constant N/A N/A # # Laurenson Paramters -> B Value Pervious "n" Impervious Cont Exponent P # ############################################################################################ Subcatchment Infl Infl Infl Infl Number Name # 1 # 2 # 3 # 4 '1 Node 250#1 0 926E-05 0.463E-05 0. "��500E-01 # Table R3. SUBCATCHMENT DATA # # Rainfall and Infiltration Database Names # ##################################################!######### Subcatchment Gage Infltrn Routing Rainfall Database Infiltration Database Number Name No Type Type Name Name -------------- ';I � 1 Node 250#1 1 Horton Non-linear reservoir 2- ear y SCS TYPE A - Horton Total Number of Subcatchments... 1 Total Tributary Area (acres) .... 69.00 Impervious Area (acres)......... 26.91 Pervious Area (acres)........... 42.09 Total Width (feet).............. 5000.00 Percent Imperviousness.......... 39.00 # S U B C A T C H M E N T D A T A # 4 • # Default, Ratio values for subcatchment data # # Used with the calibrate node in the runoff. # # 1 - width 2 - area 3 - impervious t # # 4 - slope 5 - imp "n" 6 - pery "n" # # 7 - imp ds 8 - pery ds 9 - 1st infil # #10 - 2nd infil 11 - 3rd infil # ################################################### Column 1 2 3 4 5 6 Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Ratio 1.000 1.000 1.000 1.000 1.000 1.000 Column 7 8 9 10 11 Default 0.0000 0.0000 0.0000 0.0000 0.0000 Ratio 1.000 1.000 1.000 1.000 1.000 * Arrangement of Subcatchments and Channel/Pipes Inlet Node 250 No Tributary Channel/Pipes Tributary Subareas........ Node 250#1 4YlYYr#Yr4lYYfYlf YrrY►r4Y►1+l4YlYYr;Y►#Yrlr l4 xrf 4!lf4YY•;fY * Hydrographs will be stored for the following 1 INLETS Yl4Yf Yr;YlYY;lY;Y;;!!;Yl;;l4;;;;*!!Y!*;Y;+Y;YY4#YYr!!l4YYlr Node 250 ################################################### # Quality Simulation # ################################################### # General Quality Control data groups # ################################################### Description Variable Value Number of quality constituents..... NQS....... 8 Number of land uses................ JLAND....... 3 Standard catchbasin volume......... CBVOL....... 0.00 cubic feet Erosion is not simulated......... IROS........ 0 Dry days prior to start of storm... DRYDAY....... 60.00 days Dry Days required to recharge catchbasin concentration to Initial Values..................... DRYBSN....... 1.00 DAYS Dust and Dirt Street Sweeping Efficiency......... REFFDD....... 0.000 Day of year on which street Sweeping begins.................... KLNBGN....... 1 Day of year on which street Sweeping ends...................... KLNEND....... 1 ########################################### # Land use data on data group J2 # ########################################### functional limiting cleaning avail. days since buildup dependence of buildup buildup buildup interval factor last land use equation buildup quantity power coeff. in days fraction sweeping (lname) (method) parameter(jacgut) (ddlim) (ddpow) (ddfact) (clfreq) (ayswp) (dslcl) ---------------- -------- ------- -------- -------- -------- ------- Open Spa Power Linear Area(1) 1.000E+25 1.500 1500.000 0.000 0.000 0.000 Resident Power Linear Area(l) 1.000E+25 1.500 500.000 0.000 0.000 0.000 Commerci Power Linear Area(1) 1.000E+25 1.500 500.000 0.000 0.000 0.000 ############################################## # Constituent data on data group J3 # ############################################## 5 Total Pb Dias. Pb Total Cu ----- -------- -------- Constituent units........ mg/1 mg/1 mg/l Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALL..... No Buildup(4) No Buildup(4) No Buildup(4) MASH.. ............. 3 3 3 Type of Washoff CALC..... EMC EMC EHC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.022 0.002 0.028 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 1 1 1 Total Pb Dias. Pb Total Cu -------- -------- Constituent units........ mg/l mg/l mg/l Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC............ 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.. 3 3 3 Type of Washoff CALC..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.022 0.002 0.028 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 2 2 2 Total Pb Dias. Pb Total Cu -------- -------- -------- Constituent units........ mg/l mg/l mg/1 Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALC..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.022 0.002 0.02E Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 3 3 3 Dias. Cu Total Zn Dias. Zn -------- -------- -------- Constituent units........ mg/l mg/1 mg/1 Type of units............ 0 0 0 6 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 q q Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.. 3 3 3 Type of Washoff CALC..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.010 0.153 0.068 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 1 1 1 Dias. Cu Total Zn Dias. Zn -----�_ Constituent units........ mg/1 mg/1 mg/l Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALC..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snotiamelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.010 0.153 0.068 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 2 2 2 Dias. Cu Total Zn Dias. Zn -------- -------- -------- Constituent units........ mg/1 mg/l mg/1 Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALL..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALC..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.010 0.153 0.068 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 3 3 3 Total Cd Dias. Cd -------- -------- Constituent units........ mg/1 mg/1 Type of units............ 0 0 Decay rate (1/day)....... 0.000 0.000 KALC..................... 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) KWASH.. 3 3 Type of Washoff CALL EMC EMC KACGUT................... 0 0 7 Dependence of buildup.... Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 Linkage to snowmelt...... No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 Second buildup parameter. 0.000 0.000 Third buildup parameter.. 0.000 0.000 Fourth buildup parameter. 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 Exponent for washoff..... 0.001 0.000 Coefficient for washoff.. 1.000 1.000 Initial catchbasin cone.. 0.000 0.000 Precipitation cone....... 0.000 0.000 Street sweeping eff...... 0.000 0.000 Land use number.......... 1 1 Total Cd Diss. Cd -------- -------- Constituent units......., mg/1 mg/l Type of units............ 0 0 Decay rate (1/day)....... 0.000 0.000 KALC..................... 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) KWASH.................... 3 3 Type of Washoff CALL..... EMC g4C KACGUT............ ...... 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 Linkage to snowmelt...... No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 Second buildup parameter. 0.000 0.000 Third buildup parameter.. 0.000 0.000 Fourth buildup parameter. 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 Exponent for washoff..... 0.001 0.000 Coefficient for washoff.. 1.000 1.000 Initial catchbasin cone.. 0.000 0.000 Precipitation cone....... 0.000 0.000 Street sweeping eff...... 0.000 0.000 Land use number.......... 2 2 Total Cd Diss. Cd -------- -------- Constituent units........ mg/1 mg/l Type of units............ 0 0 Decay rate (1/day)....... 0.000 0.000 KALC..................... 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) KWASH.................... 3 3 Type of Washoff CALL..... EMC EMC KACGUT................... 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) LINKUP........... .... 0 0 Linkage to snowmelt...... No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 Second buildup parameter. 0.000 0.000 Third buildup parameter.. 0.000 0.000 Fourth buildup parameter. 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 Exponent for washoff..... 0.001 0.000 Coefficient for washoff.. 1.000 1.000 Initial catchbasin cone.. 0.000 0.000 Precipitation cone....... 0.000 0.000 Street sweeping eff...... 0.000 0.000 Land use number.......... 3 3 ++wrrrw::rr wwrrrrwrrwrw:r++wr rr r++wrwrr rr+w wwwwrrr++r * Subcatchment surface quality on data group L1 ' r wrrr++rr•rr++rr+rrr♦++rr►rwwrrrr+r ww rr rrrrrww+rrr+rr Total Number Input Input Input Input Input Land Gutter of Loading Land Use Length Catch- of No. Usage No. 10**2ft Basins Total Pb Diss. Pb Total Cu Diss. Cu Total Za --- -------- ---- -------- -------- ------- ------- ------- ------- ------- 1 Node Open Spa 1 0.00 0.00 0.0E+00 O.0E+00 0.0E+00 0.0E+00 O.0E+00 1 Node Resident 2 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1 Node Commerci 3 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 Totals 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 8 .....ww.*..w.w..r;..Y..............................#. * ...... Srubcatchment surface quality on data group L1 rrr.aY.rrw.raw.**ra*r*•**wr**a*axr.Y..xxw...Y. Total Number Input Input Input Land Gutter of Loading Land Use Length Catch- of No. Usage No. 10**2ft Basins Diss. 2n Total Cd Diss. Cd --- -------- --- -------- -------- ------- ------ ------- 1 Node Open Spa 1 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 1 Node Resident 2 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 1 Node Commerci 3 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 Totals 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 * DATA GROUP M1 * Print Control from Runoff Job Control TOTAL NUMBER OF PRINTED GUTTERS/INLETS...NPRNT.. 1 NUMBER OF TIME STEPS BETWEEN PRINTINGS..INTERV.. 5 ra..*a..t4.aa+w.raxw..ra#..aYaw..r•r#..xa * DATA GROUP M3 * Print Control from Node Print Control CHANNEL/INLET PRINT DATA GROUPS......Node 250 * Precipitation Interface File Summary * Number of precipitation station.... 1 Location Station Number Y.#..a...i#...x:aw.rx4.....a...!#xx#..r..;.#..#a * End of time step DO-loop in Runoff Yrr...aax*ra.ra.raa a.#Y#.w...a....a.;..:..Y..... Final Date (MO/Day/Year) - 1/ 2/1998 Total number of time steps - 881 Final Julian Date - 98002 Final time of day - 43200. seconds. Final time of day - 12.00 hours. Final running time - 36.0000 hours. Final running time - 1.5000 days. r..:r:.rwxw:a..x...as.r...;....;......aa#.a...a##x.. * Extrapolation Summary for Watersheds * Explains the number of time steps and iterations * used in the solution of the subcatchments. * f Steps --> Total Number of Extrapolated Steps * 4 Calls --> Total Number of OVERLND Calls wrrrar.aaaarrwwr►*rra..rrr aYwrraaaa wxxrra♦Yrwxrra rr. Subcatch / Steps # Calls Subcatch Y Steps p Calls -------- ------- ------- -------- ------- ------- Node 250#1 6094 778 rrraraaa.rw Yawr:wra**rrraawwarrrr wx wx*a*awwxYr..aaYYwwra♦:ra * Table R5. CONTINUITY CHECK FOR SURFACE WATER * Any continuity error can be fixed by lowering the * * wet and transition time step. The transition time * * should not be much greater than the wet time step. * Inches over cubic feet Total Basin Total Precipitation (Rain plus Snow) 6.376549E+05 2.546 Total Infiltration 3.473917E+05 1.387 Total Evaporation 1.197219E+04 0.048 Surface Runoff from Watersheds 2.749717E+05 1.098 9 Total Water remaining in Surface Storage 3.155369E+03 0.013 Infiltration over the Pervious Area... 3.473917E+05 2.274 Infiltration + Evaporation + Surface Runoff + Snow removal + Water remaining in Surface Storage + Water remaining in Snow Cover......... 6.374910E+05 2.545 Total Precipitation + Initial Storage. 6.376549E+05 2.546 The error in continuity is calculated as :xx>xrxxxrx rrrx rr>+r>:rrrrrrxrrxr>rrxrr * Precipitation + Initial Snow Cover * - Infiltration - *Evaporation - Snow removal - *Surface Runoff from Watersheds - *Water in Surface Storage - *Water remaining in Snow Cover *-------------------------------------* * Precipitation + Initial Snow Cover r rar»xrrrrrxxrxxxrrxrrrrrrr»rxrxr>rxr Percent Continuity Error............... 0.026 r rrr>:rrrrrrrrrrr rrrrrxxrr*rrrrxrrrx»r>rrrxrrrx>rxr * Table R6. Continuity Check for Channel/Pipes * You should have zero continuity error * * if you are not using runoff hydraulics * rr>rrxrrr r>rrr>r rr>r+rxrrtr r>rr»>:r>xrrr>r rrr>rr rrr Inches over cubic feet Total Basin Initial Channel/Pipe Storage................ 0.000000E+00 0.000 Final Channel/Pipe Storage.................. 0.000000E+00 0.000 Surface Runoff.from Watersheds.............. 2.749717E+05 1.098 Groundwater Subsurface Inflow............... 0.000000E+00 0.000 Evaporation Loss from Channels.............. 0.000000E+00 0.000 Channel/Pipe/Inlet Outflow.................. 2.749717E+05 1.098 Initial Storage + Inflow.................... 2.749717E+05 1.098 Final Storage + Outflow..................... 2.749717E+05 1.098 r rrrxrr:rxr xrx*xrr►rrrr:rr>rrr>xrrrrrrrrxrxr * Final Storage +Outflow + Evaporation - * * Watershed Runoff - Groundwater Inflow - * * Initial Channel/Pipe Storage * ---------------------------------- Final Storage + Outflow + Evaporation xr>:r>rxrrrrr•x r*>r»rxr»>:>rxrr>+rrxrxrr>r Percent Continuity Error.................... 0.000 ################################################## # Table R9. Summary Statistics for Subcatchments # ################################################## Note: Total Runoff Depth includes pervious 6 impervious area Pervious and Impervious Runoff Depth is only the runoff from those two areas. Subcatchment........... Node 250#1 Area (acres)... ....... 69.00000 Percent Impervious..... 39.00000 Total Rainfall (in).... 2.54583 Max Intensity (in/hr).. 1.58000 Pervious Area Total Runoff Depth (in) 0.23144 Total Losses (in)...... 2.31440 Remaining Depth (in)... 0.00000 Peak Runoff Rate (cfs). 33.30791 Total Impervious Area Total Runoff Depth (in) 2.45294 Peak Runoff Rate (cfs). 38.90663 Impervious Area with depression storage Total Runoff Depth (in) 2.45294 Peak Runoff Rate (cfs). 38.90663 Impervious Area without depression storage Total Runoff Depth (in) 0.00000 Peak Runoff Rate (cfs). 0.00000 Total Area Total Runoff Depth (in) 1.09782 Peak Runoff Rate (cfs). 72.21454 Unit Runoff (in/hr).... 1.04659 ##################################################### 10 # Runoff Quality Summary Page # # If NDIM - 0 Loads are in units of Kgs---Lbs and # # mass rates have units of Kgs---Lbs/sec# # If NDIM - 1 Loads are in units of quantity # # and mass rates are quantity/sec # # If NDIM - 2 loads are in units of concentration # # times volume and mass rates have units# # of concentration times volume/ second # ##################################################### Total Pb Diss. Pb Total Cu Diss. Cu Total Zn mg/l mg/l mg/l mg/l mg/l -------- -------- -------- -------- -------- Inputs I. Initial surface load........ 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2. Total surface buildup....... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2a. Buildup during simulation... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3. Initial catchbasin load..... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4. Total catchbasin load....... 0.00E+00 0.00E+00 0.00E+00 0.002+00 0.00E+00 5. Total catchbasin and surface buildup (2+4)....... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Remaining Loads --------------- 6. Load remaining on surface... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7. Remaining in catchbasins.... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8. Remaining in channel/pipes.. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Removals 9. Street sweeping removal..... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 10. Net surface buildup (2-9) ... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 11. Surface washoff............. 3.71E-01 3.77E-02 4.73E-01 1.72E-01 2.62E+00 12. Catchbasin washoff.......... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 13. Total washoff (11+12)....... 3.71E-01 3.77E-02 4.73E-01 1.72E-01 2.62E+00 14. Insoluble washoff........... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 15. Precipitation............... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 16. Total groundwater load...... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 0.000 0.000 16a.Total I/I load.............. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 17. Ttl subcat load(13+14+15+16) 3.71E-01 3.77E-02 4.73E-01 1.72E-01 2.62E+00 18. Total load to inlets........ 3.71E-01 3.77E-02 4.73E-01 1.72E-01 2.62E+00 19. Flow wt1d ave.concentration (inlet load/total flow)..... 2.16E-02 2.20E-03 2.76E-02 1.00E-02 1.53E-01 Percentages 20. Street sweeping (9/2)....... 0.000 0.000 0.000 0.000 0.000 21. Surface washoff (11/2)...... 0.000 0.000 0.000 0.000 0.000 22. Net surface washoff(11/10).. 0.000 0.000 0.000 0.000 0.000 23. Washoff/subcat load(11/17).. 100.000 100.000 100.000 100.000 100.000 24. Surface washoff/inlet load (11/18)..................... 100.000 100.000 100.000 100.000 100.000 25. Catchbasin washoff/ subcatchment load (12/17)... 0.000 0.000 0.000 0.000 0.000 26. Catchbasin washoff/ inlet load (12/18).......... 0.000 0.000 0.000 0.000 0.000 27. Insoluble fraction/ subcatchment load (14/17)... 0.000 0.000 0.000 0.000 0.000 28. Insoluble fraction/ inlet load (14/18).......... 0.000 0.000 0.000 0.000 0.000 29. Precipitation/ subcatchment load (15/17) ... 0.000 0.000 0.000 0.000 0.000 30. Precipitation/ inlet load (15/18).......... 0.000 0.000 0.000 0.000 0.000 31. Groundwater load/ subcatchment load (16/17)... 0.000 0.000 0.000 0.000 0.000 32. Groundwater load/ inlet load (16/18).......... 0.000 0.000 0.000 0.000 0.000 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 0.000 0.000 32b.Infiltration/Inflow Load/ Inlet Load (16a/18)......... 0.000 0.000 0.000 0.000 0.000 34. Inlet load summation error (18+8+33-17)/17............. 0.000 0.000 0.000 0.000 0.000 # Runoff Quality Summary Page # 11 # If NDIM - 0 Loads are in units of Kgs---Lbs and # # mass rates have units of Kgs---Lbs/sec# # If NDIM - 1 Loads are in units of quantity # # and mass rates are quantity/sec # # If NDIM - 2 loads are in units of concentration # # times volume and mass rates have units# # of concentration times volume/ second # ##################################################### Diss. Zn Total Cd Diss. Cd mg/1 mg/l mg/1 -------- -------- -------- Inputs 1. Initial surface load........ 0.00E+00 0.00E+00 0.00E+00 2. Total surface buildup....... 0.00E+00 0.00E+00 0.00E+00 2a. Buildup during simulation... 0.00E+00 0.00E+00 0.00E+00 3. Initial catchbasin load..... 0.00E+00 0.00E+00 0.00E+00 4. Total catchbasin load....... 0.00E+00 0.00E+00 0.00E+00 5. Total catchbasin and surface buildup (2+4)....... 0.00E+00 0.00E+00 0.00E+00 Remaining Loads --------------- 6. Load remaining on surface... 0.00E+00 0.00E+00 0.00E+00 7. Remaining in catchbasins.... 0.00E+00 0.00E+00 0.00E+00 8. Remaining in channel/pipes.. 0.00E+00 0.00E+00 0.00E+00 Removals 9. Street sweeping removal..... 0.00E+00 0.00E+00 0.00E+00 10. Net surface buildup (2-9)... 0.00E+00 0.00E+00 0.00E+00 11. Surface washoff............. 1.17E+00 1.36E-02 5.49E-03 12. Catchbasin,washoff.......... 0.00E+00 0.00E+00 0.00E+00 13. Total washoff (11+12)....... 1.17E+00 1.36E-02 5.49E-03 14. Insoluble washoff........... 0.00E+00 0.00E+00 0.00E+00 15. Precipitation............... 0.00E+00 0.00E+00 0.00E+00 16. Total groundwater load...... 0.00E+00 0.00E+00 0.00E+00 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 16a.Total I/I load.............. 0.00E+00 0.00E+00 0.00E+00 17. Ttl subcat load(13+14+15+16) 1.17E+00 1.36E-02 5.49E-03 18. Total load to inlets........ 1.17E+00 1.36E-02 5.49E-03 19. Flow wt'd ave.concentration (inlet load/total flow)..... 6.80E-02 7.90E-04 3.20E-04 Percentages 20 Street sweeping (9/2)....... 0.000 0.000 0.000 21. Surface washoff (11/2)...... 0.000 0.000 0.000 22. Net surface washoff(11/10).. 0.000 0.000 0.000 23. Washoff/subcat load(11/17).. 100.000 100.000 100.000 24. Surface washoff/inlet load (11/18)..................... 100.000 100.000 100.000 25. Catchbasin washoff/ subcatchment load (12/17)... 0.000 0.000 0.000 26. Catchbasin washoff/ inlet load (12/18).......... 0.000 0.000 0.000 27. Insoluble fraction/ subcatchment load (14/17)... 0.000 0.000 0.000 28. Insoluble fraction/ inlet load (14/18).......... 0.000 0.000 0.000 29. Precipitation/ subcatchment load (15/17)... 0.000 0.000 0.000 30. Precipitation/ inlet load (15/18).......... 0.000 0.000 0.000 31. Groundwater load/ subcatchment load (16/17)... 0.000 0.000 0.000 32. Groundwater load/ inlet load (16/18).......... 0.000 0.000 0.000 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 32b.Infiltration/Inflow Load/ Inlet Load (16a/le)......... 0.000 0.000 0.000 34. Inlet load summation error (18+8+33-17)/17............. 0.000 0.000 0.000 CAUTION. Due to method of quality routing (Users Manual, Appendix IX) quality routing through channel/pipes is sensitive to the time step. Large "Inlet Load Summation Errors" may result. These can be reduced by adjusting the time step(s). 12 ++xffxrf+xxx+xfwrxwf•wexwwxx*xxxf wxxx+x xf w++:xxxxffw * Summary of Quantity and Quality Results at w Location Node 250 Flow in cfs. * Values are instantaneous at indicated time step x xrxr:f**x*w►+wwf wxw**+fwxrwrxf rwxxfx rf wwx+wwxrf+xrf DEVELOPED CONDITION, PARKSIDE ESTATES IN HUNTINGTON BEACH 2-YEAR HEAVY METALS Date Time Flow Total Pb Dias. Pb Total Cu Dias. Cu Total 2n Dias. Zn Total Cd Dias. Cd Mo/Da/Yr Hr:Min cfs mg/1 mg/l mg/1 mg/l mg/l mg/1 mg/l mg/1 -------- ------- ------- -------- -------- -------- ------- -------- -------- -------- -------- 1 1 98 0 58 0.452 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 1 8 1.188 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 1 18 1.472 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 1 28 1.554 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 1 38 1.575 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 1 48 1.581 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 1 58 1.582 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 8 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 18 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 -28 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 38 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 48 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 58 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 3 8 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 96 3 18 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-09 3.200E-04 1 1 98 3 28 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.,900E-04 3.200E-04 1 1 98 3 38 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 3 48 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 3 58 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 8 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 18 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 28 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 38 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 48 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 58 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 8 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 18 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 28 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 38 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 48 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 58 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 8 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 18 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-09 1 1 96 6 28 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 13 1 1 98 6 38 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 98 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 58 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 8 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 1B 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 28 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 38 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 48 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 58 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 6 2.054 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 16 2.324 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 26 2.382 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 36 2.394 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 46 2.396 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 56 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 6 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 16 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 26 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 36 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 46 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 56 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 6 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 16 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 26 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 36 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 46 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 56 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 6 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 16 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 26 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 36 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 46 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 56 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 4 2.926 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 14 3.390 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 24 3.468 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 34 3.480 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 44 3.482 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 54 3.482 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 13 4 3.482 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-09 14 1 1 98 13 14 3.482 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 13 24 3.482 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 13 34 3.402 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 13 44 3.482 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 13 54 3.482 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 14 2 4.088 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 14 12 5.225 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 14 22 5.364 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7,900E-04 3.200E-04 1 1 98 14 32 5.380 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 14 42 5.381 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 14 52 5.382 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 2 5.382 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 12 5.382 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 20 5.382 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 30 9.916 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 40 10.711 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 50 13.862 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 0 16.145 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7,900E-04 3.200E-04 1 1 98 16 5 72.215 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 12 33.483 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 20 22.163 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 30 10.082 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 40 7.504 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 50 6.563 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 0 6.113 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 8 3.876 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 1.900E-04 3.200E-04 1 1 98 17 18 3.539 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 28 3.491 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7,900E-04 3.200E-04 1 1 98 17 38 3.484 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 48 3.482 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 58 3.482 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 6 2.774 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 16 2.470 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 26 2.411 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 36 2.400 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 46 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 56 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 6 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 16 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 26 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 15 1 1 98 19 36 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-09 1 1 98 19 46 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 56 2.397 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 4 2.022 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 14 1.688 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 24 1.609 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 34 1.590 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 44 1.585 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 54 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 4 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 14 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 24 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-0 4 3.200E-04 1 1 98 21 34 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 44 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 54 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1- 1 98 22 4 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 22 14 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 22 24 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 22 34 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 22 44 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 22 54 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 23 4 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 23 14 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 23 24 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 23 34 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 - 1 1 98 23 44 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 23 54 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 2 98 0 0 1.583 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 2 98 0 20 0.221 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 2 98 0 45 0.042 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 2 98 1 10 0.005 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 -------- ------- ------- -------- -------- -------- -------- -------- -------- -------- -------- Flow wtd means..... 2.1217 0.022 0.002 0.028 0.010 0.153 0.068 0.001 0.000 Flow wtd std devs.. 4.5483 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Maximum value...... 72.215 0.022 0.002 0.028 0.010 0.153 0.068 0.001 0.000 Minimum value...... 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Total loads........ 2.750E+05 3.708E-01 3.776E-02 4.738E-01 1.717E-01 2.626E+00 1.167E+00 1.356E-02 5.493E-03 Cub-Ft POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS ---> Runoff simulation ended normally. -> SWMM Simulation ended normally. Your input file was named C:\XPS\WORK\186-1YR2.DAT --_> Your output file was named C:\XPS\WORK\186-1YR2.out r----------------=---------=-----------------------------------' 16 As FIRST FLUSH POLLUTANT LOADS FOR EXISTING CONDITION r R/VERTECH Ad 4 INC Input File : C:\XPS\WORK\186-lePa.XP Current Directory: C:\PROGRA-1\XPSWMM32\XP-SWM-1 Executable Name: C:\PROGRA-1\XPSWMM32\XP-SWM-1 Read 0 line(s) and found 0 items(s) from your cfg file. x-----------------------------------------------* I XP - SWMM I I Storm Water Management Model I I Version 5.30f I -----------------„----------------------------1 I Developed by I -----------------------------------------------1 1 XP Software Inc. and Pty. Ltd. I I I I Based on the U.S. EPA I i Storm Water Management Model Version 4.40 1 I i I Originally Developed by I I Metcalf 6 Eddy, Inc. I 1 University of Florida I I Camp Dresser 4 McKee Inc. I I September 1970 1 I 1 1 EPA-SWMM is maintained by I i Oregon State University I I Camp Dresser i McKee Inc. I (---------------------------- ------------------- Versio 1 i XP Software August 7, 1997 I I Data File n ---> 7.1 1 (-----------------------------------------------1 I If problems occur in running this model I i please contact XP Software - Australia i I or XP Software - U.S.A. I 1 Phone +61-6 253-1844 in Australia I I Fax # +61-6 253-1847 in Australia I I 'Phone (813)-886-7724 in U.S.A. I I Fax # (813)-885-4198 in U.S.A. +------------------------------------ -----+ x---------------------------------------------------------ir i Input and Output file names by SWMM Layer I Input File to Layer # 1 JOT.US Output File to Layer # 1 JOT.US •-----------------------------------------------------------• I Special command line arguments in XP-SWMM. This section I I now includes program defaults. $Keywords are the program) I defaults. Other Keywords are from the SWMMCOM.CFG file.1 I or the command line or any cfg file on the command line.) I Examples include these in the file xpswm.bat under the I I section :solve or in the windows version XPSWMM32 in thel I file solve.bat 1 1 i I Note: the cfg file should be in the subdirectory swmxp I I or defined by the set variable in the xpswm.bat i 1 file. Some examples of the command lines possible( I are shown below: 1 t 1 I swmmd swmmcom.cfg 1 swmmd my.cfg 1 I swmmd nokeys nconv5 pery extranwq I +-----------------------------------------------------------� $powerstation 0.0000 0 2 $pery 0.0000 0 4 $oldegg 0.0000 0 7 $as 0.0000 0 11 $noflat 0.0000 0 21 $oldomega 0.0000 0 24 $oldvol 0.0000 1 28 $implicit 0.0000 1 29 $oldhot 0.0000 1 31 $oldscs 0.0000 0 33 $flood 0.0000 1 40 $nokeys 0.0000 0 42 $pzero 0.0000 0 55 $oldvol2 0.0000 2 59 $storage 97 0.0000 1 62 $oldhotl 0.0000 0 63 1 $pumpwt 0.0000 1 70 $ecloss 0.0000 1 77 $exout 0.0000 0 97 $ncmid 0.0000 0 164 $h ellipse 0.0000 1 270 $v_ellipse 0.0000 1 271 $arch 0.0000 2 272 $new nl_97 0.0000 2 290 $best97 0.0000 1 294 $newbound 0.0000 1 295 + -----------------i I Parameter Values on the Tapes Common Block.These are the I 1 values read from the data file and dynamically allocated I I by the model for this simulation. 1 s---o-------s:-------a--ss---a-----:--o-r----------------f Number of Subcatchments in the Runoff Block (NW).... 1 Number of Channel/Pipes in the Runoff Block (NG).... 0 Runoff Water quality constituents (NRQ)............. 8 Runoff Land Uses per Subcatchment (NLU)............. 3 Number of Elements in the Transport Block (NET)..... 0 Number of Storage Junctions in Transport (NTSE)..... 0 Number of Input Hydrographs in Transport (NTH)...... 0 Number of Elements in the Extran Block (NEE)........ 0 Number of Groundwater Subcatchments in Runoff (NGW). 0 Number of Interface locations for all Blocks (NIE).. 1 Number of Pumps in Extran (NEP)..................... 0 Number of Orifices in Extran (NEO).................. 0 Number of Tide Gates/Free Outfalls in Extran (NTG).. 0 Number of Extran Weirs (NEW)........................ 0 Number of scs-hydrograph points..................... 1081 Number of Extran printout locations (NPO)........... 0 Number of Tide elements in Extran (NTE)............. 0 Number of Natural channels (NNC).................... 0 Number of Storage junctions in Extran (NYSE)........ 0 Number of Time history data points in Extran(NTVAL). 0 Number of Variable storage elements in Extran (NVST) 0 Number of Input Hydrographs in Extran (NEH)......... 0 Number of Particle sizes in Transport Block (NPS)... 0 Number of User defined conduits (NHW)......... 31 Number of Connecting conduits in Extran (NECC)...... 20 Number of Upstream elements in Transport (NTCC)..... 10 Number of Storage/treatment plants (NSTU)........... 0 Number of Values for R1 lines in Transport (NRS).... 0 Number of Nodes to be allowed for (NNOD)............ 1 Number of Plugs in a Storage Treatment Unit......... 1 # Entry made to the Runoff Layer(Block) of SWMM # # Last Updated November, 1997 by XP Software # ----------------------------------------------------------- I RUNOFF TABLES IN THE OUTPUT FILE. ) I These are the more important tables in the output file. I I You can use your editor to find the table numbers, 1 I for example: search for Table R3 to check continuity. I I This output file can be imported into a Word Processor I I and printed on US letter or A4 paper using portrait I I mode, courier font, a size of 8 pt. and margins of 0.75 1 1 1 1 Table RI - Physical Hydrology Data I Table R2 - Infiltration data 1 I Table R3 - Raingage and Infiltration Database Names I I Table R4 - Groundwater Data I Table R5 - Continuity Check for Surface Water 1 1 Table R6 - Continuity Check for Channels/Pipes i I Table R7 - Continuity Check for Subsurface Water I I Table R8 - Infiltration/Inflow Continuity Check I I Table R9 - Summary Statistics for Subcatchments I I Table R10 - Sensitivity anlysis for Subcatchments I r---a=:»-. --------------------------------:--------: EXISTING CONDITION, PARKSIDE ESTATES IN HUNTINGTON BEACH NUTRIENT LOADING DURING THE FIRST FLUSH EVENT ########################################### # RUNOFF JOB CONTROL # ########################################### 0 Snowmelt parameter - ISNOW....................... 0 2 Number of rain gages - NRGAG..................... 1 Quality is simulated - KWALTY.................... 1 Read evaporation data on line(s) F1 (F2) - IVAp.. 1 Hour of day at start of storm - NHR......... 0 Minute of hour at start of storm - NMN........... 0 Time TZERO at start of storm (hours)............. 0.000 Use U.S. Customary units for most I/O - METRIC... 0 Runoff input print control... 0 Runoff graph plot control.... 1 Runoff output print control.. 0 Limit number of groundwater convergence messages to 10000 Month, day, year of start of storm is: 1/ 1/ 98 Wet time step length (seconds)....... 120.0 Dry time step length (seconds)....... 3600.0 Wet/Dry time step length (seconds)... 300.0 Simulation length is...... 36.0 Hours If Horton infiltration model is being used A mixture of infiltration options may be used in XP-SWMM as a watershed specific option. Rate for regeneration of infiltration - REGEN • DECAY Decay is read in for each subcatchment REGEN . ............................................. 0.01000 Raingage #................................ 1 KTYPE - Rainfall input type.............. 1 NHISTO - Total number of rainfall values.. 26 KINC - Rainfall values(pairs) per line.. 10 KPRINT - Print rainfall(O-Yes,l-No)....... 0 KTIME - Precipitation time units 0 --> Minutes 1 --> Hours................ 0 KPREP - Precipitation unit type 0 --> Intensity 1 --> volume............. 0 KTHIS - Variable rainfall intervals 0 --> No, > 1 --> Yes..................... 25 THISTO - Rainfall time interval........... 0.00 TZRAIN - Starting time(KTIME units)....... 0.00 ################################ #- Variable Rainfall Intervals # ################################ --> Start/End/Time in Minutes <---- 1. Start Time 0.00000 End Time 0.10000 Time Interval 0.10 2. Start Time 0.10000 End Time 480.00000 Time Interval 479.90 3. Start Time 480.00000 End Time 480.10000 Time Interval 0.10 4. Start Time 480.10000 End Time 720.00000 Time Interval 239.90 5. Start Time 720.00000 End Time 720.10000 Time interval 0.10 6. Start Time 720.10000 End Time 840.00000 Time Interval 119.90 7. Start Time 840.00000 End Time 840.10000 Time Interval 0.10 8. Start Time 840.10000 End Time 920.00000 Time Interval 79.90 9. Start Time 920.00000 End Time 920.10000 Time Interval 0.10 10. Start Time 920.10000 End Time 960.00000 Time Interval 39.90 11. Start Time 960.00000 End Time 960.10000 Time Interval 0.10 12. Start Time 960.10000 End Time 965.00000 Time Interval 4.90 13. Start Time 965.00000 End Time 965.10000 Time Interval 0.10 14. Start Time 965.10000 End Time 970.00000 Time Interval 4.90 15. Start Time 970.00000 End Time 970.10000 Time Interval 0.10 16. Start Time 970.10000 End Time 980.00000 Time Interval 9.90 17. Start Time 980.00000 End Time 980.10000 Time Interval 0.10 18. Start Time 980.10000 End Time 1020.00000 Time Interval 39.90 19. Start Time 1020.00000 End Time 1020.10000 Time Interval 0.10 20. Start Time 1020.10000 End Time 1080.00000 Time Interval 59.90 21. Start Time 1080.00000 End Time 1080.10000 Time Interval 0.10 22. Start Time 1080.10000 End Time 1200.00000 Time Interval 119.90 23. Start Time 1200.00000 End Time 1200.10000 Time Interval 0.10 24. Start Time 1200.10000 End Time 1440.00000 Time Interval 239.90 25. Start Time 1440.00000 End Time 1440.20000 Time Interval 0.10 Rainfall printout for gage number.... 1 Time(mn)/Rain(in/hr) Time(mn)/Rain(in/hr) Time(mn)/Rain(in/hr) Time(mn)/Rain(in/hr) 0.00 0.0000 0.10 0.0318 480.00 0.0318 480.10 0.0477 720.00 0.0477 720.10 0.0689 840.00 0.0689 840.10 0.1060 920.00 0.1060 920.10 0.2014 960.00 0.2014 960.10 0.8374 965.00 0.8374 965.10 0.3021 970.00 0.3021 970.10 0.2014 980.00 0.2014 980.10 0.1060' 1020.00 0.1060 1020.10 0.0689 1080.00 0.0689 1080.10 0.0477 1200.00 0.0477 1200.10 0.0318 1440.00 0.0318 1440.10 0.0000 3 ###################################### # Rainfall input summary from Runoff # ###################################### Total rainfall for gage # 1 is 1.3493 inches ############################# # Data Group F1 # # Evaporation Rate (in/day) # ############################# JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV DEC. ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 0.040 0.040 0.060 0.100 0.120 0.140 0.150 0.160 0.140 0.100 0.070 0.050 +:x++►++xxx+++rxx+:+xxxxrx►x++++xxx++x+xx x++:►++x x No Channel or Pipe Network * This is a good idea, the hydraulic routing * in your network should be done in either * the Transport Layer or Extran Layer of SWMM. ++xxxxxx*xxxx»xx++++:x+x+xxx++x:xx+++xxxx+xxxx++ ################################################### # Table Rl. S U B C A T C H M E N T DATA # # Physical Hydrology Data # ################################################### Deprs Deprs Prcnt Per- -sion -sion Zero Subcatchmen`t Channel Width Area cent Slope "n" "n" Storge Strge Deten Number Name or inlet ft ac Impery ft/ft Impry Pery Impry Pery -tion ------ -------- ------ ----- ------ ----- ----- ----- ----- ----- ----- 1 Node 250#1 Node 250 0.100E+04 21.8 40.00 0.05 0.014 0.030 0.050 0.050 0.00 ############################################################################################ # Table R2. SUBCATCHMENT DATA # # Infiltration Data # # Infiltration Type Infl #1 Infl #2 Infl #3 Infl #4 # # SCS -> Comp CN Time Conc Shape Factor Depth or Fraction # # SBUH -> Comp CN Time Cone N/A N/A # # Green Ampt -> Suction Hydr Cond Initial MD N/A # # Horton -> Max Rate Min Rate Decay Rate (1/sec) N/A # # Proportional -> Constant N/A N/A N/A # # Initial/Cont Loss -> Initial Continuing N/A N/A # # Initial/proportional-> Initial Constant N/A N/A # # Laurenson Paramters -> B Value Pervious "n" Impervious Cont Exponent # ############################################################################################ Subcatchment Infl Infl Infl Infl Number Name # 1 # 2 # 3 # 4 --------------- ----- ----- ----- ----- 1 Node 250#1 0.972E-05 0.509E-05 0.500E-01 ############################################################ # Table R3. SUBCATCHMENT DATA # # Rainfall and Infiltration Database Names # ############################################################ Subcatchment Gage Infltrn Routing Rainfall Database Infiltration Database Number Name No Type Type Name Name --------------- ---- ------ ----------- ----------------- ---------------- 1 Node 250#1 1 Horton Non-linear reservoir First Flush SCS TYPE A - Horton Total Number of Subcatchments... 1 Total Tributary Area (acres).... 21.80 Impervious Area (acres)......... 8.72 Pervious Area (acres)........... 13.08 Total Width (feet).............. 1000.00 Percent Imperviousness.......... 40.00 ################################################### # S U B C A T C H M E N T D A T A # 4 # Default, Ratio values for subcatchment data # # Used with the calibrate node in the runoff. # # 1 - width 2 - area 3 - impervious % # # 4 - slope 5 - imp "n" 6 - pery "n" # # 7 - imp ds 8 - pery ds 9 - 1st infil # #10 - 2nd infil 11 - 3rd infil # ################################################### Column 1 2 3 4 5 6 Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Ratio 1.000 1.000 1.000 1.000 1.000 1.000 Column 7 8 9 10 11 Default 0.0000 0.0000 0.0000 0.0000 0.0000 Ratio 1.000 1.000 1.000 1.000 1.000 x++xxx+xx*xxxxxxxxx+++xx+xxxx++rr+rx+xxr+xr rx♦++x+x+rx+xx ' Arrangement of Subcatchments and Channel/Pipes +xx++xx+•rxr+rr*rrxxrrr+xx+++rxrxxxxx r++xrxr+rxxr+x+xr+xr Inlet Node 250 No Tributary Channel/Pipes Tributary Subareas........ Node 250#1 +xrrx+r++r+rx rr xx++xxrxxxrr xxxrrxxrrx+xxxrr rrr+xrr+rxx+xrrr * Hydrographs will be stored for the following 1 INLETS :rx rrx rxxrx xx++rxrrxxxxxxxxr*rxxx+rx+rxxxrrr++rr+r+r+xx+xxr Node 250 ################################################### # Quality Simulation # ################################################### # General Quality Control data groups # ################################################### Description Variable Value ----------- -------- ----- Number of quality constituents..... NQS.. 8 Number of land uses................ JLAND....... 3 Standard catchbasin volume......... CBVOL....... 0.00 cubic feet Erosion is not simulated......... IROS........ 0 Dry days prior to start of storm... DRYDAY....... 60.00 days Dry Days required to recharge catchbasin concentration to Initial Values..................... DRYBSN....... 1.00 DAYS Dust and Dirt Street Sweeping Efficiency......... REFFDD....... 0.000 Day of year on which street Sweeping begins.................... KLNBGN....... 1 Day of year on which street Sweeping ends...................... KLNEND....... 1 ########################################### # Land use data on data group J2 # ########################################### functional limiting cleaning avail. days since buildup dependence of buildup buildup buildup interval factor last land use equation buildup quantity power coeff. in days fraction sweeping (1name) (method) parameter(jacgut) (ddlim) (ddpow) (ddfact) (clfreq) (ayswp) (dslcl) -------- ------------- ----------------- -------- ------- -------- -------- -------- ------- Open Spa Power Linear Area(1) 1.000E+25 1.500 1500.000 0.000 0.000 0.000 Resident Power Linear Area(1) 1.000E+25 1.500 500.000 0.000 0.000 0.000 Commerci Power Linear Area(1) 1.000E+25 1.500 500.000 0.000 0.000 0.000 ############################################## # Constituent data on data group J3 # ############################################## 5 BOD COD TSS -------- -------- -------- Constituent units........ mg/l mg/l mg/1 Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALL..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALC..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third builduparamete P r. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 9.000 72.600 100.000 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin cone.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 1 1 1 BOD COD TSS -------- -------- -------- Constituent units........ mg/l mg/1 mg/l Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALC..... EMC E4C EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup Parameter.. 0.0 00 0.000 0.000 Exponent for washoff..... 9.000 72.600 100.000 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation cone....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 2 2 2 BOD COD TSS -------- -------- -------- Constituent units........ mg/l mg/1 mg/1 Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALL..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALC..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 9.000 72.600 100.000 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin cone.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 3 3 3 IDS Total P Diss. P -------- -------- -------- Constituent units........ mg/l mg/1 mg/l Type of units............ 0 0 0 6 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH............. 3 3 3 Type of Washoff CALL..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 112.000 0.330 0.120 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation cone....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 1 1 1 TDS Total P Diss. P -- -------- -------- Constituent units........ mg/l mg/l mg/l Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALL..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 112.000 0.330 0.120 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 2 2 2 TDS Total P Diss. P -------- -------- -------- Constituent units........ mg/l mg/l mg/l Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALC..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 112.000 0.330 0.120 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation cone....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 3 3 3 TKN NO2 + NO -------- -------- Constituent units........ mg/l mg/l Type of units............ 0 0 Decay rate (1/day)....... 0.000 0.000 KALC.................... 4 4 Type of Buildup CALL..... No Buildup(4) No Buildup(4) KWASH.................... 3 3 Type of Washoff CALC EMC EMC KACGUT................... 0 0 7 Dependence of buildup.... Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 Linkage to snowmelt...... No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 Second buildup parameter. 0.000 0.000 Third buildup parameter.. 0.000 0.000 Fourth buildup parameter. 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 Exponent for washoff..... 1.760 0.680 Coefficient for washoff.. 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 Precipitation conc....... 0.000 0.000 Street sweeping eff...... 0.000 0.000 Land use number.......... 1 1 TKN NO2 + NO -------- -------- Constituent units........ mg/l m /l Type of units............ 0 0 Decay rate (1/day)....... 0.000 0.000 KALC..................... 4 4 Type of Buildup CALL..... No Buildup(4) No Buildup(4) MASH.................... 3 3 Type of Washoff CALC..... EMC EMC KACGUT................... 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) LINKUP.. ....... 0 0 Linkage to snowmelt...... No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 Second buildup parameter. 0.000 0.000 Third buildup parameter.. 0.000 0.000 Fourth buildup parameter. 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 Exponent for washoff..... 1.760 0.680 Coefficient foi washoff.. 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 Precipitation conc....... 0.000 0.000 Street sweeping eff...... 0.000 0.000 Land use number.......... 2 2 NO TKN - --- + -- Constituent units........ mg/1 mg/1 Type of units............ 0 0 Decay rate (1/day)....... 0.000 0.000 KALC..................... 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) KWASH.................... 3 3 Type of Washoff CALC..... EMC EMC KACGUT................... 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 Linkage to snowmelt...... No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 Second buildup parameter. 0.000 0.000 Third buildup parameter.. 0.000 0.000 Fourth buildup parameter. 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 Exponent for washoff..... 1.760 0.680 Coefficient for washoff.. 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 Precipitation cone....... 0.000 0.000 Street sweeping eff...... 0.000 0.000 Land use number.......... 3 3 rtrr:wrwtwr*w*tww:►rrwwwrtwrrwt wwwt tw rtwt wtwwwrttwtwr * Subcatchment surface quality on data group L1 rtwwr wwwrwwwtrrttwtwtw***w*****tt*****w***w*rrwrrtt rw Total Number Input Input Input Input Input Land Gutter of Loading Land Use Length Catch- of No. Usage No. 10**2ft Basins BOD COD TSS TDS Total P -- -------- ---- -------- -------- ------- ------- ------- ------- 1 Node Open Spa 1 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0 OE+00 1 Node Resident 2 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1 Node Commerci 3 0.00 0.00 O.0E+00 O.0E+00 0.0E+00 0.0E+00 0.0E+00 Totals 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 8 w rsfx#r tsrswfsrrr#ts#xr*rt#fxr##rwwrrrrrx#xxrsxsrfrrx * Subcatchment surface quality on data group L1 wrf•wrswwrw rtfrwrx##r rrtw•rwsfrwwrYr#rs#rfrrf rrrf rr rf Total Number Input Input Input Land Gutter of Loading Land Use Length Catch- of No. Usage No. 10**2ft Basins Diss. P TKN NO2 + NO --- -------- ---- -------- -------- ------- ------- ------- 1 Node Open Spa 1 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 1 Node Resident 2 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 1 Node Commerci 3 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 Totals 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 xsr##x##r:#r+frxw xt#rs#wrxswrrxs#x##rtf wx * DATA GROUP M1 * Print Control from Runoff Job Control rfxrwrswrrrxf xxr#rxtrrwft#rxr rxrxrsrrw#tr TOTAL NUMBER OF PRINTED GUTTERS/INLETS...NPRNT.. 1 NUMBER OF TIME STEPS BETWEEN PRINTINGS..INTERV.. 5 4 rtw##4*xfxtrirxxxrrtx#sr##xxtf tf#Y#44#fx * DATA GROUP M3 * Print Control from Node Print Control #s###sfrxx###r#rr#xrrxt##wxxx#r#rxrrxttx# CHANNEL/INLET PRINT DATA GROUPS......Node 250 rt#rts:r:srxxt r****rx*wrtrwr##rsrrrr:wr#rrsxr:txrtw * Precipitation Interface File Summary ' Number of precipitation station.... 1 ' rrx:*rr*4*w4rrxxYtrxf trwrr##r rwrrr#fxrf xrxr#rrrwr#s Location Station Number -------- -------------- 1. 1 r*wfs*w*wrwwrrwrwwwrwwrww4Y#tfr#rf wr•rYr#fw rf♦rw * End of time step DO-loop in Runoff *fxx*Y44YixYxirxtr l4l4444Y4Y4#xYrwf rf ttttw#frrff Final Date (Mo/Day/Year) - 1/ 2/1998 Total number of time steps - 881 Final Julian Date - 98002 Final time of day - 43200. seconds. Final time of day 12.00 hours. Final running time 36.0000 hours. Final running time = 1.5000 days. w•rsrrY#fxrxxrr rswr►Y#fs#ws ww#Y#r serr#f rwtwrrwf xf wwr * Extrapolation Summary for Watersheds ' Explains the number of time steps and iterations ' used in the solution of the subcatchments. * / Steps =_> Total Number of Extrapolated Steps * / Calls --> Total Number of OVERLND Calls sx**stx*trrY#xxftsf#twxrtwxr*frrxxxrYfrxxf#♦#rsw#x4Y Subcatch i Steps 1 Calls Subcatch 4 Steps N Calls -------- ------- ------- -------- ------- ------- Node 250#1 4841 723 rssY#rrwr4Yww4#twf wts rr#wrrxwtxs##tw#rrfffxxrsr#r rtf#rrtxrrw * Table R5. CONTINUITY CHECK FOR SURFACE WATER * Any continuity error can be fixed by lowering the * ' wet and transition time step. The transition time * ' should not be much greater than the wet time step. * #**#rrwrwf#xrr#rrsttrr#ww#rrwrrY#rxrrrr#xrw##r:##ww w#w:rws rw Inches over cubic feet Total Basin Total Precipitation (Rain plus Snow) 1.067798E+OS 1.349 Total Infiltration 6.213663E+04 0.785 Total Evaporation 3.798344E+03 0.048 Surface Runoff from Watersheds 3.972973E+04 0.502 9 Total Water remaining in Surface Storage 1.058149E+03 0.013 Infiltration over the Pervious Area... 6.213663E+04 1.309 Infiltration + Evaporation + Surface Runoff + Snow removal + Water remaining in Surface Storage + Water remaining in Snow Cover......... 1.067229E+05 1.349 Total Precipitation + Initial Storage. 1.067748E+05 1.349 The error in continuity is calculated as x►rrrr*xrrx►r►►►w*rx►rr►rx►rrwrrr►r rx►► * Precipitation + Initial Snow Cover * - Infiltration - ► *Evaporation - Snow removal - *Surface Runoff from Watersheds - *Water in Surface Storage - r *Water remaining in Snow Cover x *-------------------------------------* * Precipitation + Initial Snow Cover ►►►w►rrr►►:wrw►rr►:w►rr►rx:r►w►►rx►rrxr Percent Continuity Error............... 0.049 xrr►r►r►rrrx*****rrxrrrrrw►►►xrr►wrrw x►wxrrx:rw*►rrx * Table R6. Continuity Check for Channel/Pipes * You should have zero continuity error * * if you are not using runoff hydraulics * ►xxr:rrrwxrxwrw wr xrr•xrxrr►ax xwrrr►Y:rr xr rw•►►x►w+xw Inches over cubic feet Total Basin Initial Channel/Pipe Storage................ 0.000000E+00 0.000 Final Channel/Pipe Storage.................. 0.000000E+00 0.000 Surface Runoff from Watersheds.............. 3.972973E+04 0.502 Groundwater Subsurface Inflow............... 0.000000E+00 0.000 Evaporation Loss from Channels.............. 0.000000E+00 0.000 Channel/Pipe/Inlet Outflow.................. 3.972973E+04 0.502 Initial Storage + Inflow........... 3.972973E+04 0.502 Final Storage + Outflow..................... 3.972973E+04 0.502 ►x**rrrrrx►wx►wxr►w►►::►:r►r::r►♦:rxxrrrwr►x *Final Storage + Outflow + Evaporation - * * Watershed Runoff - Groundwater Inflow - * * Initial Channel/Pipe Storage * ---------------------------------- Final Storage + Outflow + Evaporation x*xrxxxxx rr x►►►rwxx xw►r r►rwx►r*xw rw►rxx►r rxr Percent Continuity Error.................... 0.000 ################################################## # Table R9. Summary Statistics for Subcatchments # Note: Total Runoff Depth includes pervious & impervious area Pervious and Impervious Runoff Depth is only the runoff from those two areas. Subcatchment........... Node 25011 Area (acres)........... 21.80000 Percent Impervious..... 40.00000 Total Rainfall (in).... 1.34929 Max Intensity (in/hr).. 0.83740 Pervious Area Total Runoff Depth (in) 0.00061 Total Losses (in)...... 1.34868 Remaining Depth (in)... 0.00000 Peak Runoff Rate (cfs). 0.05469 Total Impervious Area Total Runoff Depth (in) 1.25422 Peak Runoff Rate (cfs). 5.10615 Impervious Area with depression storage Total Runoff Depth (in) 1.25422 Peak Runoff Rate (cfs). 5.10615 Impervious Area a without depression storage Total Runoff Depth (in) 0.00000 Peak Runoff Rate (cfs). 0.00000 Total Area Total Runoff Depth (in) 0,50206 Peak Runoff Rate (cfs). 5.16084 Unit Runoff (in/hr).... 0.23674 ##################################################### 10 # Runoff Quality Summary Page # # If NDIM - 0 Loads are in units of Kgs---Lbs and # # mass rates have units of Kgs---Lbs/sec# # If NDIM - 1 Loads are in units of quantity # # and mass rates are quantity/sec # # If NDIM - 2 loads are in units of concentration # # times volume and mass rates have units# # of concentration times volume/ second # BOD COD TSS TDS Total P mg/1 mg/1 mg/l mg/l mg/l -------- -------- -------- -------- -------- Inputs 1. Initial surface load........ 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2. Total surface buildup....... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2a. Buildup during simulation... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3. Initial catchbasin load..... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4. Total catchbasin load....... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 S. Total catchbasin and surface buildup (2+4)....... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Remaining Loads --------------- 6. Load remaining on surface... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7. Remaining in catchbasins.... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8. Remaining in channel/pipes.. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Removals 9. Street sweeping removal..... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 10. Net surface buildup (2-9)... 0.00E+00 0.00E+00 0.00E+00 0.001-:+00 0.00E+00 11. Surface washoff............. 2.23E+01 3.80E+02 2.48E+02 2.78E+02 8.18E-01 12. Catchbasin washoff.......... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 13. Total washoff (11+12)....... 2.23E+01 1.80E+02 2.48E+02 2.78E+02 8.18E-01 14. Insoluble washoff........... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 15. Precipitation............... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 16. Total groundwater load...... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 0.000 0.000 16a.Total I/I load.............. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 17. Ttl subcat load(13+14+15+16) 2.23E+01 1.80E+02 2.48E+02 2.78E+02 8.18E-01 18. Total load to inlets........ 2.23E+01 1.80E+02 2.48E+02 2.78E+02 8.18E-01 19. Flow wt'd ave.concentration (inlet load/total flow)..... 9.00E+00 7.26E+01 1.00E+02 1.12E+02 3.30E-01 Percentages 20. Street sweeping (9/2)....... 0.000 0.000 0.000 0.000 0.000 21. Surface washoff (11/2)...... 0.000 0.000 0.000 0.000 0.000 22. Net surface washoff(11/10).. 0.000 0.000 0.000 0.000 0.000 23. Washoff/subcat load(11/17).. 100.000 100.000 100.000 100.000 100.000 24. Surface washoff/inlet load (11/18)..................... 100.000 100.000 100.000 100.000 100.000 25. Catchbasin washoff/ subcatchment load (12/17)... 0.000 0.000 0.000 0.000 0.000 26. Catchbasin washoff/ inlet load (12/18).......... 0.000 0.000 0.000 0.000 0.000 27. Insoluble fraction/ subcatchment load (14/17)... 0.000 0.000 0.000 0.000 0.000 28. Insoluble fraction/ inlet load (14/18).......... 0.000 0.000 0.000 0.000 0.000 29. Precipitation/ subcatchment load (15/17)... 0.000 0.000 0.000 0.000 0.000 30. Precipitation/ inlet load (15/18).......... 0.000 0.000 0.000 0.000 0.000 31. Groundwater load/ subcatchment load (16/17)... 0.000 0.000 0.000 0.000 0.000 32. Groundwater load/ inlet load (16118).......... 0.000 0.000 0.000 0.000 0.000 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 0.000 0.000 32b.Infiltration/Inflow Load/ Inlet Load (16a/18)......... 0.000 0.000 0.000 0.000 0.000 34. Inlet load summation error (18+8+33-17)/17............. 0.000 0.000 0.000 0.000 0.000 # Runoff Quality Summary Page # 11 # If NDIM - 0 Loads are in units of Kgs---Lbs and # # mass rates have units of Kgs---Lbs/sec# # If NDIM - 1 Loads are in units of quantity # # and mass rates are quantity/sec # # If NDIM - 2 loads are in units of concentration # # times volume and mass rates have units# # of concentration times volume/ second # ##################################################### Diss. P TKN NO2 + NO mg/1 mg/1 mg/1 -------- -------- -------- Inputs I. Initial surface load........ 0.00E+00 0.00E+00 0.00E+00 2. Total surface buildup....... 0.00E+00 0.00E+00 0.00E+00 2a. Buildup during simulation... 0.00E+00 0.00E+00 0.00E+00 3. Initial catchbasin load..... 0.00E+00 0.00E+00 0.00E+00 4. Total catchbasin load....... 0.00E+00 0.00E+00 0.00E+00 5. Total catchbasin and surface buildup (2+4)....... 0.00E+00 0.00E+00 0.00E+00 Remaining Loads --------------- 6. Load remaining on surface... O.00E+00 0.00E+00 0.00E+00 7. Remaining in catchbasins.... 0.00E+00 0.00E+00 0.00E+00 S. Remaining in channel/pipes.. 0.00E+00 0.00E+00 0.00E+00 Removals 9. Street sweeping removal..... 0.00E+00 0.00E+00 0.00E+00 10. Net surface buildup (2-9)... 0.00E+00 0.00E+00 0.00E+00 11. Surface washoff............. 2.98E-01 4.36E+00 1.69E+00 12. Catchbasin washoff.......... 0.00E+00 0.00E+00 0.00E+00 13. Total washoff (11+12)....... 2.98E-01 4.36E+00 1.69E+00 14. Insoluble washoff........... 0.00E+00 0.00E+00 0.00E+00 15. Precipitation............... 0.00E+00 0.00E+00 0.00E+00 16. Total groundwater load...... 0.00E+00 0.00E+00 0.00E+00 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 16a.Total I/I load.............. 0.00E+00 0.00E+00 0.00E+00 17. Ttl subcat load(13+14+15+16) 2.98E-01 4.36E+00 1.69E+00 18. Total load to inlets........ 2.98E-01 4.36E+00 1.69E+00 19. Flow wt'd ave.concentration (inlet load/total flow)..... 1.20E-01 1.76E+00 6.80E-01 Percentages 20. Street sweepin g g (9/2)....... 0.000 0.000 0.000 21. Surface washoff (11/2)...... 0.000 0.000 0.000 22. Net surface washoff(11/10).. 0.000 0.000 0.000 23. Washoff/subcat load(il/17).. 100.000 100.000 100.000 24. Surface washoff/inlet load (11/18)..................... 100.000 100.000 100.000 25. Catchbasin washoff/ subcatchment load (12/17)... 0.000 0.000 0.000 26. Catchbasin washoff/ inlet load (12/18).......... 0.000 0.000 0.000 27. Insoluble fraction/ subcatchment load (14/17)... 0.000 0.000 0.000 28. Insoluble fraction/ inlet load (14/18).......... 0.000 0.000 0.000 29. Precipitation/ subcatchment load (15/17) ... 0.000 0.000 0.000 30. Precipitation/ inlet load (15/18).......... 0.000 0.000 0.000 31. Groundwater load/ subcatchment load (16/17)... 0.000 0.000 0.000 32. Groundwater load/ inlet load (16/18).......... 0.000 0.000 0.000 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 32b.Infiltration/Inflow Load/ Inlet Load (16a/18)......... 0.000 0.000 0.000 34. Inlet load summation error (18+8+33-17)/17............. 0.000 0.000 0.000 CAUTION. Due to method of quality routing (Users Manual, Appendix IX) quality routing through channel/pipes is sensitive to the time step. Large "Inlet Load Summation Errors" may result. These can be reduced by adjusting the time step(s). 12 ' � +»x+r>x+>x>ax>x»x+>x++>+x♦+>x++xx+xx+x•+rx+xxx:+x+ • Summary of Quantity and Quality Results at x > Location Node 250 Flow in cfs. + + Values are instantaneous at indicated time step EXISTING CONDITION, PARKSIDE ESTATES IN HUNTINGTON BEACH NUTRIENT LOADING DURING THE FIRST FLUSH EVENT Date Time Flow SOD COD TSS TDS Total P Diss. P TKN NO2 + NO Mo/Da/Yr Hr:Min ---cfs- mg/l mg/1 mg/1 mg/1 mg/l mg/l mg/l mg/1 -------- ------- -------- -------- -------- -------- -------- -------- -------- -------- 1 1 98 1 48 0.038 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 1 58 0.111 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 2 8 0.172 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 2 18 0.213 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 2 28 0.237 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 2 38 0.250 9.000E+00 7.260E+01 1.000E+02 1.120E+02. 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 2 48 0.257 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 2 58 0.261 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 3 8 0.263 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 3 18 0.264 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 3 28 0.264 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 3 38 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 3 48 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 3 58 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 9 8 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 4 18 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1:760E+00 6.800E-01 1 1 98 4 28 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 4 38 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 4 48 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 4 58 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 5 8 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 5 18 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 5 28 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 5 38 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 5 48 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 5 58 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 6 8 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 6 18 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 6 28 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 6 38 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 6 48 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.BOOE-01 1 1 98 6 58 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 7 8 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 7 18 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 13 I 1 98 7 28 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 7 38 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 7 48 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 7 58 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 8 6 0.312 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 8 16 0.359 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 8 26 0.383 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 8 36 0.395 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 8 46 0.400 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 8 56 0.403 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 9 6 0.404 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 9 16 0.404 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 9 26 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 9 36 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 9 46 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.BOOE-01 1 1 98 9 56 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 10 6 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 _ 1 1 98 10 16 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 10 26 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 10 36 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 10 46 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 10 56 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.BOOE-01 1 1 98 11 6 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 11 16 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 11 26 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 11 36 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 11 46 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 11 56 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6A OOE-01 1 1 98 12 4 0.455 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 12 14 0.533 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 12 24 0.567 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 12 34 0.581 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 12 44 0.587 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 12 54 0.589 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 13 4 0.590 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 13 14 0.591 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 13 24 0.591 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 13 34 0.591 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 13 44 0.591 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 13 54 0.591 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 14 1 1 98 14 2 0.646 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 14 12 0.816 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 14 22 0.882 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 14 32 0.905 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 14 42 0.913 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 14 52 0.916 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 15 2 0.917 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 15 12 0.917 9.000E+00 7.260E+01 I.00OE+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 15 20 0.917 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 15 30 1.507 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 15 40 1.691 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 15 50 1.740 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 16 0 1.752 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 16 5 5.109 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 16 12 3.071 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 16 20 2.129 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 16 30 1.236 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 16 40 1.018 9.000E+00 7.260E+01 I.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 16 50 0.951 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 17 0 0.929 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 17 8 0.740 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 17 18 0.648 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 17 28 0.614 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 17 38 0.600 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 17 48 0.595 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 17 58 0.593 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 18 6 0.516 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 18 16 0.453 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 18 26 0.427 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 18 36 0.415 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 18 46 0.409 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 18 56 0.407 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 19 6 0.406 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 19 16 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 19 26 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 19 36 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 19 46 0.405 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 9B 19 56 0.405 9.000E+00 7.260E+01 I.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 20 4 0.368 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 20 14 0.315 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 15 1 1 98 20 24 0.290 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 20 39 0.278 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 20 44 0.272 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 20 54 0.268 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 21 4 0.267 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 21 14 0.266 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 21 24 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 21 34 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 21 44 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 21 54 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 22 4 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 22 14 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 22 24 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 22 34 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 22 44 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 22 54 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 23 4 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 23 14 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 23 24 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 23 34 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 23 44 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 23 54 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 2 98 0 0 0.265 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 2 98 0 20 0.084 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 2 98 0 45 0.028 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.BOOE-01 1 2 98 1 10 0.010 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 2 98 1 35 0.003 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 2 98 2 0 0.000 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 O.000E+00 ----- ------- ------- -------- -------- -------- -------' -------- -------- -------- -------- Flow wtd means..... 0.3066 9.000 72.600 100.000 112.000 0.330 0.120 1.760 0.680 Flow wtd std devs.. 0.4402 0.006 0.052 0.072 0.080 0.000 0.000 0.001 0.000 Maximum value...... 5.109 9.000 72.600 100.000 112.000 0.330 0.120 1.760 0.680 Minimum value...... 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Total loads........ 3.973E+04 2.232E+01 1.801E+02 2.480E+02 2.778E+02 8.185E-01 2.976E-01 4.365E+00 1.687E+00 Cub-Ft POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS -> Runoff simulation ended normally. ---> SWMM Simulation ended normally. ---> Your input file was named C:\XPS\WORK\186-lePa.DAT -> Your output file was named C:\XPS\WORK\186-lePa.out ---------------------------------------------------------------- SWMM Simulation Date and Time Summary I +--------------------------------------------------------------- I Starting Date... December 4, 1998 Time... 8:44:37:36 1 1 Ending Date... December 4, 1998 Time... 8:44:47:63 1 1 Elapsed Time... 0.17127 minutes or 20.27000 seconds I --------------------------------------------------------------e 16 Input File : C:\XPS\WORK\186-lePb.XP Current Directory: C:\PROGRA-1\XPSWMM32\XP-SWM-1 Executable Name: C:\PROGRA-1\XPSWM432\XP-SWM-1 Read 0 line(s) and found 0 items(s) from your cfg file. +-----------------------------------------------+ ( XP - SWMM I I Storm Water Management Model Version 5.30f (---------------------m--­--------_----------- Developed by I -----------------------------------------------I I XP Software Inc. and Pty. Ltd. 1 ( ( Based on the U.S. EPA I I Storm Water Management Model Version 4.40 1 I I 1 Originally Developed by I I Metcalf & Eddy, Inc. I I University i ersity of Florida I i Camp Dresser s McKee Inc. I I September 1970 I I I EPA-SWMM is maintained by I I Oregon State University I Camp Dresser i McKee Inc. I -----------------------------------------------I I XP Software August 7, 1997 I 1 Data File Version ---> 7.1 -----------------------------------------------I I If problems occur in running this model I I please contact XP Software - Australia I I or XP Software - U.S.A. I Phone +61-6 253-1844 in Australia I I _Fax y +61-6 253-1847 in Australia I Phone (813)-886-7724 in U.S.A. I I Fax / (813)-885-4198 in U.S.A. +------------------------------ -----+ +---------------------------------------------------------+ I Input and Output file names by SWMM Layer I +- ------------------------------------------------------+ Input File to Layer i 1 JOT.US Output File to Layer i 1 JOT.US ------------------------------------------------------------ I Special command line arguments in XP-SWMM. This section I I now includes program defaults. $Keywords are the program) I defaults. Other Keywords are from the SWMMCOM.CFG file.I I or the command line or any cfg file on the command line.) I Examples include these in the file xpswm.bat under the I I section :solve or in the windows version XPSWKM32 in thel I file solve.bat I 1 i Note: the cfg file should be in the subdirectory swmxp I I or defined by the set variable in the xpswm.bat I I file. Some examples of the command lines possible) I are shown below: I 1 I swmmd swmmcom.cfg I swmmd my.cfg I swmmd nokeys nconv5 pery extranwq +-----------------------------------------------------------+ $powerstation 0.0000 0 2 $pery 0.0000 0 4 $oldegg 0.0000 0 7 $as 0.0000 0 11 $noflat 0.0000 0 21 $oldomega 0.0000 0 24 $oldvol 0.0000 1 2B $implicit 0.0000 1 29 $oldhot 0.0000 1 31 $oldscs 0.0000 0 33 $flood 0.0000 1 40 $nokeys 0.0000 0 42 $pzero 0.0000 0 55 $oldvol2 0.0000 2 59 $storage_97 0.0000 1 62 $oldhotl 0.0000 0 63 1 $pumpwt 0.0000 1 70 ecloss 0.0000 1 77 $exout 0.0000 0 97 $ncmid 0.0000 0 164 $h ellipse 0.0000 1 270 $v ellipse 0.0000 1 271 $arch 0.0000 2 272 $new nl_97 0.0000 2 290 $best97 0.0000 1 294 $newbound 0.0000 1 295 *----------------------------------------------------------+ I Parameter Values on the Tapes Common Block.These are the I I values read from the data file and dynamically allocated I I by the model for this simulation. +-------------- Number of Subcatchments in the Runoff Block (NW).... 1 Number of Channel/Pipes in the Runoff Block (NG).... 0 Runoff Water quality constituents (NRQ)............. 8 Runoff Land Uses per Subcatchment (NLU)............. 3 Number of Elements in the Transport Block (NET)..... 0 Number of Storage Junctions in Transport (NTSE)..... 0 Number of Input Hydrographs in Transport (NTH)...... 0 Number of Elements in the Extran Block (NEE)........ 0 Number of Groundwater Subcatchments in Runoff (NGW). 0 Number of Interface locations for all Blocks (NIE).. 1 Number of Pumps in Extran (NEP)............ 0 Number of Orifices in Extran (NEO) .......... 0 Number of Tide Gates/Free Outfalls in Extran (NTG).. 0 Number of Extran Weirs (NEW)........................ 0 Number of scs hydrograph points..................... 1081 Number of Extran printout locations (NPO)........... 0 Number of Tide elements in Extran (NTE)............. 0 Number of Natural channels (NNC) .................... 0 Number of Storage junctions in Extran (NVSE)........ 0 Number of Time history data points in Extran(NTVAL). 0 Number of Variable storage elements in Extran (NVST) 0 Number of Input Hydrographs in Extran (NEH)......... 0 Number of Particle sizes in Transport Block (NPS)... 0 Number of User defined conduits (NHW)............... 31 Number of Connecting conduits in Extran (NECC)...... 20 Number of Upstream elements in Transport (NTCC)..... 10 Number of.Storage/treatment plants (NSTU)........... 0 Number of Values for R1 lines in Transport (NR1).... 0 Number of Nodes to be allowed for (NNOD)............ 1 Number of Plugs in a Storage Treatment Unit......... 1 #########################################$############# # Entry made to the Runoff Layer(Block) of SWMM # # Last Updated November, 1997 by XP Software # ------------------------------------------------------------ I RUNOFF TABLES IN THE OUTPUT FILE. I These are the more important tables in the output file. I You can use your editor to find the table numbers, I for example: search for Table R3 to check continuity. i I This output file can be imported into a Word Processor 1 I and printed on US letter or A4 paper using portrait I I mode, courier font, a size of 8 pt. and margins of 0.75 1 I I I Table RI - Physical Hydrology Data I Table R2 - Infiltration data I Table R3 - Raingage and Infiltration Database Names I I Table R4 - Groundwater Data i I Table R5 - Continuity Check for Surface Water ) I Table R6 - Continuity Check for Channels/Pipes I Table R7 - Continuity Check for Subsurface Water I Table R8 - Infiltration/Inflow Continuity Check ) I Table R9 - Summary Statistics for Subcatchments I I Table R10 - Sensitivity anlysis for Subcatchments I ----------------------------------------------------------• EXISTING CONDITION, PARKSIDE ESTATES IN HUNTINGTON BEACH FIRST FLUSH, HEAVY METALS. Volume - 69X0.5/12 -2.88 Ac-Ft ########################################### # RUNOFF JOB CONTROL # ########################################### Snowmelt parameter - ISNOW....................... 0 2 Number of rain gages - NRGAG..................... 1 Quality is simulated - KWALTy,,,,,,,,,,,,,,,,,,,, I Read evaporation data on line(s) F1 (F2) - IVAP.. 1 Hour of day at start of storm - NHR.............. 0 Minute of hour at start of storm - NMN........... 0 Time TZERO at start of storm (hours)............. 0.000 Use U.S. Customary units for most I/O - METRIC... 0 Runoff input print control... 0 Runoff graph plot control.... 1 Runoff output print control.. 0 Limit number of groundwater convergence messages to 10000 Month, day, year of start of storm is: l/ l/ 98 Wet time step length (seconds)....... 120.0 Dry time step length (seconds)....... 3600.0 Wet/Dry time step length (seconds)... 300.0 Simulation length is...... 36.0 Hours If Horton infiltration model is being used A mixture of infiltration options may be used in XP-SWMM as a watershed specific option. Rate for regeneration of infiltration - REGEN * DECAY Decay is read in for each subcatchment REGEN . ............................................. 0.01000 Raingage #................................ 1 KTYPE - Rainfall input type.............. 1 NHISTO - Total number of rainfall values.. 26 KINC - Rainfall values(pairs) per line.. 10 KPRINT - Print rainfall(0-Yes,l-No)....... 0 KTIME - Precipitation time units 0 --> Minutes 1 --> Hours................ 0 KPREP - Precipitation unit type 0 --> Intensity. 1 --> Volume............. 0 KTHIS - Variable rainfall intervals 0 --> No, > 1 --> Yes..................... 25 THISTO - Rainfall time interval........... 0.00 TZRAIN - Starting time(KTIME units)....... 0.00 #- Variable Rainfall Intervals # i#i##iii#Y#i###ii#iii#i###i##### --> Start/End/Time in Minutes <---- 1. Start Time 0.00000 End Time 0.10000 Time Interval 0.10 2. Start Time 0.10000 End Time 480.00000 Time Interval 479.90 3. Start Time 480.00000 End Time 480.10000 Time Interval 0.10 4. Start Time 480.10000 End Time 720.00000 Time Interval 239.90 5. Start Time 720.00000 End Time 720.10000 Time Interval - 0.10 6. Start Time 720.10000 End Time 840.00000 Time Interval 119.90 7. Start Time 840.00000 End Time 840.10000 Time Interval 0.10 8. Start Time 840.10000 End Time 920.00000 Time Interval 79.90 9. Start Time 920.000OO End Time 920.10000 Time Interval 0.10 10. Start Time 920.10000 End Time 960.00000 Time Interval 39.90 11. Start Time 96Q.00000 End Time 960.10000 Time Interval 0.10 12. Start Time 960.10000 End Time 965.00000 Time Interval 4.90 13. Start Time 965.00000 End Time 965.10000 Time Interval 0.10 14. Start Time 965.10000 End Time 970.00000 Time Interval 4.90 15. Start Time 970.00000 End Time 970.10000 Time Interval 0.10 16. Start Time 970.10000 End Time 980.00000 Time Interval 9.90 17. Start Time 980.00000 End Time 980.10000 Time Interval 0.10 18. Start Time 980.10000 End Time 1020.00000 Time Interval 39.90 19. Start Time 1020.00000 End Time 1020.10000 Time Interval 0.10 20. Start Time 1020.10000 End Time 1080.00000 Time Interval 59.90 21. Start Time 1080.00000 End Time 1080.10000 Time Interval 0.10 22. Start Time 1080.10000 End Time 1200.00000 Time Interval 119.90 23. Start Time 1200.00000 End Time 1200.10000 Time Interval 0.10 24. Start Time 1200.10000 End Time 1440.00000 Time Interval 239.90 25. Start Time 1440.00000 End Time 1440.20000 Time Interval 0.10 Rainfall printout for gage number.... 1 Time(mn)/Rain(in/hr) Time(mn)/Rain(in/hr) Time(mn)/Rain(in/hr) Time(mn)/Rain(in/hr) 0.00 0.0000 0.10 0.0318 480.00 0.0318 480.10 0.0477 720.00 0.0477 720.10 0.0689 840.00 0.0689 840.10 0.1060 920.00 0.1060 920.10 0.2014 960.00 0.2014 960.10 0.8374 965.00 0.8374 965.10 0.3021 970.00 0.3021 970.10 0.2014 980.00 0.2014 980.10 0.1060 1020.00 0.1060 1020.10 0.0689 1080.00 0.0689 1080.10 0.0477 1200.00 0.0477 1200.10 0.0318 1440.00 0.0318 1440.10 0.0000 3 ###################################### # Rainfall input summary from Runoff # ###################################### Total rainfall for gage # 1 is 1.3493 inches ############################# # Data Group F1 # # Evaporation Rate (in/day) # ############################# JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV DEC. ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 0.040 0.040 0.060 0.100 0.120 0.140 0.150 0.160 0.140 0.100 0.070 0.050 +++w+ww++wx++x+xwx++x+xw+wwxxw+x+wwwxw+x++xw+w+ww * No Channel or Pipe Network w This is a good idea, the hydraulic routing w in your network should be done in either w the Transport Layer or Extran Layer of SWMM. w +::+wxwwx ww wxww+w+xww xx w++w wxwww+www+xww♦wx ww w+w: ################################################### # TableR1. S U B C A T C H M E N T DATA # # Physical Hydrology Data # ################################################### Deprs Deprs Prcnt Per- -Sion -Sion Zero Subcatchment Channel Width Area cent Slope "n" "n" Storge Strge Deten Number Name or inlet ft =c Impery ft/ft Impry Pery Impry Pery -tion " ----- ----- ----- -- - ----- 1 Node 250#1 Node 250 0.100E+04 21.8 40.00 0.05 0.014 0.030 0.050 0.050 0.00 ############################################################################################ Table R2. SUHCATCHMENT DATA # Infiltration Data # Infiltration Type Infl #1 Infl #2 Infl #3 Infl #4 # # SCS -> Comp CN Time Conc Shape Factor Depth or Fraction # # SBUH -> Comp CN Time Conc N/A N/A # # Green Ampt -> Suction Hydr Cond Initial MD N/A # # Horton -> Max Rate Min Rate Decay Rate (1/sec) N/A # # Proportional -> Constant N/A/ N/A N/A # # Initial/Cont Loss -> Initial Continuing N/A N/A # # Initial/Proportional-> Initial Constant N/A N/A # Laurenson Paramters -> B Value Pervious "n" Impervious Cont P Exponent # Subcatchment Infl Infl Infl Infl Number Name # 1 # 2 # 3 # 4 ----- ----- ----- ..... 1 Node 250#1 0.972E-05 0.509E-05 0.500E-01 ############################################################ # Table R3. SUBCATCHHENT DATA # # Rainfall and Infiltration Database Names # ############################################################ Subcatchment Gage Infltrn Routing Rainfall Database Infiltration Database Number Name No Type Type Name Name .... ----------- ----------------- ---------------- i Node 250#1 1 Horton Non-linear reservoir 2-year SCS TYPE A - Horton Total Number of Subcatchments... 1 Total Tributary Area (acres).... 21.80 Impervious Area (acres)......... 8.72 Pervious Area (acres)........... 13.08 Total Width (feet).............. 1000.00 Percent Imperviousness.......... 40.00 # S U B C A T C H M E N T D A T A # 4 # Default, Ratio values for subcatchment data # # Used with the calibrate node in the runoff. # $ 1 - width 2 - area 3 - impervious t . # # 4 - slope 5 - imp "n" 6 - pery "n" # # 7 - imp ds 8 - pery ds 9 - 1st infil # #10 - 2nd infil 11 - 3rd infil # ##################################f################ Column 1 2 3 4 5 6 Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Ratio 1.000 1.000 1.000 1.000 1.000 1.000 Column 7 a 9 10 11 Default 0.0000 0.0000 0.0000 0.0000 0.0000 Ratio 1.000 1.000 1.000 1.000 1.000 rtrte:arrartrara*r*a**r*rarrrararr+xrrtra rr rr*:rtarrrararrarxr * Arrangement of Subcatchments and Channel/Pipes rrrr+r►arrraxrrtrr ar rrtrrrr r♦rrrxaa rrraraar►r:►rr rr ara♦:aa► Inlet Node 250 No Tributary Channel/Pipes Tributary Subareas........ Node 250#1 rasa+aa:aar*rtrtawarrtrtar+a:rrraaaxararrrrtrr:as rrrarr r•rrxaart * Hydrographs will be stored for the following 1 INLETS r rasa+aaxraraaaraaaxaa****x**x*aaa**rrta*axr+xaaa rr ra aaxaax Node 250 ##############f########################f########i## # Quality Simulation # #f#ffffff###f##f#ff#ffff##iiif#i#ffff#fifi##i##f#ff # General Quality Control data groups # ###########################################f#####i# Description Variable Value Number of quality constituents..... NQS....... 8 Number of land uses................ JLAND....... 3 Standard catchbasin volume......... CBVOL....... 0.00 cubic feet . Erosion is not simulated......... IROS........ 0 Dry days prior to start of storm... DRYDAY....... 60.00 days Dry Days required to recharge catchbasin concentration to Initial Values..................... DRYBSN....... 1.00 DAYS Dust and Dirt Street Sweeping Efficiency......... REFFDD....... 0.000 Day of year on which street Sweeping begins.................... KLNBGN....... 1 Day of year on which street Sweeping ends...................... KLNEND....... 1 #################f#f#f##################### # Land use data on data group J2 # ##################f############f########### functional limiting cleaning avail. days since buildup dependence of buildup buildup buildup interval factor last land use equation buildup quantity power coeff. in days fraction sweeping (lname) (method) parameter(jacgut) (ddlim) (ddpow) (ddfact) (clfreq) (ayswp) (dslcl) -------- ------------- ----------------- -------- ------- -------- -------- -------- ------- Open Spa Power Linear Area(1) 1.000E+25 1.500 1500.000 0.000 0.000 0.000 Resident Power Linear Area(1) 1.000E+25 1.500 500.000 0.000 0.000 0.000 Commerci Power Linear Area(1) 1.000E+25 1.500 100,000 0.000 0.000 0.000 #################f#################f#f###f#### # Constituent data on data group J3 # #########f#f#######ffff####################### 5 Total Pb Diss. Pb Total Cu -------- -------- -------- Constituent units........ mg/l mg/1 mg/1 Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALC..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.022 0.002 0.028 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation cone....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 1 1 1 Total Pb Diss. Pb Total Cu -------- -------- -------- Constituent units........ mg/1 mg/1 mg/l Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALL..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.022 0.002 0.028 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin cone.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 2 2 2 Total Pb Diss. Pb Total Cu -------- -------- -------- Constituent units........ mg/1 mg/l mg/1 Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALC..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.022 0.002 0.028 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 3 3 3 Diss. Cu Total Zn Diss. Zn -------- -------- -------- Constituent units........ mg/1 mg/1 mg/l Type of units............ 0 0 0 6 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALL..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH..... 3 3 3 Type of Washoff CALC..... EMC EMC EMC KACGUT................... 0 0 0. Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.010 0.153 0.066 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping ef£...... 0.000 0.000 0.000 Land use number.......... 1 1 1 Diss. Cu Total Zn piss. Zn -------- ----- -------- Constituent units........ mg/1 mg/1 mg/l Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALL..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALC..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff,.... 0.010 0.153 0.068 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 2 2 2 Diss. Cu Total Zn Diss. Zn -------- -------- -------- Constituent units........ mg/l mg/1 mg/1 Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALL..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALL..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.010 0.153 0.06E Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 3 3 3 Total Cd Diss. Cd -------- -------- Constituent units........ mg/l mg/1 Type of units............ 0 0 Decay rate (1/day)....... 0.000 0.000 KALC..................... 4 4 Type of Buildup CALL..... No Buildup(4) No Buildup(4) KWASH.................... 3 3 Type of Washoff CALC..... EMC EMC KACGUT................... 0 0 7 Dependence of buildup.... Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 Linkage to snowmelt...... No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 Second buildup parameter. 0.000 0.000 Third buildup parameter.. 0.000 0.000 Fourth buildup parameter. 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 Exponent for washoff..... 0.001 0.000 Coefficient for washoff.. 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 Precipitation conc....... 0.000 0.000 Street sweeping eff...... 0.000 0.000 Land use number.......... 1 1 Total Cd Diss. Cd -------- -------- Constituent units........ mg/1 mg/1 Type of units............ 0 0 Decay rate (1/day)....... 0.000 0.000 KALC..................... 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) KWASH.................... 3 3 Type of Washoff CALL..... EMC EMC KACGUT................... 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 Linkage to snowmelt...... No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 Second buildup parameter. 0.000 0.000 Third buildup parameter.. 0.000 0.000 Fourth buildup parameter. 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 Exponent for washoff..... 0.001 0.000 Coefficient for washoff.. 1.000 1.000 Initial catchbasin cone.. 0.000 0.000 Precipitation cone....... 0.000 0.000 Street sweeping eff...... 0.000 0.000 Land use number.......... 2 2 Total Cd Diss. -Cd - -------- -------- Constituent units........ mg/1 mg/l Type of units............ 0 0 Decay rate (1/day)....... 0.000 0.000 KALC..................... 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) KWASH.................... 3 3 Type of Washoff CALL..... EMC EMC KACGUT................... 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 Linkage to snowmelt...... No snow linkage No snow linkage First buildupparameter.. p ter.. 0.000 0.000 Second buildup parameter. 0.000 0.000 Third buildup parameter.. 0.000 0.000 Fourth buildup parameter. 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 Exponent for washoff..... 0.001 0.000 Coefficient for washoff.. 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 Precipitation cone....... 0.000 0.000 Street sweeping eff...... 0.000 0.000 . Land use number.......... 3 3 Y Subcatchment surface quality on data group Ll Total Number Input Input Input Input Input Land Gutter of Loading Land Use Length Catch- of No. Usage No. 10Y+2ft Basins Total Pb Diss. Pb Total Cu Diss. Cu Total Zn --- -------- ---- -------- -------- ------- ------- ------- ------- ------- 1 Node Open Spa 1 0.00 0.00 O.0E+00 0.0E+00 0.0E+00 O.0E+00 0.0E+00 1 ?lode Resident 2 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1 Node Commerci 3 0.00 0.00 O.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 . Totals 0.00 0.00 0.0E+00 O.0E+00 0.0E+00 0.0E+00 0.0E+00 8 +rr+rrr►w+ra+rr+araa++►wa+r►+r+rar#►aawwr++aa+►rarara * Subcatchment surface quality on data group L1 a arr++rr+rrr+a+ww+wry+a►w+r:+a►:aw+aa»+ra++r asrr:w►+ Total Number Input Input Input Land Gutter of Loading Land Use Length Catch- of No. Usage No. 10**2ft Basins Diss. Zn Total Cd Diss. Cd --- -------- ---- --- ------- ------- ------- ------- 1 Node Open Spa 1 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 1 Node Resident 2 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 1 Node Commerci 3 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 Totals 0.00 0.00 O.0E+00 0.0E+00 0.0E+00 :wa+##rr#rr#r ax#axaw+a#xa x#ararrxxaaaw:aa ' DATA GROUP M1 * Print Control from Runoff Job Control +a►►wxrwr:a►►aw►axrxraw►a arwarrwaawaraaa+ TOTAL NUMBER OF PRINTED GUTTERS/INLETS...NPRNT.. 1 NUMBER OF TIME STEPS BETWEEN PRINTINGS..INTERV.. 5 r rx*aaaaxaryr►#rasa#raawaa##a ax a##aax#ara ' DATA GROUP M3 • Print Control from Node Print Control w rarrr.a#►r►+►ra+rra waaa+arrrrra aura#+raa CHANNEL/INLET PRINT DATA GROUPS......Node 250 +rx:rwrarra r**+*rrawaaawr►a wr►a.+araaar+aa ar awa+ra ra * Precipitation Interface File Summary ' Number of precipitation station.... 1 _-� rrr awsraawa:w►r rrra#waa++ra aar:+++ra►aa+rr#+r►a+r+a Location Station Number -------- -------------- End of time step DO-loop in Runoff axa+r+r+r:awr ra ra*rraawrr+++:r+++►►aar++►++aa:+• Final Date (Mo/Day/Year) - 1/ 2/1998 Total number of time steps - 881 Final Julian Date - 98002 Final time of day = 43200. seconds. Final time of day - 12.00 hours. Final running time - 36.0000 hours. Final running time 1.5000 days. aaaa+ar►aa►rr►►w+wr:wwr++++arr+aaa►#wra♦:r►raar:raa+ * Extrapolation Summary for Watersheds ' Explains the number of time steps and iterations a * used in the solution of the subcatchments. * f Steps -_> Total Number of Extrapolated Steps * f Calls -_> Total Number of OVERLND Calls ++tar#!r►aa#+#►rafraa rrra#ifaawrraa+#yara r#+aaa++aaa Subcatch t Steps / Calls Subcatch i Steps i Calls ------- ------- ------- -------- ------- ------- Node 25011 4841 723 rw+rrrarr♦+ra xrr+r•++:rr#raa*+aaraa#++rrrr+*arrraa+►rr#++raa * Table R5. CONTINUITY CHECK FOR SURFACE WATER * Any continuity error can be fixed by lowering the * * wet and transition time step. The transition time * should not be much greater than the wet time step. * arr++r:+ar ara rr a:++++ar♦ra+rw++►r+♦++rerrrrryar+:+a+ararr++• Inches over cubic feet Total Basin Total Precipitation (Rain plus Snow) 1.067798E+05 1.349 Total Infiltration 6.213663E+04 0.785 Total Evaporation 3.798349E+03 0.048 Surface Runoff from Watersheds 3.972973E+04 0.502 9 Total water remaining in Surface Storage +g 1.058149E 03 0.013 Infiltration over the Pervious Area... 6.213663E+04 .309309 Infiltration + Evaporation + Surface Runoff + Snow removal + Water remaining in Surface Storage + Water remaining in Snow Cover......... 1.067229E+05 1.349 Total Precipitation + Initial Storage. 1.067748E+05 1.349 The error in continuity is calculated as x YY r*f#Y*#YY#*YY*rY>Y#Y1#>f Yx*YYr:**Yf* * Precipitation + Initial Snow Cover ' - Infiltration - *Evaporation - Snow removal - *Surface Runoff from Watersheds - *Water in Surface Storage - *water remaining in Snow Cover ------------------------------------- Precipitation + Initial Snow Cover Yrr#r*#**rYr»YY#Y♦Y#wYYr#Yra*#rr**YY r* Percent Continuity Error............... 0.049 rr*Yr>##rrrY##Y•#rrxrrY Y*»Yr#Y:rx►rY rr rYYr#rYYYYrr> * Table R6. Continuity Check for Channel/Pipes ' You should have zero continuity error * ' if you are not using runoff hydraulics * *rY>#Y**rY##YY#Yr>YYr###►*>rrr*+>Yr 1YYYrxrrYrr*##YYY Inches over cubic feet Total Basin Initial Channel/Pipe Storage................ 0.000000E+00 0.000 Final Channel/Pipe Storage.................. 0.000000E+00 0.000 Surface Runoff from Watersheds.............. 3.972973E+04 0.502 Groundwater Subsurface Inflow............... 0.000000E+00 0.000 Evaporation Loss from Channels.............. 0.000000E+00 0.000 Channel/Pipe/Inlet Outflow.................. 3.972973E+04 0.502 Initial Storage + Inflow.................... 3.972973E+04 0.502 Final Storage + Outflow.............. 3.972973E+04 0.502 *Yrr»>rrrrr>*:»r»rrx>YYr r>:»»rrr»>>rr♦ * Final Storage + Outflow + Evaporation - * * Watershed Runoff - Groundwater Inflow - * * Initial Channel/Pipe Storage * ---------------------------------- Final Storage + outflow + Evaporation r#*rr>YYrr*#r*Y>:*r>*#rrrxrYY:Y►rr*#>YrY#*>Y Percent Continuity Error.................... 0.000 ################################################## # Table R9. Sum mary Statistics for Subcatchments # ################################################## Note: Total Runoff Depth includes pervious 6 impervious area Pervious and Impervious Runoff Depth is only the runoff from those two areas. Subcatchment........... Node 250#1 Area (acres)........... 21.80000 Percent Impervious..... 40.00000 Total Rainfall (in).... 1.34929 Max Intensity (in/hr).. 0.83740 Pervious Area Total Runoff Depth (in) 0.00061 Total Losses (in)...... 1.34868 Remaining Depth (in)... 0.00000 Peak Runoff Rate (cfs). 0.05469 Total Impervious Area Total Runoff Depth (in) 1.25422 Peak Runoff Rate (cfs). 5.10615 Impervious Area with depression storage Total Runoff Depth (in) 1.25422 Peak Runoff Rate (cfs). 5.10615 Impervious Area without depression storage Total Runoff Depth (in) 0.00000 Peak Runoff Rate (cfs). 0.00000 Total Area Total Runoff Depth (in) 0.50206 Peak Runoff Rate (cfs). 5.16084 Unit Runoff (in/hr).... 0.23674 ##################################################### 10 # Runoff Quality Summary Page # # If NDIM - 0 Loads are in units of Kgs---Lbs and # # mass rates have units of Kgs---Lbs/sec# # If NDIM - 1 Loads are in units of quantity # # and mass rates are quantity/sec # # If NDIM - 2 loads are in units of concentration # # times volume and mass rates have units# # of concentration times volume/ second # ##################################################### Total Pb Diss. Pb Total Cu Diss. Cu Total Zn mg/l mg/l mg/1 mg/1 mg/l -------- -------- -------- -------- -------- Inputs 1. Initial surface load........ 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2. Total surface buildup....... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 O.00E+00 2a. Buildup during simulation... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3. Initial catchbasin load..... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4. Total catchbasin load....... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5. Total catchbasin and surface buildup (2+4) ....... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Ruining Loads --------------- 6. Load remaining on surface... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7. Remaining in catchbasins.... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8. Remaining in channel/pipes.. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Removals 9. Street sweeping removal..... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 10. Net surface buildup (2-9)... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 11. Surface washoff............. 5.36E-02 5.46E-03 6.84E-02 2.48E-02 3.79E-01 12. Catchbasin'washoff.......... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 13. Total washoff (11+12)....... 5.36E-02 5.46E-03 6.84E-02 2.48E-02 3.79E-01 14. Insoluble washoff........... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 15. Precipitation............... O.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 16. Total groundwater load...... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 0.000 0.000 16a.Tota1 I/I load.............. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 17. Ttl subcat load(13+14+15+16) 5.36E-02 5.46E-03 6.84E-02 2.48E-02 3.79E-01 18. Total load to inlets........ 5.36E-02 5.46E-03 6.84E-02 2.48E-02 3.79E-01 19. Flow wt'd ave.concentration (inlet load/total flow)..... 2.16E-02 2.20E-03 2.76E-02 1.00E-02 1.53E-01 Percentages --------- 20. Street sweeping (9/2)....... 0.000 0.000 0.000 0.000 0.000 21. Surface washoff (11/2)...... 0.000 0.000 0.000 0.000 0.000 22. Net surface washoff(11/10).. 0.000 0.000 0.000 0.000 0.000 23. Washoff/subcat load(11/17).. 100.000 100.000 100.000 100.000 100.000 24. Surface washoff/inlet load (11/18)..................... 100.000 100.000 100.000 100.000 100.000 25. Catchbasin washoff/ subcatchment load (12/17)... 0.000 0.000 0.000 0.000 0.000 26. Catchbasin washoff/ inlet load (12/18).......... 0.000 0.000 0.000 0.000 0.000 27. Insoluble fraction/ subcatchment load (14/17)... 0.000 0.000 0.000 0.000 0.000 28. Insoluble fraction/ inlet load (14/18).......... 0.000 0.000 0.000 0.000 0.000 29. Precipitation/ subcatchment load (15/17)... 0.000 0.000 0.000 0.000 0.000 30. Precipitation/ inlet load (15/18).......... 0.000 0.000 0.000 0.000 0.000 31. Groundwater load/ subcatchment load (16/17)... 0.000 0.000 0.000 0.000 0.000 32. Groundwater load/ inlet load (16/18).......... 0.000 0.000 0.000 0.000 0.000 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 0.000 0.000 32b.Infiltration/Inflow Load/ Inlet Load (16a/18)......... 0.000 0.000 0.000 0.000 0.000 34. Inlet load summation error (18+8+33-17)/17............. 0.000 0.000 0.000 0.000 0.000 # Runoff Quality Summary Page # 11 # If NDIM - 0 Loads are in units of Kgs---Lbs and # # mass rates have units of Kgs---Lbs/see# # If NDIM - 1 Loads are in units of quantity # # and mass rates are quantity/sec # # If NDIM - 2 loads are in units of concentration # # times volume and mass rates have units# # of concentration times volume/ second # ##################################################### Dias. 2n Total Cd Dias. Cd mg/1 mg/l mg/l - ------- -------- -------- Inputs 1. Initial surface load........ 0.00E+00 0.00E+00 0.00E+00 2. Total surface buildup....... 0.00E+00 0.00E+00 0.00E+00 2a. Buildup during simulation... 0.00E+00 0.00E+00 0.00E+00 3. Initial catchbasin load..... 0.00E+00 0.00E+00 0.00E+00 4. Total catchbasin load....... 0.00E+00 0.00E+00 0.00E+00 5. Total catchbasin and surface buildup (2+4)....... 0.00E+00 0.00E+00 0.00E+00 Remaining Loads --------------- 6. Load remaining on surface... 0.00E+00 0.00E+00 0.00E+00 7. Remaining in catchbasins.... 0.00E+00 0.00E+00 0.00E+00 8. Remaining in channel/pipes.. 0.00E+00 0.00E+00 0.00E+00 Removals 9. Street sweeping removal..... 0.00E+00 0.00E+00 0.00E+00 10. Net surface.buildup (2-9)... 0.00E+00 0.00E+00 0.00E+00 11. Surface washoff............. 1.69E-01 1.96E-03 7.94E-04 12. Catchbasin washoff.......... 0.00E+00 0.00E+00 0.00E+00 13. Total washdff (11+12)....... 1.69E-01 1.96E-03 7.94E-04 14. Insoluble washoff........... 0.00E+00 0.00E+00 0.00E+00 15. Precipitation............... O.00E+00 0.00E+00 0.00E+00 16. Total groundwater load...... 0.00E+00 0.00E+00 0.00E+00 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 16a.Total I/I load.............. 0.00E+00 0.00E+00 0.00E+00 17. Ttl subcat load(13+14+15+16) 1.69E-01 1.96E-03 7.94E-04 18. Total load to inlets........ 1.69E-01 1.96E-03 7.94E-04 19. Flow wt'd ave.concentration (inlet load/total flow)..... 6.80E-02 7.90E-04 3.20E-04 Percentages ---------- 20. Street sweeping (9/2)....... 0.000 0.000 0.000 21. Surface washoff (11/2)...... 0.000 0.000 0.000 22. Net surface washoff(11/10).. 0.000 0.000 0.000 23. Washo£f/subcat load(11/17).. 100.000 100.000 100.000 24. Surface washoff/inlet load (11/18)..................... 100.000 100.000 100.000 25. Catchbasin washoff/ subcatchment load (12/17)... 0.000 0.000 0.000 26. Catchbasin washoff/ inlet load (12/18).......... 0.000 0.000 0.000 27. Insoluble fraction/ subcatchment load (14/17)... 0.000 0.000 0.000 28. Insoluble fraction/ inlet load (14/18).......... 0.000 0.000 0.000 29. Precipitation/ Subcatchment load (15/17)... 0.000 0.000 0.000 30. Precipitation/ inlet load (15/18).......... 0.000 0.000 0.000 31. Groundwater load/ subcatchment load (16/17)... 0.000 0.000 0.000 32. Groundwater load/ inlet load (16/18).......... 0.000 0.000 0.000 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 32b.Infiltration/Inflow Load/ Inlet Load (16a/18)......... 0.000 0.000 0.000 34. Inlet load summation error (18+8+33-17)/17............. 0.000 0.000 0.000 CAUTION. Due to method of quality routing (Users Manual, Appendix IX) quality routing through channel/pipes is sensitive to the time step. Large "Inlet Load Summation Errors" may result. These can be reduced by adjusting the time step(s). 12 t tt rt rrwf#f+rf#xwr:+wfw#rttrf#ffrwxt+rw•+rr#wff wf r++ * Summary of Quantity and Quality Results at * Location Node 250 Flow in cfs. • Values are instantaneous at indicated time step #rf#rrrrf#r+f txrrrwwrwr#+tx:wrrfwra wf rf rwrf wf:rrf+rw - EXISTING CONDITION, PARKSIDE ESTATES IN HUNTINGTON BEACH FIRST FLUSH, HEAVY METALS. Volume - 69X0.5/12 -2.88 Ac-Ft Date Time Flow Total Pb Diss. Pb Total Cu Diss. Cu Total Zn Diss. Zn Total Cd Diss. Cd Mo/Da/Yr Hr:Min ---cfs- mg/l mg/1 mg/l mg/1 mg/l mg/1 mg/1 mg/1 ----- ------ ------- -------- -------- -------- -------- -------- -------- -------- 1 1 98 1 48 0.038 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 1 58 0.111 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 8 0.172 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 18 0.213 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 28 0.237 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 38 0.250 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 48 0.257 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 58 0.261 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 3 8 0.263 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 3 .18 0.264 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 3 28 0.264 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 3 38 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 3 48 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 3 58 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 8 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 0 3.200E-04 1 1 98 4 18 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 28 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 38 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 48 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 58 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 8 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1, 1 98 5 18 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 28 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 38 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 48 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 58 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 8 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 18 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 28 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 38 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 48 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 58 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 8 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 18 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 13 1 1 98 7 28 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 38 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 48 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 58 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.BOOE-02 7.900E-04 3.200E-04 1 1 98 8 6 0.312 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 16 0.359 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 26 0.383 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 36 0.395 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 46 0.400 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 56 0.403 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 6 0.404 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 16 0.404 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 26 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 36 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 46 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 56 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 6 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 1& 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 26 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 36 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 46 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 56 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 6 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 96 11 16 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 26 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 36 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 46 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 56 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 4 0.455 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7,900E-04 3.200E-04 1 1 98 12 14 0.533 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 24 0.567 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 34 0.581 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 44 0.587 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 54 0.589 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7,900E-04 3.200E-04 1 1 98 13 4 0.590 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 13 14 0.591 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 13 24 0.591 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 13 34 0.591 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 13 44 0.591 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 13 54 0.591 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-09 14 1 1 98 14 2 0.646 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 14 12 0.816 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 14 22 0.882 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 14 32 0.905 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 14 42 0.913 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 14 52 0.916 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 2 0.917 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 12 0.917 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 20 0.917 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 30 1.507 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 40 1.691 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 50 1.740 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7,900E-04 3.200E-04 1 1 98 16 0 1.752 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 5 5.109 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 12 3.071 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 20 2.129 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 30 1.236 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 40, 1.018 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 50 0.951 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 0 0.929 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 8 0.740 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 18 0.698 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 28 0.614 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7,900E-04 3.200E-04 1 1 98 17 38 0.600 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 48 0.595 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 58 0.593 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 6 0.516 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 16 0.453 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 26 0.427 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 36 0.415 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 46 0.409 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 56 0.407 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 6 0.406 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 16 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 26 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 36 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 46 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 56 0.405 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 4 0.368 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 14 0.315 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 15 1 1 98 20 24 0.290 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 34 0.278 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 44 0.272 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 54 0.268 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 4 0.267 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.BOOE-02 7.900E-04 3.200E-04 1 1 98 21 14 0.266 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 24 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 34 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 44 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 54 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.600E-02 7.900E-04 3.200E-04 1 1 98 22 4 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.BOOE-02 7.900E-04 3.200E-04 1 1 98 22 14 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 22 24 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 22 34 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 22 44 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 22 54 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 23 4 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 23 14• 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6-BOOE-02 7.900E-04 3.200E-04 1 1 98 23 24 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 23 34 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 23 44 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6-BOOE-02 7.900E-04 3.200E-04 1 1 98 23 54 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 2 98 0 0 0.265 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6-SOOE-02 7.900E-04 3.200E-04 1 2 98 0 20 0.O84 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 2 98 0 45 0.028 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 2 98 1 10 0.010 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 2 98 1 35 0.003 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 2 98 2 0 0.000 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -- ------- ------- -------- -------- -------- -------- -------- -------- -------- -------- Flow wtd means..... 0.3066 0.022 0.002 0.028 0.010 0.153 0.068 0.001 0.000 Flow wtd std devs.. 0.4402 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Maximum value...... 5.109 0.022 0.002 0.028 0.010 0.153 0.068 0.001 0.000 Minimum value...... 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Total loads........ 3.973E+04 5.357E-02 5.456E-03 6.845E-02 2.480E-02 3.795E-01 1.667E-01 1.959E-03 7.937E-04 Cub-Ft POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS --> Runoff simulation ended normally. ---> SWMM Simulation ended normally. -> Your input file was named C:\XPS\WORK\186-lePb.DAT ---> Your output file was named C:\XPS\WORK\186-lePb.out ....--......»-------------------------------------------------+ I SWMM Simulation Date and Time Summary i x..............................................................r I Starting Date... December 4, 1998 Time... 8:47:34: 0 1 1 Ending Date... December 4, 1998 Time... 8:47:43:94 1 1 Elapsed Time... 0.16567 minutes or 9.94000 seconds I x--------------------------------------------------------------' 16 } EHD/X 5 FIRST FLUSH POLLUTANT LOADS FOR DEVELOPED CONDITION *-- ,=Mama f . : j R/VERTECH Input File : C:\XPS\WORK\186-idPa.XP Current Directory: C:\PROGRA-1\XPSWMM32\XP-SWM-1 Executable Name: C:\PROGRA-1\XPSWMM32\XP-SWM-1 . Read 0 line(s) and found 0 items(s) from your cfg file. --------------------------------------------- i XP - SWMM 1 I Storm Water Management Model i Version 5.30f I -----------------------------------------------I I Developed by 1 -----------------------------------------------I I XP Software Inc. and Pty. Ltd. I I 1 1 Based on the U.S. EPA I I Storm Water Management Model Version 4.40 1 I 1 I Originally Developed by i I Metcalf c Eddy, Inc. I I University of Florida I I Camp Dresser c McKee Inc. I September 1970 I I EPA-SWMM is maintained by I i Oregon State University I I Camp Dresser c McKee Inc. I -----------------------------------------------I I XP Software August 7, 1997 I I Data File Version ---> 7.1 I -----------------------------------------------I I If problems occur in running this model I I please contact XP Software - Australia I I or XP Software - U.S.A. I I Phone +61-6 253-1844 in Australia I I Fax f +61-6 253-1847 in Australia I I Phone (813)-886-7724 in U.S.R. I I Fax # (813)-885-4198 in U.S.A. I +-------------------------------- -----• *--------------------------------------- -----• 1 Input and Output file names by SWMM Layer I *----------------- ---------------------------------------- Input File to Layer f 1 JOT.US Output File to Layer i 1 JOT.US f ----------------------------------------------------------- I Special command line arguments in XP-SWMM. This section I I now includes program defaults. $Keywords are the programl I defaults. Other Keywords are from the SWMMCOM.CFG file.[ I or the command line or any cfg file on the command line.[ I Examples include these in the file xpswm.bat under the I I section :solve or in the windows version XPSWMK32 in thel I file solve.bat 1 I I I Note: the cfg file should be in the subdirectory swmxp I I or defined by the set variable in the xpswm.bat I I file. Some examples of the command lines possible) l are shown below: I I swnmd swmmcom.cfg I swmmd my.cfg 1 I swmmd nokeys nconv5 pery extranwq I •-----------------------------------------------------------+ $powerstation 0.0000 0 2 $pery 0.0000 0 4 $oldegg 0.0000 0 7 $as 0.0000 0 it $noflat 0.0000 0 21 $oldomega 0.0000 0 24 $oldvol 0.0000 1 28 $implicit 0.0000 1 29 $oldhot 0.0000 1 31 $oldscs 0.0000 0 33 Ulood 0.0000 1 40 $nokeys 0.0000 0 42 $pzero 0.0000 0 55 $oldvo12 0.0000 2 59 $storage_97 0.0000 1 62 $oldhotl 0.0000 0 63 1 $pumpwt 0.0000 1 70 $ecloss 0.0000 1 77 $exout 0.0000 0 97 $ncmid 0.0000 0 164 $h_ellipse 0.0000 1 270 $v ellipse 0.0000 1 271 $arch 0.0000 2 272 $new nl_97 0.0000 2 290 $best97 0.0000 1 294 $newbound 0.0000 1 295 ----------------------------------------------------------- I Parameter Values on the Tapes Common B1ock.These are the I I values read from the data file and dynamically allocated I I by the model for this simulation. I •---------------------------------------m-----------------• Number of Subcatchments in the Runoff Block (NW).... 1 Number of Channel/Pipes in the Runoff Block (NG).... 0 Runoff Water quality constituents (NRQ)............. 8 Runoff Land Uses per Subcatchment (NLU)............. 3 Number of Elements in the Transport Block (NET)..... 0 Number of Storage Junctions in Transport (NTSE)..... 0 Number of Input Hydrographs in Transport (NTH)...... 0 Number of Elements in the Extran Block (NEE)........ 0 Number of Groundwater Subcatchments in Runoff (NGW). 0 Number of Interface locations for all Blocks (NIE).. 1 Number of Pumps in Extran (NEP)..................... 0 Number of Orifices in Extran (NEO).................. 0 Number of Tide"Gates/Free Outfalls in Extran (NTG).. 0 Number of Extran Weirs (NEW)........................ 0 Number of zcs hydrograph points..................... 1081 Number of Extran printout locations (NPO)........... 0 Number of Tide elements in Extran (NTE)............. 0 Number of Natural channels (NNC).................... 0 Number of Storage junctions in Extran (NYSE)........ 0 Number of Time history data points in Extran(NTVAL). 0 Number of Variable storage elements in Extran (NVST) 0 Number of Input Hydrographs in Extran (NEH)......... 0 Number of Particle sizes in Transport Block (NPS)... 0 Number of User defined conduits (NHW)............... 31 Number of Connecting conduits in Extran (NECC)...... 20 Number of Upstream elements in Transport (NTCC)..... 10 Number of Storage/treatment plants (NSTU)........... 0 Number of Values for Rl lines in Transport (NR1).... 0 Number of Nodes to be allowed for (NNOD)............ 1 Number of Plugs in a Storage Treatment Unit......... 1 # Entry made to the Runoff Layer(Block) of SWMM # # Last Updated November, 1997 by XP Software # -------------------------------------------------- I RUNOFF TABLES IN THE OUTPUT FILE. ) 1 These are the more important tables in the output file. I I You can use your editor to find the table numbers, ) I for example: search for Table R3 to check continuity. I I This output file can be imported into a Word Processor I I and printed on US letter or A4 paper using portrait I I mode, courier font, a size of 8 pt. and margins of 0.75 I I I 1 Table Rl - Physical Hydrology Data i I Table R2 - Infiltration data I Table R3 - Raingage and Infiltration Database Names I I Table R4 - Groundwater Data ) I Table R5 - Continuity Check for Surface Water ) I Table R6 - Continuity Check for Channels/Pipes I I Table R7 - Continuity Check for Subsurface Water 1 I Table R8 - Infiltration/Inflow Continuity Check I I Table R9 - Summary Statistics for Subcatchments I I Table R10 - Sensitivity anlysis for Subcatchments *---------- -------------------------m--.---------..-------. DEVELOPED CONDITION, PARKSIDE ESTATES IN HUNTINGTON BEACH NUTRIENT LOADING DURING THE FIRST FLUSH EVENT ################## #e################# # RUNOFFFF JOB JOB CONTROL # ########################################### Snowmelt parameter - ISNOW....................... 0 2 Number of rain gages - NRGAG..................... . 1 Quality is simulated - KWALTY.................... 1 Read evaporation data on line(s) F1 (F2) - IVAP.. 1 Hour of day at start of storm - NHR.............. 0 Minute of hour at start of storm - NMN........... 0 Time TZERO at start of storm (hours)............. 0.000 Use U.S. Customary units for most I/O - METRIC... 0 Runoff input print control... 0 Runoff graph plot control.... 1 Runoff output print control.. 0 Limit number of groundwater convergence messages to 10000 Month, day, year of start of storm is: l/ 1/ 98 Wet time step length (seconds)....... 120.0 Dry time step length (seconds)....... 3600.0 Wet/Dry time step length (seconds)... 300.0 Simulation length is...... 36.0 Hours If Horton infiltration model is being used A mixture of infiltration options may be used in XP-SWMM as a watershed specific option. Rate for regeneration of infiltration - REGEN * DECAY Decay is read in for each subcatchment REGEN - ... 0.01000 ......................... Raingage #.. ... .. ...................... 1 KTYPE - Rainfall input type.... ........ 1 NHISTO - Total number of rainfall values.. 26 KINC - Rainfall values(pairs) per line.. 30 KPRINT - Print rainfall(0-Yes,l-No)....... 0 KTIME - Precipitation time units 0 --> Minutes 1 --> Hours................ 0 KPREP - Precipitation unit type 0 --> Intensity 1 --> Volume............. 0 KTHIS - Variable rainfall intervals 0 --> No, > 1 --> Yes..................... 25 THISTO - Rainfall time interval........... 0.00 TZRAIN - Starting time(KTIME units)....... 0.00 ################################ # Variable Rainfall Intervals # ################################ ---> Start/End/Time in Minutes <---- 1. Start Time 0.00000 End Time 0.10000 Time Interval 0.10 2. Start Time 0.10000 End Time 480.00000 Time Interval 479.90 3. Start Time 480.00000 End Time 480.10000 Time Interval 0.10 4. Start Time 480.10000 End Time 720.00000 Time Interval 239.90 5. Start Time 720.00000 End Time 720.10000 Time Interval 0.10 6. Start Time 720.10000 End Time 840.00000 Time Interval 119.90 7. Start Time 840.00000 End Time 840.10000 Time Interval 0.10 8. Start Time 840.10000 End Time 920.00000 Time Interval 79.90 9. Start Time 920.00000 End Time 920.10000 Time Interval 0.10 10. Start Time 920.10000 End Time 960.00000 Time Interval 39.90 ll..Start Time 960.00000 End Time 960.10000 Time Interval 0.10 12. Start Time 960.10000 End Time 965.00000 Time Interval 4.90 13. Start Time 965.00000 End Time 965.10000 Time Interval 0.10 14. Start Time 965.10000 End Time 970.00000 Time Interval 4.90 15. Start Time 970.00000 End Time 970.10000 Time Interval 0.10 16. Start Time 970.10000 End Time 980.00000 Time Interval 9.90 17. Start Time 980.00000 End Time 980.10000 Time Interval 0.10 18. Start Time 980.10000 End Time 1020.00000 Time Interval 39.90 19. Start Time 1020.00000 End Time 1020.10000 Time Interval 0.10 20. Start Time 1020.10000 End Time 1080.00000 Time Interval 59.90 21. Start Time 1080.00000 End Time 1080.10000 Time Interval 0.10 22. Start Time 1080.10000 End Time 1200.00000 Time Interval 119.90 23. Start Time 1200.00000 End Time 1200.10000 Time Interval 0.10 24. Start Time 1200.10000 End Time 1440.00000 Time Interval 239.90 25. Start Time 1440.00000 End Time 1440.20000 Time Interval 0.10 Rainfall printout for gage number.... 1 Time(mn)/Rain(in/hr) Time(mn)/Rain(in/hr) Time(mn)/Rain(in/hr) Time(mn)/Rain(in/hr) 0.00 0.0000 0.10 0.0318 480.00 0.0318 480.10 0.0477 720.00 0.0477 720.10 0.0689 840.00 0.0689 840.10 0.1060 920.00 0.1060 920.10 0.2014 960.00 0.2014 960.10 0.8374 965.00 0.8374 965.10 0.3021 970.00 0.3021 970.10 0.2014 980.00 0.2014 980.10 0.1060 1020.00 0.1060 1020.10 0.0689 1080.00 0.0689 1080.10 0.0477 1200.00 0.0477 1200.10 0.0318 49 1440.00 0.0318 1440.10 0.0000 3 ###ainput summary Runoff # # Rainfall input summary from Runoff # ###################i################## 0 Total rainfall for gage # 1 is 1.3493 inches ############################# # Data Group F1 # # Evaporation Rate (in/day) # ############################# JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV DEC. ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 0.040 0.040 0.060 0.100 0.120 0.140 0.150 0.160 0.140 0.100 0.070 0.050 x*******x**xxxxxxxxxxxxxxxxxxx:xxx*xxxx:xxxxxxxx• ' No Channel or Pipe Network * This is a good idea, the hydraulic routing * in your network should be done in either * the Transport Layer or Extran Layer of SWMM. x*xrxx*xxxxxxxxxxxr xxxx*xxxxxxxxxxx*x*xxxxxxxxxxx # Table Rl. S U B C A T C H M E N T DATA # # Physical Hydrology Data # ################################################### Deprs Deprs Prcnt Per- -sion -sion Zero Subcatchment ' Channel Width Area cent Slope "n" "n" Storge Strge Deten Number Name or inlet ft ac Impery ft/ft Impry Pery Impry Pery -tion 1 Node 250l1' Node'250' 0'500E+04 69.0- 39 00 0'09 0 014 0=030 0a050 0.050 s0 00 ######i#################i###i##########i#######################i############################ # Table R2. SUBCATCHMENT DATA # # Infiltration Data # # Infiltration Type Infl #1 Infl #2 Infl #3 Infl #4 # # SCS -> Comp CN Time Conc Shape Factor Depth or Fraction # # SBUH -> Comp CN Time Conc N/A N/A # # Green Ampt -> Suction Hydr Cond Initial MD N/A # # Horton -> Max Rate Min Rate Decay Rate (1/sec) N/A # # Proportional -> Constant N/A N/A N/A # # Initial/font Loss -> Initial Continuing N/A N/A # # Initial/Proportional-> Initial Constant N/A N/A # # Laurenson Paramters -> B Value Pervious "n" Impervious Cont Exponent # Subcatchment Infl Infl Infl Infl Number Name # 1 # 2 # 3 # 4 --------------- ----- ----- 1 Node 250#1 0.926E-05 0.463E-05 0.500E-01 ############################################################ # Table R3. SUBCATCHMENT DATA # # Rainfall and Infiltration Database Names # #####################################################!###### Subcatchment Gage Infltrn Routing Rainfall Database Infiltration Database Number Name No Type Type Name Name ' ' ' i 1 Node 250#1 1Horton Non-linear reservoir First Flush SCS TYPE A - Horton Total Number of Subcatchments... 1 Total Tributary Area (acres).... 69.00 Impervious Area (acres)......... 26.91 Pervious Area (acres)........... 42.09 Total Width (feet).............. 5000.00 Percent Imperviousness.......... 39.00 # S U B C A T C H M E N T D A T A # 4 # Default, Ratio values for subeatchment data # # Used with the calibrate node in the runoff. # # 1 - width 2 - area 3 - impervious i # # 4 - slope 5 - imp "n" 6 - pery "n" # # 7 - imp ds B - pery ds 9 - 1st infil # #10 - 2nd infil 11 - 3rd infil # ################################################### Column 1 2 3 4 5 6 Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Ratio 1.000 1.000 1.000 1.000 1.000 1.000 Column 7 B 9 10 11 Default 0.0000 0.0000 0.0000 0.0000 0.0000 Ratio 1.000 1.000 1.000 1.000 1.000 ra+wrraraYrr+w+aaxx wwfrraawaYr+raarraa+aYaYa:x:x+Y+Y+rrrr * Arrangement of Subcatchments and Channel/Pipes r rr YY+wraYaraar+r+aaaYaarrwra+YwrrrrrrfrrrraaraaY+YYaa+#Y Inlet Node 250 No Tributary Channel/Pipes Tributary Subareas........ Node 250#1 w raYwwxaaY*faaaxwaaarxaxxewaxY+++xraarrwaaaaaaaaaaaxaaw wwrw * Hydrographs will be stored for the following 1 INLETS rrrYwffYr Y+w4 xf of►1ffYY+wa►#aaffY+YYxwf rrYffaYrfYa►af aYYf a+ Node 250 ################################################### # Quality Simulation # ################################################### # General Quality Control data groups # ################################################### Description Variable Value ----------- -------- ----- Number of quality constituents..... NQS....... 8 Number of land uses................ HAND....... 3 Standard catchbasin volume......... CBVOL....... 0.00 cubic feet Erosion is not simulated......... IROS........ 0 Dry days prior to start of storm... DRYDAY....... 60.00 days Dry Days required to recharge catchbasin concentration to Initial Values..................... DRYBSN....... 1.00 DAYS Dust and Dirt Street Sweeping Efficiency......... REFFDD....... 0.000 Day of year on which street Sweeping begins.................... KLNBGN....... 1 Day of year on which street Sweeping ends...................... KLNEND....... 1 ########################################### # Land use data on data group 72 # ########################################### functional limiting cleaning avail. days since buildup dependence of buildup buildup buildup interval factor last land use equation buildup quantity power coeff. in days fraction sweeping (lname) (method) parameter(jacgut) (ddlim) (ddpow) (ddfact) (clfreq) (ayswp) (dslcl) -------- ------------- ----------------- -------- ------- -------- -------- -------- ------- Open Spa Power Linear Area(1) 1.000E+25 1.500 1500.000 0.000 0.000 0.000 Resident Power Linear Area(1) 1.000E+25 1.500 500.000 0.000 0.000 0.000 Commerei Power Linear Area(1) 1.000E+25 1.500 500.000 0.000 0.000 0.000 ############################################## 40 # Constituent data on data group J3 # ############################################## 5 BOD COD TSS . -------- -------- ---- Constituent units........ mg/l mg/l mg/1---- Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC.................... 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALL..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 9.000 72.600 100.000 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 1 1 1 BOD COD TSS -------- -------- -4---- Constituent units........ mg/1 mg/l m /l Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC............ 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.. ..... 3 3 3 ..........:.. Type of Washoff CALL..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 9.000 72.600 100.000 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 2 2 2 BOD COD TSS -------- -------- -------- Constituent units........ mg/l mg/1 mg/1 Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALL..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 9.000 72.600 100.000 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 3 3 3 TDS Total P Diss. P -------- -------- -------- Constituent units........ mg/1 mg/1 mg/1 Typeo Type of units............ 0 0 0 6 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH......... 3 3 3 Type of Washoff CALL..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 112.000 0.330 0.120 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin cone.. 0.000 0.000 0.000 Precipitation cone....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 1 1 1 TDS Total P Diss. P -------- mg/1- -------- Constituent units........ mg/1 mg/1 Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALL..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALL..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP............... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 112.000 0.330 0.120 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin cone.. 0.000 0.000 0.000 Precipitation cone....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number........ 2 2 2 TDS Total P Diss. P -------- -------- -------- Constituent units........ mg/l mg/l mg/1 Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALL..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALC..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 112.000 0.330 0.120 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin cone.. 0.000 0.000 0.000 Precipitation cone....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 3 3 3 TKN NO2 + NO -------- -------- Constituent units........ mg/l mg/l Type of units............ 0 0 Decay rate (1/day)....... 0.000 0.000 KALC..................... 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) KWASH.................... 3 3 Type of Washoff CALL..... EMC EMC KACGUT................... 0 0 7 Dependence of buildup.... Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 Linkage to snowmelt...... No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 Second buildup parameter. 0.000 0.000 Third buildup parameter.. 0.000 0.000 Fourth buildup parameter. 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 Exponent for washoff..... 1.760 0.680 Coefficient for washoff.. 1.000 1.000 Initial catchbasin cone.. 0.000 0.000 Precipitation cone....... 0.000 0.000 Street sweeping eff...... 0.000 0.000 Land use number.......... 1 1 TKN NO2 + NO -------- -------- Constituent units........ mg/1 mg/l Type of units............ 0 0 Decay rate (1/day)....... 0.000 0.000 KALC..................... 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) KWASH.................... 3 3 Type of Washoff CALC..... EMC EMC KACGUT................... 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 Linkage to snowmelt...... No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 Second buildup parameter. 0.000 0.000 Third buildup parameter.. 0.000 0.000 Fourth buildup parameter. 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 Exponent for washoff..... 1.760 0.680 Coefficient for washoff.. 1.000 1.000 Initial catchbasin cone.. 0.000 0.000 Precipitation cone....... 0.000 0.000 Street sweeping eff...... 0.000 0.000 Land use number.......... 2 2 TKN NO --- + -- Constituent units........ mg/1 mg/l Type of units............ 0 0 Decay rate (1/day)....... 0.000 0.000 KALC..................... 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) KWASH.................... 3 3 Type of Washoff CALL..... EMC EMC KACGUT................... 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 Linkage to snowmelt...... No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 Second buildup parameter. 0.000 0.000 Third buildup parameter.. 0.000 0.000 Fourth buildup parameter. 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 Exponent for Washoff..... 1.760 0.680 Coefficient for washoff.. 1.000 1.000 Initial catchbasin cone.. 0.000 0.000 Precipitation cone....... 0.000 0.000 Street sweeping eff...... 0.000 0.000 Land use number.......... 3 3 aw»a>w>aaw♦wra:w:a»rwwrwwarrwra+wwwrwwwrwr♦>wwwwwww * Subcatchment surface quality on data group L1 ' >rwww•xw>wwwaar wwea»www•:aaa awwwwrxaraa»»wwwww ww wa Total Number Input Input Input Input Input Land Gutter of Loading Land Use Length Catch- of No. Usage No. 10**2ft Basins BOD COD TSS TDS Total P --- -------- ---- -------- -------- ------- ------- ------- ------- ------- 1 Node Open Spa 1 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1 Node Resident 2 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1 Node Commerci 3 0.00 0.00 0.0E+00 O.0E+00 0.0E+00 0.0E+00 0.0E+00 Totals 0.00 0.00 O.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 8 +#*f#r*###r##44#xY#x##Y!4*#f#Y.*r.Y.*#rrr#*i.r#*YrYY4 * Subcatchment surface quality on data group L1 ##f###*rYr##4*f44*Y#f*#a#Ya+Y#Y#****4+*###f4##*rY+### Total Number Input Input Input Land Gutter of Loading Land Use Length Catch- of No. Usage No. 10**2ft Basins Dias. P TKN NO2 + NO --- -------- ---- -------- -------- ------- ------- ------- 1 Node Open Spa 1 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 1 Node Resident 2 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 1 Node Commerci 3 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 Totals 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 *####*Y+4#YY4rr###r#4+*#+###r*#r##r+r#4#1 * DATA GROUP M1 * Print Control from Runoff Job Control r*Y#1*#Yrrt#ri4#4#Yrr4r#rif*##r##r4r#Yrr4 TOTAL NUMBER OF PRINTED GUTTERS/INLETS...NPRNT.. 1 NUMBER OF TIME STEPS BETWEEN PRINTINGS..INTERV.. 5 *#►ifff 4f 1f i4fflif#41irf!x alf♦1#rifff rt►# * DATA GROUP M3 * Print Control from Node Print Control ##lfrflrfYl li l#flY1f#rt44lf 1Y*!##!ff!##fi CHANNEL/INLET PRINT DATA GROUPS......Node 250 r1f*a rf iia*rr*##r1ar4l1#rrYr*rlfirr l#af rixlaa#raf i♦ * Precipitation Interface File Summary • Number of precipitation station.... 1 #!###ir rrrrxar#rrr#*x#i rta#rirY+*#f#f+4aiirr#!ir#af Location Station Number 1. 1 x#f#:lax*#r*#Yr rr!#xra#rraYr##r**l rY4r#aYriY#r#r * End of time step DO-loop in Runoff Y44l4144#*#4Y##Y44Y#Y4*Y44#Y44*fYY#4*rf###r1+++* Final Date (Mo/Day/Year) - 1/ 2/1998 Total number of time steps - 881 Final Julian Date 98002 Final time of day - 43200. seconds. Final time of day - 12.00 hours. Final running time - 36.0000 hours. Final running time - 1.5000 days. * Extrapolation Summary for Watersheds * Explains the number of time steps and iterations * used in the solution of the subcatchments. * # Steps --> Total Number of Extrapolated Steps * # Calls --> Total Number of OVERLND Calls !x*###lrif#4r1#4#a!#fxa4*rr##+*+#il4xx#xYfir!lf 4+x+# Subcatch # Steps # Calls Subcatch # Steps # Calls ------- ------- -------- ------- ------- Node 250#1 4749 715 fl+a##f#1+Yrl1f#rialfilx#f#lirf+a al++flfaf#►f aif#!!#ifr if+al * Table R5. CONTINUITY CHECK FOR SURFACE WATER Any continuity error can be fixed by lowering the * * wet and transition time step. The transition time * * should not be much greater than the wet time step. * 114ffa!*rYf#!#1*Yf#lffr#a#rfi#f iY#a*f#fir+**ff#1!r#Yf xf x*4iY Inches over cubic feet Total Basin Total Precipitation (Rain plus Snow) 3.379571E+05 1.349 Total Infiltration 1.995886E+05 0.797 Total Evaporation 1.197219E+04 0.048 Surface Runoff from Watersheds 1.231803E+05 0.492 9 Total Water remaining in Surface Storage 3.140820E+03 0.013 Infiltration over the Pervious Area... 1.995886E+05 1.306 Infiltration + Evaporation + Surface Runoff + Snow removal + Water remaining in Surface Storage + Water remaining in Snow Cover......... 3.378819E+05 1.349 Total Precipitation + Initial Storage. 3.379571E+05 1.349 The error in continuity is calculated as rt ar rrrrt rrrtrarrx rtrtra♦rrartxrxrtrxartr rr rartr * Precipitation + Initial Snow Cover * - Infiltration - *Evaporation - Snow removal - *Surface Runoff from Watersheds - *Water in Surface Storage - *Water remaining in Snow Cover r-------------------------------------* * Precipitation + Initial Snow Cover artxrrrart:xrraar raartar rr*rrrtxraraart:rtr ar Percent Continuity Error............... 0.022 axrtrxrr art rxrtrtra rtrt a►arrarrr:rrwartrrwartrtraa artrrrr raraa * Table R6. Continuity Check for Channel/Pipes ' You should have zero continuity error * * if you are not using runoff hydraulics * wa*rwrtrwartxrrtxr rrt wx:rtaaara rarrtw as rtrraarrraaartrtr wa►wr Inches over cubic feet Total Basin Initial Channel/Pipe Storage................ 0.000000E+00 0.000 Final Channel/Pipe Storage.................. 0.000000E+00 0.000 Surface Runoff from Watersheds.............. 1.231803E+05 0.492 Groundwater Subsurface Inflow............... 0.000000E+00 0.000 Evaporation Loss from Channels.............. 0.000000E+00 0.000 Channel/Pipe/Inlet Outflow.................. 1.231803E+05 0.492 Initial Storage + Inflow.................... 1231803E+05 0.492 Final Storage + Outflow..................... 1..231803E+05 0.492 a****rtrarrtararrrtrt ra rtrt xrarrxartrxxrrtrtxr♦a►rxra * Final Storage + Outflow + Evaporation - * Watershed Runoff - Groundwater Inflow - * Initial Channel/Pipe Storage * ---------------------------------- Final Storage + Outflow + Evaporation rr*rtrxaraxrtrxxrra:rtrrxr rrrar:wa rrrrrrarrxxra Percent Continuity Error.................... 0.000 ################################################## # Table R9. Summary Statistics for Subcatchments # ################################################## Note: Total Runoff Depth includes pervious s impervious area Pervious and Impervious Runoff Depth is only the runoff from those two areas. Subcatchment........... Node 250#1 Area (acres)........... 69.00000 Percent Impervious..... 39.00000 Total Rainfall (in).... 1.34929 Max Intensity (in/hr).. 0.83740 Pervious Area Total Runoff Depth (in) 0.00297 Total Losses (in)...... 1.34632 Remaining Depth (in)... 0.00000 Peak Runoff Rate (cfs). 0.61547 Total Impervious Area Total Runoff Depth (in) 1.25637 Peak Runoff Rate (cfs). 19.10815 Impervious Area with depression storage Total Runoff Depth (in) 1.25637 Peak Runoff Rate (cfs). 19.10815 Impervious Area without depression storage Total Runoff Depth (in) 0.00000 Peak Runoff Rate (cfs). 0.00000 Total Area Total Runoff Depth (in) 0.49180 Peak Runoff Rate (cfs). 19.72361 Unit Runoff (in/hr).... 0.28585 ##################################################### 10 # Runoff Quality Summary Page # # If NDIM - 0 Loads are in units of Kgs---Lbs and # # mass rates have units of Kgs---Lbs/sec# # If NDIM - 1 Loads are in units of quantity # # and mass rates are quantity/sec # # If NDIM - 2 loads are in units of concentration # # times volume and mass rates have units# # of concentration times volume/ second # BOD COD TSS TDS Total P mg/1 mg/l mg/1 mg/1 mg/1 -------- -------- ------ -------- ------- Inputs 1. Initial surface load........ 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2. Total surface buildup....... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2a. Buildup during simulation... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3. Initial catchbasin load..... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4. Total catchbasin load....... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5. Total catchbasin and surface buildup (2+4)....... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Remaining Loads --------------- 6. Load remaining on surface... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7. Remaining in catchbasins.... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8. Remaining in channel/pipes.. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Removals 9. Street sweeping removal..... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 10. Net surface buildup (2-9)... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 11. Surface washoff............. 6.9 + +2E O1 5.58E 02 7.69E+02 8.61E+02 2.54E+00 12. Catchbasin washoff.......... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 13. Total washoff (11+12)....... 6.92E+01 5.58E+02 7.69E+02 8.61E+02 2.54E+00 14. Insoluble washoff........... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 15. Precipitation............... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 16. Total groundwater load...... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 0.000 0.000 16a.Total I/I load.............. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 17. Ttl subcat load(13+14+15+16) 6.92E+01 5.58E+02 7.69E+02 8.61E+02 2.54E+00 18. Total load to inlets........ 6.92E+01 5.58E+02 7.69E+02 8.61E+02 2.54E+00 19. Flow wt'd ave.concentration (inlet load/total flow)..... 9.00E+00 7.26E+01 1.00E+02 1.12E+02 3.30E-01 Percentages ----- 20. Street sweeping (9/2)....... 0.000 0.000 0.000 0.000 0.000 21. Surface washoff (11/2)...... 0.000 0.000 0.000 0.000 0.000 22. Net surface washoff(11/10).. 0.000 0.000 0.000 0.000 0.000 23. Washoff/subcat load(11/17).. 100.000 100.000 100.000 100.000 100.000 24. Surface washoff/inlet load (11/18)..................... 100.000 100.000 100.000 100.000 100.000 25. Catchbasin washoff/ subcatchment load (12/17)... 0.000 0.000 0.000 0.000 0.000 26. Catchbasin washoff/ inlet load (12/18).......... 0.000 0.000 0.000 0.000 0.000 27. Insoluble fraction/ subcatchment load (14/17)... 0.000 0.000 0.000 0.000 0.000 28. Insoluble fraction/ inlet load (14/18).......... 0.000 0.000 0.000 0.000 0.000 29. Precipitation/ subcatchment load (15/17)... 0.000 0.000 0.000 0.000 0.000 30. Precipitation/ inlet load (15/18).......... 0.000 0.000 0.000 0.000 0.000 31. Groundwater load/ subcatchment load (16/17)... 0.000 0.000 0.000 0.000 0.000 32. Groundwater load/ inlet load (16118).......... 0.000 0.000 0.000 0.000 0.000 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 0.000 0.000 32b.Infiltration/Inflow Load/ Inlet Load (16a/18)......... 0.000 0.000 0.000 0.000 0.000 34. Inlet load summation error (18+8+33-17)/17............. 0.000 0.000 0.000 0.000 0.000 # Runoff Quality Summary Page # 11 # I£ NDIM - 0 Loads are in units of Kgs---Lbs and # # mass rates have units of Kgs---Lbs/sec# # If NDIM - 1 Loads are in units of quantity # # and mass rates are quantity/sec # # If NDIM - 2 loads are in units of concentration # # times volume and mass rates have units# # of concentration times volume/ second # ##################################################### Diss. P TKN NO2 + NO mg/l mg/l mg/l -------- -------- -------- Inputs 1. Initial surface load........ 0.00E+00 0.00E+00 0.00E+00 2. Total surface buildup....... 0.00E+00 0.00E+00 0.00E+00 2a. Buildup during simulation... 0.00E+00 0.00E+00 0.00E+00 3. Initial catchbasin load..... 0.00E+00 0.00E+00 0.00E+00 4. Total catchbasin load....... 0.00E+00 0.00E+00 0.00E+00 5. Total catchbasin and surface buildup (2+4)....... 0.00E+00 0.00E+00 0.00E+00 Remaining Loads --------------- 6. Load remaining on surface... 0.00E+00 0.00E+00 0.00E+00 7. Remaining in catchbasins.... 0.00E+00 0.00E+00 0.00E+00 8. Remaining in channel/pipes.. O.00E+00 0.00E+00 0.00E+00 Removals 9. Street sweeping removal..... 0.00E+00 0.00E+00 0.00E+00 10. Net surface.buildup (2-9)... 0.00E+00 0.00E+00 0.00E+00 11. Surface washoff............. 9.22E-01 1.35E+01 5.23E+00 12. Catchbasin washoff.......... 0.00E+00 0.00E+00 0.00E+00 13. Total washoff '(11+12)....... 9.22E-01 1.35E+01 5.23E+00 14. Insoluble washoff........... 0.00E+00 0.00E+00 0.00E+00 15. Precipitation............... 0.00E+00 0.00E+00 0.00E+00 16. Total groundwater load...... 0.00E+00 0.00E+00 0.00E+00 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 16a.Total I/I load.............. 0.00E+00 0.00E+00 0.00E+00 17. Ttl subcat load(13+14+15+16) 9.22E-01 1.35E+01 5.23E+00 18. Total load to inlets........ 9.22E-01 1.35E+01 5.23E+00 19. Flow wt'd ave.concentration (inlet load/total flow) ..... 1.20E-01 1.76E+00 6.80E-01 Percentages 20. Street sweeping (9/2)....... 0.000 0.000 0.000 21. Surface washoff (11/2)...... 0.000 0.000 0.000 22. Net surface washoff(11/10) .. 0.000 0.000 0.000 23. Washoff/subcat load(11/17).. 100.000 100.000 100.000 24. Surface washoff/inlet load (11/18) ..................... 100.000 100.000 100.000 25. Catchbasin washoff/ subcatchment load (12/17)... 0.000 0.000 0.000 26. Catchbasin washoff/ inlet load (12/18).......... 0.000 0.000 0.000 27. Insoluble fraction/ subcatchment load (14/17)... 0.000 0.000 0.000 28. Insoluble fraction/ inlet load (14/18).......... 0.000 0.000 0.000 29. Precipitation/ subcatchment load (15/17)... 0.000 0.000 0.000 30. Precipitation/ inlet load (15/18).......... 0.000 0.000 0.000 31. Groundwater load/ subcatchment load (16/17)... 0.000 0.000 0.000 32. Groundwater load/ inlet load (16118).......... 0.000 0.000 0.000 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 32b.Infiltration/Inflow Load/ Inlet Load (16a/18)......... 0.000 0.000 0.000 34. Inlet load summation error (18+8+33-17)/17............. 0.000 0.000 0.000 CAUTION. Due to method of quality routing (Users Manual, Appendix IX) quality routing through channel/pipes is sensitive to the time step. Large "Inlet Lead Summation Errors" may result. These can be reduced by adjusting the time step(s). 12 r aarr of wf+afrwawawar•r♦+www wara rf w+wf wf rawrawaaaawaw ' Summary of Quantity and Quality Results at * Location Node 250 Flow in cfs. * Values are instantaneous at indicated time step rwa+f ff of+afwafwf affwa+wawaa+wffaaf wwwwwwrrwawwwaw+w DEVELOPED CONDITION, PARKSIDE ESTATES IN HUNTINGTON BEACH NUTRIENT LOADING DURING THE FIRST FLUSH EVENT Date Time Flow BOD COD TSS TDS Total P Diss. P TKN NO2 + NO Mo/Da/Yr Hr:Min cfs mg/l mg/l mg/1 mg/l mg/l mg/1 mg/l mg/l ----- ------ ------- -------- -------- -------- -------- ------- -------- _'------ -'--'-__ 1 1 98 1 48 0.229 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 1 58 0.547 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 2 8 0.712 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 2 18 0.779 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 2 28 0.804 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 2 38 0.813 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 2 48 0.816 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 2 58 0.817 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 3 8 0.817 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 3 .18 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 3 28 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 3 38 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 3 48 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 3 58 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 4 8 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 4 18 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 4 28 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 4 38 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 4 48 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 4 58 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 5 8 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 5 18 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 5 28 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 5 38 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 5 48 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 5 58 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 6 8 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 6 18 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 6 28 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 6 38 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 6 48 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 6 58 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 7 8 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 7 18 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 13 1 1 98 7 28 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 7 38 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 7 48 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 7 58 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 8 6 1.025 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 8 16 1.180 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 8 26 1.229 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 8 36 1.243 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 8 46 1.247 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 8 56 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 9 6 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 9 16 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 9 26 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 9 36 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 9 46 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 9 56 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 .1.200E-01 1.760E+00 6.800E-01 1 1 98 10 6 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 10 16 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 10 26 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 10 36 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 10 46 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 10 56 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 11 6 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 11 16 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 11 26 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 11 36 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 11 46 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 11 56 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 12 4 1.479 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 12 14 1.737 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 12 24 1.803 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 12 34 1.819 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 12 44 1.823 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.BOOE-01 1 1 98 12 54 1.824 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 13 4 1.824 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 13 14 1.824 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 13 24 1.824 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 13 34 1.824 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 13 44 1.824 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 13 54 1.824 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 14 1 1 98 14 2 2.081 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 14 12 2.681 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 14 22 2.803 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 14 32 2.826 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 14 42 2.830 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 14 52 2.831 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 15 2 2.831 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 15 12 2.831 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 15 20 2.831 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 15 30 5.070 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 15 40 5.380 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 15 50 5.415 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 16 0 5.419 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 16 5 19.181 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 16 12 8.877 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 16 20 6.269 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 16 30 3.250 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 16 40' 2.904 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 16 50 2.844 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 17 0 2.833 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 17 8 2.106 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 17 18 1.889 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 17 28 1.840 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 17 38 1.828 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 17 48 1.825 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 17 58 1.825 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 18 6 1.502 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 18 16 1.319 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 18 26 1.269 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 18 36 1.255 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 18 46 1.251 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 18 56 1.250 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 19 6 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 19 16 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 19 26 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 19 36 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 19 46 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 19 56 1.249 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 20 4 1.085 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 20 14 0.905 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 15 1 1 98 20 24 0.848 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 20 34 0.828 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 20 44 0.821 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 20 54 0.819 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 21 4 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 21 14 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 21 24 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 21 34 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.BOOE-01 1 1 98 21 44 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 21 54 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 22 4 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 22 14 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 22 24 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 22 34 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 22 44 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 22 54 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 23 4 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 23 14 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 23 24 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 23 34 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 98 23 44 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 1 96 23 54 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 2 98 0 0 0.818 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 2 98 0 20 0.151 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 2 98 0 45 0.029 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 1 2 98 1 10 0.002 9.000E+00 7.260E+01 1.000E+02 1.120E+02 3.300E-01 1.200E-01 1.760E+00 6.800E-01 -------- ------- ------- -------- -------- -------- -------- -------- -------- ------- ------- Flow wtd means..... 0.9505 9.000 72.600 100.000 112.000 0.330 0.120 1.760 0.680 Flow wtd std devs.. 1.4275 0.007 0.058 0.080 0.089 0.000 0.000 0.001 0.001 Maximum value...... 19.181 9.000 72.600 100.000 112.000 0.330 0.120 1.760 0.680 Minimum value...... 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Total loads........ 1.232E+05 6.921E+01 5.583E+02 7.690E+02 8.612E+02 2.538E+00 9.228E-01 1.353E+01 5.229E+00 Cub-Ft POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS > Runoff simulation ended normally. ---> SWMM Simulation ended normally. -_> Your input file was named C:\XPS\WORK\186-ldPa.DAT -_-> Your output file was named C:\XPS\WORK\186-idPa.out ---------------------------------------------------------------i I SWMM Simulation Date and Time Summary I :--------------------------------------------------------------' I Starting Date... December 4, 1998 Time... 6:53:50:33 1 Ending Date... December 4, 1998 Time... 6:54: 1:42 1 1 Elapsed Time... 0.18483 minutes or 11.09000 seconds I '--------------------------------------------------------------'" 16 Input File : C:\XPS\WORK\186-ldPb.XP Current Directory: C:\PROGRA-1\XPSWMM32\XP-SWM-1 Executable Name: C:\PROGRA-1\XPSWMM32\X SWM-1 Read 0 1ine(3) and found 0 items(s) from your cfg file. +r----------------------------------------------- XP I - SWMM 1 Storm Water Management Model I 1 Version 5.30f -----------------------------------------------I I Developed by -----------------------------------------------I I XP Software Inc. and Pty. Ltd. I I I I Based on the U.S. EPA I I Storm Water Management Model Version 4.40 I I 1 I Originally Developed by i I Metcalf 6 Eddy, Inc. 1 I University of Florida 1 I Camp Dresser s McKee Inc. I I September 1970 1 i I EPA-SWMM is maintained by 1 1 Oregon State University I I Camp Dresser a McKee Inc. i i-----------------------------------------------I I XP Software August 7, 1997 I 1 Data File Version ---> 7.1 I (------------------------ --------1 I If problems occur in running this model I I please contact XP Software - Australia I I or XP Software - U.S.A. 1 I Phone +61-6 253-1844 in Australia I I Fax # +61-6 253-1847 in Australia I 1 Phone (813)-886-7724 in U.S.A. I Fax # (813)-885-4198 in U.S.A. ------------------------------------------------+ .-------.-------------------------------------------------+ I Input and Output file names by SWMM Layer *---------------------------------------------------------* Input File to Layer # 1 JOT.US Output File to Layer # 1 JOT.US +-----------------------------------------------------------+ I Special command line arguments in XP-SWMM. This section I I now includes program defaults. $Keywords are the programl I defaults. Other Keywords are from the SWMMCOM.CFG file.) I or the command line or any cfg file on the command line.l I Examples include these in the file xpswm.bat under the I I section :solve or in the windows version XPSWMM32 in thel I file solve.bat l I Note: the cfg file should be in the subdirectory swmxp I I or defined by the set variable in the xpswm.bat 1 I file. Some examples of the command lines possiblel I are shown below: I i I swmmd swmmcom.cfg I swmmd my.cfg I swmmd nokeys nconv5 pery extranwq ------------- - -------------------------------------------- $powerstation 0.0000 0 2 $pery 0.0000 0 4 $oldegg 0.0000 0 7 $as 0.0000 0 it $noflat 0.0000 0 21 $oldomega 0.0000 0 24 $oldvol 0.0000 1 28 $implicit 0.0000 1 29 $oldhot 0.0000 1 31 $oldscs 0.0000 0 33 $flood 0.0000 1 40 $nokeys 0.0000 0 42 $pzero 0.0000 0 55 $oldvol2 0.0000 2 59 $storage_97 0.0000 1 62 $oldhotl 0.0000 0 63 1 $pumpwt 0.0000 1 70 $ecloss 0.0000 1 77 $exout 0.0000 0 97 $ncmid 0.0000 0 164 $h_ellipse 0.0000 1 270 $v_ellipse 0.0000 1 271 $arch 0.0000 2 272 $new nl_97 0.0000 2 290 $best97 0.0000 1 294 $newbound 0.0000 1 295 •--------------------------------------------------------- I Parameter Values on the Tapes Common Block.These are the I I values read from the data file and dynamically allocated I I by the model for this simulation. ---------------------------------------------------------- Number of Subcatchments in the Runoff Block (NW).... 1 Number of Channel/Pipes in the Runoff Block (NG).... 0 Runoff Water quality constituents (NRQ)............. 8 Runoff Land Uses per Subcatchment (NLU)............. 3 Number of Elements in the Transport Block (NET)..... 0 Number of Storage Junctions in Transport (NTSE)..... 0 Number of Input Hydrographs in Transport (NTH)...... 0 Number of Elements in the Extran Block (NEE)........ 0 Number of Groundwater Subcatchments in Runoff (NGW). 0 Number of Interface locations for all Blocks (NIE).. 1 Number of Pumps in Extran (NEP)..................... 0 Number of Orifices in Extran (NEO).................. 0 Number of Tide Gates/Free Outfalls in Extran (NTG).. 0 Number of Extran Weirs (NEW)........................ 0 Number of scs hydrograph points..................... 1081 Number of Extran printout locations (NPO)........... 0 Number of Tide elements in Extran (NTE)............. 0 Number of Natural channels (NNC).................... 0 Number of Storage junctions in Extran (NVSE)........ 0 Number of Time history data points in Extran(NTVAL). 0 Number of Variable storage elements in Extran (NVST) 0 Number of Input Hydrographs in Extran (NEH)......... 0 Number of Particle sizes in Transport Block (NPS)... 0 Number of User defined conduits (NHW)............... 31 Number of Connecting conduits in Extran (NECC)...... 20 Number of Upstream elements in Transport (NTCC)..... 10 Number of Storage/treatment plants (NSTU)........... 0 Number of Values for R1 lines in Transport (NR1).... 0 Number of Nodes to be allowed for (NNOD)............ 1 Number of Plugs in a Storage Treatment Unit......... 1 ####################################################### # Entry made to the Runoff Layer(Block) of SWMM # # Last Updated November, 1997 by XP Software # ---------------------------------------------------------- I RUNOFF TABLES IN THE OUTPUT FILE. I These are the more important tables in the output file. I I You can use your editor to find the table numbers, I I for example: search for Table R3 to check continuity. I i This output file can be imported into a Word Processor I I and printed on US letter or A4 paper using portrait I I mode, courier font, a size of 8 pt. and margins of 0.75 1 1 1 1 Table Rl - Physical Hydrology Data I Table R2 - Infiltration data I Table R3 - Raingage and Infiltration Database Names I I Table R4 - Groundwater Data I Table R5 - Continuity Check for Surface Water I I Table R6 - Continuity Check for Channels/Pipes ) I Table R7 - Continuity Check for Subsurface Water I I Table R8 - Infiltration/Inflow Continuity Check ) I Table R9 - Summary Statistics for Subcatchments ITable R10 - Sensitivity anlysis for Subcatchments----------------------------------------------------------- I DEVELOPED CONDITION, PARKSIDE ESTATES IN HUNTINGTON BEACH FIRST FLUSH, HEAVY METALS. Volume - 69X0.5/12 =2.88 Ac-Ft # RUNOFF JOB CONTROL # ########################################### Snowmelt parameter - ISNOW....................... 0 2 Number of rain gages - NRGAG..................... 1 Quality is simulated - KWALTY.................... 1 Read evaporation data on line(s) F1 (F2) - IVAP.. 1 Hour of day at start of storm - NHR.......... 0 Minute of hour at start of storm - NMN........... 0 Time TZERO at start of storm (hours)............. 0.000 Use U.S. Customary units for most I/O - METRIC... 0 Runoff input print control... 0 Runoff graph plot control.... 1 Runoff output print control.. 0 Limit number of groundwater convergence messages to 10000 Month, day, year of start of storm is: l/ 1/ 98 Wet time step length (seconds)....... 120.0 Dry time step length (seconds)....... 3600.0 Wet/Dry time step length (seconds)... 300.0 Simulation length is...... 36.0 Hours If Horton infiltration model is being used A mixture of infiltration options may be used in XP-SWMM as a watershed specific option. Rate for regeneration of infiltration - REGEN * DECAY Decay is read in for each subcatchment REGEN . ............................................. 0.01000 Raingage #................................ 1 KTYPE - Rainfall input type.............. 1 NHISTO - Total number of rainfall values.. 26 KINC - Rainfall values(pairs) per line.. 10 KPRINT - Print rainfall(0-Yes,l-No)....... 0 KTIME - Precipitation time units 0 --> Minutes 1 --> Hours................ 0 KPREP - Precipitation unit type 0 --> Intensity 1 -> Volume............. 0 KTHIS - Variable fainfall intervals 0 --> No, > 1 --> Yes..................... 25 THISTO - Rainfall time interval........... 0.00 TZRAIN - Starting time(KTIME units)....... 0.00 # Variable Rainfall Intervals # ################################ --> Start/End/Time in Minutes <---- 1. Start Time 0.00000 End Time 0.10000 Time Interval 0.10 2. Start Time 0.10000 End Time 480.00000 Time Interval 479.90 3. Start Time 480.00000 End Time 480.10000 Time Interval 0.10 4. Start Time 480.10000 End Time 720.00000 Time Interval 239.90 5. Start Time 720.00000 End Time 720.10000 Time Interval 0.10 6. Start Time 720.10000 End Time 840.00000 Time Interval 119.90 7. Start Time 840.00000 End Time 840.10000 Time Interval 0.10 8. Start Time 840.10000 End Time 920.00000 Time Interval 79.90 9. Start Time 920.00000 End Time 920.10000 Time Interval 0.10 10. Start Time 920.10000 End Time 960.00000 Time Interval 39.90 11. .Start Time 960.00000 End Time 960.10000 Time Interval 0.10 12. Start Time 960.10000 End Time 965.00000 Time Interval 4.90 13. Start Time 965.00000 End Time 965.10000 Time Interval 0.10 14. Start Time 965.10000 End Time 970.00000 Time Interval 4.90 15. Start Time 970.00000 End Time 970.10000 Time Interval 0.10 16. Start Time 970.10000 End Time 980.00000 Time Interval 9.90 17. Start Time 980.00000 End Time 980.10000 Time Interval 0.10 18. Start Time 980.10000 End Time 1020.00000 Time Interval 39.90 19. Start Time 1020.00000 End Time 1020.10000 Time Interval 0.10 20. Start Time 1020.10000 End Time 1080.00000 Time Interval 59.90 21. Start Time 1080.00000 End Time 1060.10000 Time Interval 0.10 22. Start Time 1080.10000 End Time 1200.00000 Time Interval 119.90 23. Start Time 1200.00000 End Time 1200.10000 Time Interval 0.10 24. Start Time 1200.10000 End Time 1440.00000 Time Interval 239.90 25. Start Time 1440.00000 End Time 1440.20000 Time Interval 0.10 Rainfal l printout for gage number.... 1 Time(mn)/Rain(in/hr) Time(mn)/Rain(in/hr) Time(mn)/Rain(in/hr) Time(mn)/Rain(in/hr) 0.00 0.0000 0.10 0.0318 480.00 0.0318 480.10 0.0477 720.00 0.0477 720.10 0.0689 840.00 0.0689 840.10 0.1060 920.00 0.1060 920.10 0.2014 960.00 0.2014 960.10 0.8374 965.00 0.8374 965.10 0.3021 970.00 0.3021 970.10 0.2014 980.00 0.2014 980.10 0.1060 1020.00 0.1060 1020.10 0.0689 10:0.00 0.0689 1080.10 0.0477 1200.00 0.0477 1200.10 0.0318 140.00 0.0318 1440.10 0.0000 3 #################### ary from Runoff # Rainfall input summary from Runoff # ###################################### Total rainfall for gage # 1 is 1.3493 inches ############################# # Data Group F1 # # Evaporation Rate (in/day) # ############################# JAN. FEE. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV DEC. 0 040 0.040 0 060 0.100 0 120 0.140 0 150 0 160 0.140 0.100 0.070 0.050 xx+xxwxxxwxxxwwxx+xxwwxxx++xxx+++xxx++xww wx:x+xxx * No Channel or Pipe Network * This is a good idea, the hydraulic routing * in your network should be done in either * the Transport Layer or Extran Layer of SWMM. x+xx+xxxxxxx+xx++xxw+xxx++wx++xx+x++xxx:xxwx++x++ ################################################### # Table Rl. S U B C A T C H M E N T DATA # # Physical Hydrology Data # ################################################### Deers Deers PICnt Per- -sion -sion Zero Subcatchment - Channel Width Area cent Slope "n" "n" Storge Strge Deten Number Name or inlet ft ac Impery ft/ft Impry Pery Impry Pery -tion ------ -------- ------ ------ ----- ----- ----- ----- ----- ----- 1 Node 250#1 Node 250 0.500E+04 69.0 39.00 0.09 0.014 0.030 0.050 0.050 0.00 ############################################################################################ # Table R2. SUBCATCHMENT DATA # # Infiltration Data # # Infiltration Type Infl #1 Infl #2 Infl #3 Infl #4 # # SCS -> Comp CN Time Conc Shape Factor Depth or Fraction # # SBUH -> Comp CN Time Conc N/A N/A # # Green Ampt -> Suction Hydr Cond Initial MD N/A # # Horton -> Max Rate Min Rate Decay Rate (1/sec) N/A # # Proportional -> Constant N/A N/A N/A # # Initial/Cont Loss -> Initial continuing N/A N/A # # Initial/Pro ortiona ->p 1 Initial Constant N/A / N/A # # Laurenson Paramters -> B Value Pervious "n" Impervious Cont Exponent # ############################################################################################ Subcatchment Infl Infl Infl Infl Number Name # 1 # 2 # 3 # 4 -1 Node250#1 0 926E-05 0 463E-05 0 500E-01 ############################################################ # Table R3. SUBCATCHMENT DATA # # Rainfall and Infiltration Database Names # ############################################################ Subcatchment Gage Infltrn Routing Rainfall Database Infiltration Database Number Name No Type Type Name Name --------------- .... ...... ----------- ----------------- ---------------- 1 Node 250#1 1 Horton Non-linear reservoir 2-year SCS TYPE A - Horton Total Number of Subcatchments... 1 Total Tributary Area (acres).... 69.00 Impervious Area (acres) ......... 26.91 Pervious Area (acres)........... 42.09 Total Width (feet).............. 5000.00 Percent Imperviousness.......... 39.00 ################################################### # S U B C A T C H M E N T D A T A # 4 # Default Ratio values for subcatchment data # # Used with the calibrate node in the runoff. # # 1 - width 2 - area 3 - impervious % # # 4 - slope 5 -P imp 'n" 6 pery "n" # # 7 - im ds - - P 8 pery ds 9 1st infil # #10 - 2nd infil 11 - 3rd infil # ################################################### Column 1 2 3 4 5 6 Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Ratio 1.000 1.000 1.000 1.000 1.000 1.000 Column 7 8 9 10 it Default 0.0000 0.0000 0.0000 0.0000 0.0000 Ratio 1.000 1.000 1.000 1.000 1.000 ##+Y#Y#wYx+Yx*##+f#+Y#Y*afYYxY#+#Y#YY**###x++#Yr*Y###+#Y+ • Arrangement of Subcatchments and Channel/Pipes r rwarwraawwartwxwxra ww r:err xaw Yy♦Yxr+xyy#t art r#Yyw##rx#+#*a Inlet Node 250 No Tributary Channel/Pipes Tributary Subareas........ Node 250#1 wwrxawwwywryw wa wrrawwrar#wear yrrawrrr:yyrraryra*ywrrxryxw:# * Hydrographs will be stored for the following 1 INLETS w wxwyYx+aryYr#yxa#w rw wwwryxw#xyw#yr wwrrx###wxwxYxaywwrr y+ry Node 250 ################################################### # Quality Simulation # ################################################### # General Quality Control data groups # ################################################### Description Variable Value Number of quality constituents..... NQS....... 8 Number of land uses................ JLAND....... 3 Standard catchbasin volume......... CBVOL....... 0.00 cubic feet Erosion is not simulated......... IROS........ 0 Dry days prior to start of storm... DRYDAY....... 60.00 days Dry Days required to recharge catchbasin concentration to Initial Values..................... DRYBSN....... 1.00 DAYS Dust and Dirt Street Sweeping Efficiency......... REFFDD....... 0.000 Day of year on which street Sweeping begins.................... KLNBGN....... 1 Day of year on which street Sweeping ends...................... KLNEND....... 1 ########################################### # Land use data on data group J2 # ########################################### functional limiting cleaning avail. days since buildup dependence of buildup buildup buildup interval factor last land use equation buildup quantity power coeff. in days fraction sweeping (lname) (method) parameter(jacgut) (ddlim) (ddpow) (ddfact) (clfreq) (ayswP) (dslcl) ------------- ----------------- -------- ------- -------- -------- ------- ------- Open Spa Power Linear Area(1) 1.000E+25 1.500 1500.000 0.000 0.000 0.000 Resident Power Linear Area(1) 1.000E+25 1.500 500.000 0.000 0.000 0.000 Commerci Power Linear Area(1) 1.000E+25 1.500 500.000 0.000 0.000 0.000 ############################################## # Constituent data on data group J3 # 40 ############################################## 5 Total Pb Diss. Pb Total Cu -------- -------- -------- Constituent units........ mg/l mg/l mg/l Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC.. .... ............. 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALC..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.022 0.002 0.02E Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 1 1 1 Total Pb Diss. Pb Total Cu -------- -------- -------- Constituent units........ mg/1 mg/1 mg/1 Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALL..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.022 0.002 0.028 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweep ing eff...... 0.000 0.000 0.000 Land use number.......... 2 2 2 Total Pb Diss. Pb Total Cu -------- -------- -g----- Constituent units........ mg/1 mg/1 m /l Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALL..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALL..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.022 0.002 0.028 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 3 3 3 Diss. Cu Total Zn Diss. Zn -------- -------- -------- Constituent units........ mg/1 mg/1 mg/l Type of units............ 0 0 0 6 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH........... 3 3 3 Type of Washoff CALL..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.010 0.153 0.068 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 1 1 1 Dias. Cu Total Zn Dias. Zn -------- ------- -------- Constituent units........ mg/l mg/l mg/1 Type of units............ 0 0 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALL..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup paraineter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.010 0.153 0.068 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation cone....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 2 2 2 Dias. Cu Total Zn Dias. Zn -------- -------- -------- Constituent units........ mg/1 mg/l mg/l Type of units............ 0 0 - 0 Decay rate (1/day)....... 0.000 0.000 0.000 KALC..................... 4 4 4 Type of Buildup CALL..... No Buildup(4) No Buildup(4) No Buildup(4) KWASH.................... 3 3 3 Type of Washoff CALC..... EMC EMC EMC KACGUT................... 0 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 0 Linkage to snowmelt...... No snow linkage No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 0.000 Second buildup parameter. 0.000 0.000 0.000 Third buildup parameter.. 0.000 0.000 0.000 Fourth buildup parameter. 0.000 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 0.000 Exponent for washoff..... 0.010 0.153 0.068 Coefficient for washoff.. 1.000 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 0.000 Precipitation conc....... 0.000 0.000 0.000 Street sweeping eff...... 0.000 0.000 0.000 Land use number.......... 3 3 3 Total Cd Dias. Cd -------- -------- Constituent units........ mg/l mg/1 Type of units............ 0 0 Decay rate (1/day)....... 0.000 0.000 KALC..................... 4 4 Type of Buildup CALL..... No Buildup(4) No Buildup(4) KWASH.................... 3 3 Type of Washoff CALL EMC EMC KACGUT................... 0 0 7 Dependence of buildup.... Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 Linkage to snowmelt...... No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 Second buildup parameter. 0.000 0.000 Third buildup parameter.. 0.000 0.000 Fourth buildup parameter. 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 Exponent for washoff..... 0.001 0.000 Coefficient for washoff.. 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 Precipitation conc....... 0.000 0.000 Street sweeping eff...... 0.000 0.000 Land use number.......... 1 1 Total Cd Diss. Cd -------- -------- Constituent units........ mg/l mg/l Type of units............ 0 0 Decay rate (1/day)....... 0.000 0.000 KALC..................... 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) KWASH.................... 3 3 Type of Washoff CALC..... EMC EMC KACGUT................... 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 Linkage to snowmelt...... No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 Second buildup parameter. 0.000 0.000 Third buildup parameter.. 0.000 0.000 Fourth buildup parameter. 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 Exponent for washoff..... 0.001 0.000 Coefficient for washoff.. 1.000 1.000 Initial catchbasin conc.. 0.000 0.000 Precipitation cone....... 0.000 0.000 Street sweeping eff...... 0.000 0.000 Land use number.......... 2 2 Total Cd Diss.- Cd ------- Constituent units........ mg/l mg/l Type of units............ 0 0 Decay rate (1/day)....... 0.000 0.000 KALC..................... 4 4 Type of Buildup CALC..... No Buildup(4) No Buildup(4) KWASH.................... 3 3 Type of Washoff CALL..... EMC EMC KACGUT................... 0 0 Dependence of buildup.... Chan. Length(0) Chan. Length(0) LINKUP................... 0 0 Linkage to snowmelt...... No snow linkage No snow linkage First buildup parameter.. 0.000 0.000 Second buildup parameter. 0.000 0.000 Third buildup parameter.. 0.000 0.000 Fourth buildup parameter. 0.000 0.000 Fifth buildup parameter.. 0.000 0.000 Exponent for washoff..... 0.001 0.000 Coefficient for washoff.. 1.000 -1.000 Initial catchbasin conc.. 0.000 0.000 Precipitation conc....... 0.000 0.000 Street sweeping eff...... 0.000 0.000 Land use number.......... 3 3 * Subcatchment surface quality on data group L1 ###f*Y##***#Y#Y*###*!#*YY#*#Y 1*YYY##**Y Y******Y1*YYY# Total Number Input Input Input Input Input Land Gutter of Loading Land Use Length Catch- of No. Usage No. 10**2ft Basins Total Pb Diss. Pb Total Cu Diss. Cu Total Zu --- -------- ---- -------- -------- ------- ------- ------- ------- ------- 1 Node Open Spa 1 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1 Node Resident 2 0.00 0.00 O.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1 Node Commerci 3 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 Totals 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 8 axYrr►r##r#ar rr Y##rr#++:rr#YYr#rYr#x+Y+rrrrr#+rrrYY+r * Subcatchment surface quality on data group Ll *' r raYrY#xY##r#+r##rr##++r,r#++r++r#+aw+Yr#r###++r#xx#+Y Total Number Input Input Input Land Gutter of Loading Land Use Length Catch- of No. Usage No. 10**2ft Basins Dias. Zn Total Cd Diss. Cd --- -------- ---- -------- -------- ------- ------- ------- 1 Node Open Spa 1 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 1 Node Resident 2 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 1 Node Commerci 3 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 Totals 0.00 0.00 0.0E+00 0.0E+00 0.0E+00 Y#rYawxrr#xra+r+::##rrrxx+#xxarrrr##a+rxr * DATA GROUP M1 * Print Control from Runoff Job Control rrxrrwr+wr+rrrx rY#rYYra+Y:rr++YaYr#r#+Y++ TOTAL NUMBER OF PRINTED GUTTERS/INLETS...NPRNT.. 1 NUMBER OF TIME STEPS BETWEEN PRINTINGS..INTERV.. 5 xxY##YYY#rf rYf r#+#x4###+Yrx++rrYr+#aY#rrr * DATA GROUP M3 * Print Control from Node Print Control ##+r++Y#+rr*wrr+#xrYra#+Yrx#++#xr#Y:#+rrY CHANNEL/INLET PRINT DATA GROUPS......Node 250 rrxw•Yr Yraa#r►:rrraarr+rrxrrr##+rr#r+#a#Y:Yrr as##YY * Precipitation Interface File Summary * Number of precipitation station.... 1 a+#rrYaY+#a+r.YY:r++Yrrr+rY#r##++rrrr+YYYrrrrr+#r:Y Location Station Number 1. ------------ w*Ywxr#arYrxw+Yrrr Y#a+rrrx#+x+###Y+Yr#rY##Ya++YY * End of time step DO-loop in Runoff YYa#YY+##YYrYYYY*YYa+#+YYlrYxYYa#Y+#YYYYY#wr#+++ Final Date (Mo/Day/Year) - 1/ 2/1998 Total number of time steps - 881 Final Julian Date - 98002 Final time of day - 43200. seconds. Final time of day - 12.00 hours. Final running time - 36.0000 hours. Final running time - 1.5000 days. wY•wY rYraxwwwYar#x:r#axYrax wxxaY+Y++YYYaYYYrxYraxwrr * Extrapolation Summary for Watersheds * Explains the number of time steps and iterations * used in the solution of the subcatchments. * # Steps --> Total Number of Extrapolated Steps * # Calls --> Total Number of OVERLND Calls a ax Yrrrxarr+r+Yr#Yr+#+rrrrx+rrrrY#rYrrx+Yr#ar#arr+x+ Subcatch # Steps # Calls Subcatch # Steps # Calls -------- ------- ------- -------- ------- ------- Node 250#1 4749 715 Y raYax#YYwwrYwa#Yxx rY rY#xxYYYYa axYrY+araYaaYx#xa#►+Yx+xr+rr# * Table R5. CONTINUITY CHECK FOR SURFACE WATER * Any continuity error can be fixed by lowering the * * wet and transition time step. The transition time * * should not be much greater than the wet time step. * xYtxYa+Y#YxY##Y+Y#YYYY+#YYY YY#+*Y++YrfYYY#*Yrr+x#YYYY*YY+rrr Inches over cubic feet Total Basin Total Precipitation (Rain plus Snow) 3.379571E+05 1.349 Total Infiltration 1.995886E+05 0.797 Total Evaporation 1.197219E+04 0.048 Surface Runoff from Watersheds 1.231803E+05 0.492 9 Total Water remaining in Surface Storage 3.140820E+03 0.013 Infiltration over the Pervious Area... 1.995886E+05 1.306 Infiltration + Evaporation + Surface Runoff + Snow removal + Water remaining in Surface Storage + Water remaining in Snow Cover......... 3.378819E+05 1.349 Total Precipitation + Initial Storage. 3.379571E+05 1.349 The error in continuity is calculated as r YY YYwwrr*rwrr#rrfxxY*:fff#r##xx*##r#rf ' Precipitation + Initial Snow Cover ' - Infiltration - *Evaporation - Snow removal - + *Surface Runoff from Watersheds - *Water in Surface Storage - *Water remaining in Snow Cover *-------------------------------------* ' Precipitation + Initial Snow Cover f wwrxY#wrfx rY#ff:w*rYxwrxYY#*##xwr*#### Percent Continuity Error............... 0.022 x YY Yx YwwrfY##YY**f#ffr####xfwww####fwr#*f###1f##w### * Table R6. Continuity Check for Channel/Pipes * You should have zero continuity error * * if you are not using runoff hydraulics * x#www*##:x#xx#f xrx#r#fwrw*####wfwr#####wwwrrxw#r#### Inches over cubic feet Total Basin Initial Channel/PilDe Storage................ 0.000000E+00 0.000 Final Channel/Pipe Storage.................. 0.000000E+00 0.000 Surface Runoff from Watersheds.............. 1.231803E+05 0.492 Groundwater Subsurface Inflow............... 0.000000E+00 0.000 Evaporation Loss from Channels.............. 0.000000E+00 0.000 Channel/Pipe/Inlet outflow.................. 1.231803E+05 0.492 Initial Storage + Inflow.................... 1.231803E+05 0.492 Final Storage + Outflow..................... 1.231803E+05 0.492 r YY YYfrxYY:#Yxrx#Yf r•r♦Yx#Y#ffrfxf*f##iw#wff * Final Storage + Outflow + Evaporation - * * Watershed Runoff - Groundwater Inflow - * * Initial Channel/Pipe Storage + ' ---------------------------------- Final Storage + Outflow + Evaporation :rf+rrxxY#f xxxY Y:Yf Yr YYrYxxfrr+xrx#ffrf rrffx Percent Continuity Error.................... 0.000 # Table R9. Summary Statistics for Subcatchments # Note: Total Runoff Depth includes pervious s impervious area Pervious and Impervious Runoff Depth is only the runoff from those two areas. Subcatchment........... Node 250#1 Area (acres)........... 69.00000 Percent Impervious..... 39.00000 Total Rainfall (in).... 1.34929 Max Intensity (in/hr).. 0.83740 Pervious Area Total Runoff Depth (in) 0.00297 Total Losses (in)...... 1.34632 Remaining Depth (in)... 0.00000 Peak Runoff Rate (cfs). 0.61547 Total Impervious Area Total Runoff Depth (in) 1.25637 Peak Runoff Rate (cfs). 19.10815 Impervious Area with depression storage Total Runoff Depth (in) 1.25637 Peak Runoff Rate (cfs). 19.10815 Impervious Area without depression storage Total Runoff Depth (in) 0.00000 Peak Runoff Rate (cfs). 0.00000 Total Area Total Runoff Depth (in) 0.49180 Peak Runoff Rate (cfs). 19.72361 Unit Runoff (in/hr).... .28585 28585##################################################### 10 # Runoff Quality Summary Page # # If NDIM - 0 Loads are in units of Kgs---Lbs and # # mass rates have units of Kgs---Lbs/sec# # If NDIM - 1 Loads are in units of quantity # # and mass rates are quantity/sec # # If NDIM - 2 loads are in units of concentration i # times volume and mass rates have units# # of concentration times volume/ second # ##################################################### Total Pb Dias. Pb Total Cu Dias. Cu Total Zn mg/1 mg/1 mg/1 mg/1 mg/l -------- -------- -------- -------- -------- Inputs 1. Initial surface load........ 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2. Total surface buildup....... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2a. Buildup during simulation... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3. Initial catchbasin load..... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4. Total catchbasin load....... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 S. Total catchbasin and surface buildup (2+4)....... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Remaining Loads --------------- 6. Load remaining on surface... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7. Remaining in catc)ibasins.... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 S. Remaining in channel/pipes.. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Removals 9. Street sweeping removal..... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 10. Net surface buildup (2-9)... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 il. Surface washoff............. 1.66E-01 1.69E-02 2.12E-01 7.69E-02 1.18E+00 12. Catchbasin washoff.......... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 13: Total washoff (11+12)....... 1.66E-01 1.69E-02 2.12E-01 7.69E-02 1.10E+00 14. Insoluble washoff........... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 15. Precipitation............... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 16. Total groundwater load...... 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 0.000 0.000 16a.Total I/I load.............. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 17. Ttl subcat load(13+14+15+16) 1.66E-01 1.69E-02 2.12E-01 7.69E-02 1.18E+00 18. Total load to inlets........ 1.66E-01 1.69E-02 2.12E-01 7.69E-02 1.18E+00 19. Flow wt'd ave.concentration (inlet load/total flow)..... 2.16E-02 2.20E-03 2.76E-02 1.00E-02 1.53E-01 Percentages 20. Street sweeping (9/2)....... 0.000 0.000 0.000 0.000 0.000 21. Surface washoff (11/2)...... 0.000 0.000 0.000 0.000 0.000 22. Net surface washoff(11/10).. 0.000 0.000 0.000 0.000 0.000 23. Washoff/subcat load(11/17).. 100.000 100.000 100.000 100.000 100.000 24. Surface washoff/inlet load (11/18)..................... 100.000 100.000 100.000 100.000 100.000 25. .Catchbasin washoff/ subcatchment load (12/17)... 0.000 0.000 0.000 0.000 0.000 26. Catchbasin washoff/ inlet load (12/18).......... 0.000 0.000 0.000 0.000 0.000 27. Insoluble fraction/ subcatchment load (14/17)... 0.000 0.000 0.000 0.000 0.000 28. Insoluble fraction/ inlet load (14/18).......... 0.000 0.000 0.000 0.000 0.000 29. Precipitation/ subcatchment load (15/17)... 0.000 0.000 0.000 0.000 0.000 30. Precipitation/ inlet load (15/18).......... 0.000 0.000 0.000 0.000 0.000 31. Groundwater load/ subcatchment load (16/17)... 0.000 0.000 0.000 0.000 0.000 32. Groundwater load/ inlet load (16/18).......... 0.000 0.000 0.000 0.000 0.000 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 0.000 0.000 32b.Infiltration/Inflow Load/ Inlet Load (16a/18)......... 0.000 0.000 0.000 0.000 0.000 34. Inlet load summation error (18+8+33-17)/17............. 0.000 0.000 0.000 0.000 0.000 ##################################################### # Runoff Quality Summary Page # 11 # If NDIM - 0 Loads are in units of Kgs---Lbs and # # mass rates have units of Kgs---Lbs/sec# # If NDIM - 1 Loads are in units of quantity # # and mass rates are quantity/see # # If NDIM - 2 loads are in units of concentration # # times volume and mass rates have units# # of concentration times volume/ second # ##################################################### Diss. Zn Total Cd Diss. Cd mg/l mg/1 mg/l -------- -------- -------- Inputs 1. Initial surface load........ 0.00E+00 0.00E+00 0.00E+00 2. Total surface buildup....... 0.00E+00 0.00E+00 0.00E+00 2a. Buildup during simulation... 0.00E+00 0.00E+00 0.00E+00 3. Initial catchbasin load..... 0.00E+00 0.00E+00 0.00E+00 4. Total catchbasin load....... 0.00E+00 0.00E+00 0.00E+00 5. Total catchbasin and surface buildup (2+4)....... 0.00E+00 0.00E+00 0.00E+00 Remaining Loads --------------- 6. Load remaining on surface... 0.00E+00 0.00E+00 0.00E+00 7. Remaining in catchbasins.... 0.00E+00 0.00E+00 0.00E+00 8. Remaining in channel/pipes.. 0.00E+00 0.00E+00 0.00E+00 Removals 9. Street sweeping removal..... 0.00E+00 0.00E+00 0.00E+00 10. Net surface buildup (2-9)... 0.00E+00 0.00E+00 0.00E+00 11. Surface washoff............. 5.23E-01 6.07E-03 2.46E-03 12. Catchbasin washoff.......... 0.00E+00 0.00E+00 0.00E+00 13. Total washoff '(11+12)....... 5.23E-01 6.07E-03 2.46E-03 14. Insoluble washoff........... 0.00E+00 0.00E+00 0.00E+00 15. Precipitation............... 0.00E+00 0.00E+00 0.00E+00 16. Total groundwater load...... 0.00E+00 0.00E+00 0.00E+00 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 16a.Total I/I load.............. 0.00E+00 0.00E+00 0.00E+00 17. Ttl subcat load(13+14+15+16) 5.23E-01 6.07E-03 2.46E-03 18. Total load to inlets........ 5.23E-01 6.07E-03 2.46E-03 19. Flow wt'd ave.concentration (inlet load/total flow)..... 6.80E-02 7.90E-04 3.20E-04 Percentages ----- 20. Street sweeping (9/2)....... 0.000 0.000 0.000 21. Surface washoff (11/2)...... 0.000 0.000 0.000 22. Net surface washoff(11/10).. 0.000 0.000 0.000 23. Washoff/subcat load(11/17).. 100.000 100.000 100.000 24. Surface washoff/inlet load (11/18)..................... 100.000 100.000 100.000 25. Catchbasin washoff/ subcatchment load (12/17) ... 0.000 0.000 0.000 26. Catchbasin washoff/ inlet load (12/18).......... 0.000 0.000 0.000 27. Insoluble fraction/ subcatchment load (14/17)... 0.000 0.000 0.000 28. Insoluble fraction/ inlet load (14/18).......... 0.000 0.000 0.000 29. Precipitation/ subcatchment load (15/17)... 0.000 0.000 0.000 30. Precipitation/ inlet load (15/18).......... 0.000 0.000 0.000 31. Groundwater load/ subcatchment load (16/17)... 0.000 0.000 0.000 32. Groundwater load/ inlet load (16/18).......... 0.000 0.000 0.000 32a.Infiltration/Inflow Load/ Subcatchment Load (16a/17).. 0.000 0.000 0.000 32b.Infiltration/Inflow Load/ Inlet Load (16a/18)......... 0.000 0.000 0.000 34. Inlet load summation error (18+8+33-17)/17............. 0.000 0.000 0.000 CAUTION. Due to method of quality routing (Users Manual, Appendix IX) quality routing through channel/pipes is sensitive to the time step. Large "Inlet Load Summation Errors" may result. These can be reduced by adjusting the time step(s). 12 ##r+xr+xrrwrYrww#wr#r#xrYxwwYlwwx++YwY+w#wx##rr#Yw#x Y summary of Quantity and Quality Results at * Location Node 250 Flow in cfs. + * Values are instantaneous at indicated time step rwxlrY!#Y#Y##Y#wwxrYY wYwlxwww#r Yx+wwwxwwwwr*rxrwwwww DEVELOPED CONDITION, PARKSIDE ESTATES IN HUNTINGTON BEACH FIRST FLUSH, HEAVY METALS. Volume - 69X0.5/12 -2.88 Ac-Ft Date Time Flow Total Pb Diss. Pb Total Cu Diss. Cu Total Zn Diss. Zn Total Cd Diss. Cd Mo/Da/Yr Hr:Min cfs mg/l mg/l mg/l mg/l mg/l mg/1 mg/l mg/l -------- ------- ------- -------- -------- -------- -------- -------- -------- -------- -------- 1 1 98 1 48 0.229 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900F.-04 3.200E-04 1 1 98 1 58 0.547 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 8 0.712 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 18 0.779 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 28 0.804 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 38 0.813 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 48 0.816 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 2 58 0.817 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 3 8 0.817 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 3 .18 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 3 28 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 3 38 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 3 48 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 3 58 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 8 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 18 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 •7.900E-04 3.200E-04 1 1 98 4 28 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 38 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 48 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 4 58 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 8 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 18 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 28 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 38 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 48 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 5 58 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 8 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 18 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 28 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 38 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 48 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 6 58 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 8 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 18 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 13 1 1 98 7 28 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 38 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 48 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 7 58 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 6 1.025 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 16 1.180 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 26 1.229 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 36 1.243 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 46 1.247 2.160E-02 2.200E-03 2.760£-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 8 56 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 6 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 16 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 26 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 36 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 9 46 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 96 9 56 1.249 2.160E-02 2.200 - 7 - - _E 03 2. 60E 02 1.000E 02 1.530E-01 6.800E-02 7.900E 04 3.200E-04 1 1 98 10 6 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 1& 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 26 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 36 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 46 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 10 56 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 6 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 16 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 26 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 36 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 46 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 56 1.249 2.160E-02 - 7 -2 200E 03 2. 60E 02 1.000E 02 1.530E-01 6.800E-02 7,900E-04 3.200E-04 1 1 98 12 4 1.479 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 14 1.737 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 24 1.803 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 34 1.819 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 44 1.823 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 12 54 1.824 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 13 4 1.824 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7,900E-04 3.200E-04 1 1 98 13 14 1.824 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 13 24 1.824 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 2 1 98 13 34 1.824 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 13 44 1.824 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 13 54 1.824 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 14 1 1 98 14 2 2.081 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 14 12 2.681 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 14 22 2.803 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 14 32 2.826 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 14 42 2.830 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 14 52 2.831 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 2 2.831 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 12 2.831 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 20 2.831 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 30 5.070 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 40 5.380 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 15 50 5.415 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 0 5.419 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 5 19.181 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 12 8.877 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 20 6.269 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 30 3.250 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 40' 2.904 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 16 50 2.844 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 11 0 2.833 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 8 2.106 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 18 1.889 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 28 1.840 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 38 1.828 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 48 1.825 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 17 58 1.825 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 6 1.502 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 16 1.319 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 26 1.269 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 36 1.255 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 46 1.251 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 18 56 1.250 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 6 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 16 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 26 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 36 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 46 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 19 56 1.249 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 4 1.085 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 14 0.905 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 15 1 1 98 20 24 0.848 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 34 0.828 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 44 0.821 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 20 54 0.819 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 4 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 14 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 24 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 34 0.828 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 44 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 21 54 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 22 4 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 22 14 0.618 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 22 24 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 22 34 0.918 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 22 44 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 22 54 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 23 4 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 23 14 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 23 24 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 23 34 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 23 44 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 1 98 23 54 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 2 98 0 0 0.818 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 2 98 0 20 0.151 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 2 98 0 45 0.029 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 1 2 98 1 10 0.002 2.160E-02 2.200E-03 2.760E-02 1.000E-02 1.530E-01 6.800E-02 7.900E-04 3.200E-04 ---- ------- ------- -------- -------- -------- -------- -------- -------- -------- -------- Flow wtd means..... 0.9505 0.022 0.002 0.02E 0.010 0.153 0.068 0.001 0.000 Flow wtd std devs.. 1.4275 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 Maximum value...... 19.181 0.022 0.002 0.023 0.010 0.153 0.068 0.001 0.000 Minimum value...... 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Total loads........ 1.232E+05 1.661E-01 1.692E-02 2.122E-01 7.690E-02 1.177E+00 5.229E-01 6.075E-03 2.461E-03 Cub-Ft POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS _--> Runoff simulation ended normally. ---> SWMM Simulation ended normally. -> Your input file was named C:\XPS\WORK\186-ldPb.DAT ---> Your output file was named C:\XPS\WORK\186-1dPb.out :--------------------------------------------------------------- I SWMM Simulation Date and Time Summary x---------------------------------------r-----..-.-------------♦ I Starting Date... November 23, 1998 Time... 8:57:16:48 I 1 Ending Date... November 23, 1998 Time... 8:57:26:81 1 1 Elapsed Time... 0.17217 minutes or 10.33000 seconds I •--------------------------------------------------------------r 16 PARK 1 DE ESTATES S CITY OF HUNTINGTON BEACH ADDENDUM To URBAN RUNOFF WATER QUALITY ANALYSIS And CONCEPTUAL WATER QUALITY CONTROL PLAN (Report Prepared by Rivertech Inc. in December 1998) Prepared for: Prepared by: SheaHomes Rivertech Inc 603 S. Valencia Avenue 23332 Mill Creek Drive Brea, California 92822 Suite 210 Laguna Hills, California 92653 February 2002 ,� ;JA , ', RI VERTECH i/�r INC TABLE OF CONTENTS SECTION PAGE 1. Summary 2 2. Existing and Mitigated Developed Conditions 3 3. Best Management Practices 7 4. Regulatory Perspectives 9 Addendum ' 11/15/01 V Page 1 of 24 1. INTRODUCTION In December of 1998 Rivertech Inc. prepared a report entitled"PARKSIDE ESTATES, URBAN RUNOFF WATER QUALITY ANALYSIS and CONCEPTUAL WATER QUALITY CONTROL PLAN". That report was prepared to satisfy the post construction water quality control requirements by the regulatory agencies for the planned Parkside Estates. In 1998 numeric sizing and analysis for treating urban runoff were not required by the regulatory agencies. Nevertheless, due to the concerns by the community and sensitivity of receiving waters to urban runoff,Rivertech's approach was to develop mitigation measures based on numerical analysis. The analysis described in the 1998 report was consistent with the United States Environmental Protection Agency's (EPA)rule of 1h inch of runoff over the watershed to represent the first flush event. Using that rule,EPA's Storm Water Management Model (SWMM) and the concept of diversion proposed by Rivertech, it was shown that significant reductions in pollutant loads can be achieved when Parkside Estates is developed. It was predicted that the mitigated pollutant loads to Slater Channel after development would be less than existing levels by approximately 45 percent. The reductions in pollutant loads under developed condition compared to exiting condition were possible by treating the first flush runoff generated not only by the planned Parkside Estates,but also the runoff contributed by an existing 21.8-acre development located to the northwest of Parkside Estates. Continuous Deflection Separation (CDS) was proposed to treat the runoff from the planned development as well as the existing unmitigated development. Since 1998 the water quality control requirements by the regulatory agencies have been in a dynamic state of affairs. Although numeric sizing requirements by the State of California, Regional Water Quality Control Board, Santa Ana Region (Regional Board)is still in draft format,the numeric sizing and preparation of comprehensive Urban Runoff Management Plans (URMP) are expected to become a reality in the near future. The URMP is to identify details of managing the quality of water during construction as well as the treatment train during post construction periods. This Addendum includes an Appendix that presents a detailed outline of that URMP for Parkside Estates. As mentioned above, based on the 1998 Rivertech Inc. analysis and report significant reductions in pollutant loads are predicted after Parkside Estates is developed. Although the results of analysis of the future URMP may yield similar conclusions,new analysis must be performed to achieve co nsistency with the criteria p y and procedures that will be required in the near future. In addition to the detailed outline of future URMP this Addendum provides information on current water quality control requirements by the regulatory agencies as well as those existed in 1998. Addendum 11/15/01 Page 2 of 24 2 EXISTING AND MITIGATED DEVELOPED CONDITIONS Figure 1 show the schematic layouts of the Existing and Mitigated Developed Conditions as were described in the 1998 Rivertech Inc. report. Under Existing Condition the 21.8-acre existing development contributes urban runoff containing pollutants to the 60-inch storm drain at Point A. That 60-inch storm drain conveys the runoff to Point B located along another existing 60-inch storm drain adjacent to Graham Street. At Point B an additional 165 acres of existing development drains to the storm drain located along Graham Street. Runoff and pollutants from the existing development having a total drainage area of 187 acres is then conveyed to Point C at Slater Channel. After flowing through the Slater Channel runoff reaches the pump station from where it is pumped to the East Garden Grove Wintersburg Channel. Under Mitigated Developed Condition Stormwater from the 21.8 acres and 165 acres of existing developments are intercepted at Points A and B respectively. Between Points B and E a 102-inch storm drain is proposed. Along the flow path of A-D-E a new 60-inch storm drain is proposed and between E and F a 120-inch storm drain is proposed. At Point D a Diversion Structure is planned such that the "first flush"flows from point A as well as from the onsite area are diverted to the Continuous Deflective Separation (CDS) device. The treated first flush flow is then pumped to Slater Channel at Point F. The dry weather flow or nuisance flow conveyed by the Storm Drains AD also reaches the CDS device and after treatment is pumped to the Slater Channel at Point F. The 1998 Conceptual Plan and the Future URIVIP In 1998 Hunsaker&Associates and Shea Homes retained the services of Rivertech Inc. to develop a Conceptual Water Quality Control Plan for Parkside Estates. At that time professional engineers and developers used the 1993 Drainage Area Management Plan (DAMP)to identify the most cost-effective Best Management Practices (BMPs). As an example, the 1993 DAMP did not have numeric sizing criteria for mitigating urban runoff impacts of new developments. As a result, solutions were developed using the Maximum Extent Practicable concept. Because of the expectation of the regulatory agencies at that time to have numeric sizing criteria in the near future, in 1998 Rivertech Inc. performed numerical analysis to identify mitigation measures at Parkside Estates. That analysis was consistent with the EPA's rule of half inch of runoff over the watershed. That numeric analysis is documented in the Rivertech Inc. 1998 report. The analysis revealed significant reductions in the pollutant loads to the Slater Channel under Mitigated Developed Condition during the"first flush"event. Table 1 summarizes the results of the analysis. It should be mentioned that the reductions shown in Table 1 do not include the benefits that would be achieved by other Best Addendum 11/15/01 Page 3 of 24 Management Practices (BMPs). In particular, the diversions of nuisance flow from the storm drain at Point D to the CDS unit shown in Figure 1. Table 1 First Flush Pollutant Load Analysis for Existing and Mitigated Developed Conditions Existing Mitigated Developed Pollutant Contribution to Contribution to percent Reduction Slater Channel Slater Channel (Pounds) (Pounds) BOD 22.3 12.3 44.8 COD 180 99 45 TSS 248 137 44.8 TDS 278 153 45 Total P 0.82 0.45 45.1 Dissolved P 0.3 0.16 46.7 TKN 4.4 2.45 44.3 NO2 +NO3 1.7 0.92 45.9 Total Pb 0.05 0.027 46 Dissolved Pb 0.005 0.003 40 Total Cu 0.07 0.04 43 Dissolved Cu 0.02 0.01 46 Total Zn 0.38 0.21 44.7 Dissolved Zn 0.17 0.1 41.2 Total Cd 0.002 0.0 45 Dissolved Cd 0.0008 0.0 45 Currently, based on the December 2001 DAMP numerical analysis must be performed using "Volume"or"Flow"based criteria. If mitigation measures are developed using the Volume- based criteria an 85 percentile storm event must be used to determine the magnitude of the "first flush"rainfall. Previous studies in the Huntington Beach area have revealed that the magnitude of the "first flush"rainfall amount is approximately 0.9 inch. If a Flow-based criterion is used one of the options is to select 0.2-inch of rainfall per hour. The URMP described in the Appendix will be consistent with either Volume-based or Flow-based numeric analysis. The treatment train as well as BMPs described above will be consistent with the requirements of the new DAMP. Using the approach identified in Rivertech Inc.'s 1998 report and the mitigation measures that will be identified in the future URMP should reduce contributions of the pollutant loads to Wintersburg Channel and the Slater Channel to less than existing. This is in conformance with the City's future water quality control plans and the regulatory agencies. Addendum 11/15/01 Page 4 of 24 California Regional Water Quality Control Board, Santa Ana Region, Order No. 98-67 (NPDES No. CAG998001) governs the discharge of construction dewatering wastewater. The Regional Water Quality Control Board considers construction dewatering wastes to be"de minimus"discharges that pose an insignificant threat to water quality. Under Order No. 98-67, a discharger must apply to the Regional Water Quality Control Board for approval to discharge. The order contains limits on the amount of certain substances that may be discharged, including oil and grease, sulfides,residual chlorine, suspended solids, and petroleum hydrocarbons. Mitigation measures for dewatering during construction will be consistent with the requirements prescribed by the federal, state and local regulatory agencies and will be addressed in the Urban Runoff Management Plan. In addition to the mitigation measures the URMP will specify the requirements for effluent monitoring and reporting. If required, constituents to be monitored will include but not limited to: Oil and Grease,Total Residual Chlorine,Total Suspended Solids,Total Dissolved Solids,Phosphorus,Total Nitrogen and Total Petroleum Hydrocarbons. The URMP will also identify mitigation measures as well as requirements for monitoring and reporting related to the potential removal of chemicals that might be present as a result of farming activities in the Parkside Estates. Addendum 11/15/01 Page 5 of 24 21.8 Acres of Existing Existing 60-inch Storm Drain — Development Drains to Point A A 165 Acres of Existing B a Development Drains to EXISTING Point B CONDITION Site has no storm runoff outlet.All stormwater runoff is retained at the X site and is eventually lost through W infiltration and evaporation Slater Channel --plater Pump Station C East Garden Grove Wintersburg 21.8 Acres of Existing Development Drains to Point A Channel Fu Passive ture Extension by Others ■ Park Site Existing 60-inch RCP to be Intercepted. ■ A Proposed New Line in Graham .'. n e s: Street(102")from Kenil Worth ° Proposed P Drive South through the Site o 60-inch Line Diversion Structure D c E z CDS Unit No —►O Pump Z ` Proposed Line(Aprox. 120") °n o 0 ■ F Slater Pump Station Slater Channel to be Upgraded Open Space Flood Control Channel Improvement(Sheet Pile MITIGATED DEVELOPED CONDITION East Garden Grove or Approved Equal) Wintersburg Channel R/VER�TllCH SCHEMATICS OF EXISTING AND FIGURE 'S NC MITIGATED DEVELOPED CONDITIONS 1 Addendum 11/15/01 Page 6 of 24 3. BEST'MANAGEMENT PRACTICES Best Management Practices (BMPs)for the planned Parkside Estates will be fully described in the future Urban Runoff Management Plan (URMP)outlined in the Appendix to this Addendum. They will include source controls and treatment-type controls. Source controls are targeted at reducing the accumulation and release of pollutants on land surfaces, whereas treatment-type controls address pollutant removal once the pollutants are in transport in the stormwater. As described in the previous section treatment—type also includes diversion of nuisance or low flows. The future URMP will utilize the treatment train approach for effective implementation of both structural and non-structural BMPs. Improvements to water quality will begin with source controls to minimize the pollutant loads entrained in the stormwater runoff. Structural controls will be in place to remove sediment and associated pollutants as stormwater enters the storm drain system. A list of structural and non-structural controls to be implemented in the treatment train within Parkside Estates is presented below. • Regularly scheduled street and parking lot sweeping • Provide owners and tenants information on pollutant disposal • Efficient landscape irrigation system • Minimize use of pesticides and fertilizers in common areas • Regularly scheduled inspection of drainage facilities and catch basin inserts • All catch basins stenciled with "No Dumping,Drains to Ocean" • Install catch basin inserts with fossil filters • Construct Diversion Structure, CDS and pump as shown in Figure 1. During the preparation of future URIVIP in addition to the above structural and non-structural controls,Rivertech Inc. will investigate the feasibility of using the Park Site and Open Space area shown in Figure lto treat urban runoff. In this manner, the Park Site as well as the Open Space area may become an integral part of the treatment train. The treatment train described above is expected to reduce pollutant loads under mitigated developed condition beyond the values shown in Table 1. This is because the Event Mean Concentrations used in the water quality modeling analysis have been measured in watersheds that do not include many elements of the treatment train mentioned above.Furthermore, street and parking lot sweeping, educating residents, installing catch basin inserts and the CDS unit should minimize and most probably entirely eliminate the contribution of gross-pollutants to the receiving waters. These gross-pollutants include trash from the residential areas, leaves from trees and clippings from the landscaped areas. Proposed Source Controls Addendum 11/15/01 Page 7 of 24 Although not included in numerical analysis,the results of which are shown in Table 1, source control measures can play an important role in reducing pollutant loads. For example, during both construction and post-construction periods sweeping will occur every two weeks in the residential areas of Parkside Estates Proposed First Flush and Low Flow Diversion and Treatment-Type Controls 1. Flow Diversion First flush and dry weather flows from the 21.8-acre existing development contributed to Point A of Figure 1 as well as runoff generated onsite by the development within Parkside Estates are diverted to the CDS unit. In this manner not only the first flush flow from an area of about 69 acres but the dry weather flow from that area as well will receive treatment. 2. Catch Basin Inserts Catch basin (or storm drain inlet)filters will be used throughout the Parkside Estates development to treat stormwater. These type of filters often contain a filtration liner comprised of a non-woven filter cloth that filters suspended sediment and associated heavy metals and hydrocarbons. Catch basin inserts are located within storm drain inlets and treat stormwater runoff before it enters the storm drain system. 3. Continuous Deflection Se Separation p (CDS)Unit s CDS units will provide treatment for flows contributed by the 21.8 acres of existing development as well as the urban runoff generated within Parkside Estates. It directs the flow from the storm drain system to a separation and containment chamber. The containment portion in the chamber is a sump in the lower section with the upper section of the chamber designed for solids removal. In addition, a sorbent medium can be placed in the solids removal chamber to adsorb free oil and grease. Inflow from the storm drain system enters the circular chamber creatinga vortex. The water he then passes through a screen, which filters the water before it enters a return system surrounding the chamber. The continuous motion of water in the chamber keeps the pollutants in continuous motion,preventing clogging of the screen. Addendum 11/15/01 Page 8 of 24 4.-REGULATORY PERSPECTIVE The following sections provide details on the various levels of government regulations that serve to control the discharge of pollutants to waters of the United States. Federal Regulations Clean Water Act h=://www.epa.gov/owow/cwa/index.html The principal law that serves to protect the nation's waters is the Federal Water Pollution Control Act, which was originally enacted in 1948. This legislation, which today is more commonly referred to as the Clean Water Act (CWA), underwent significant revision when Congress, in response to the public's growing concern of widespread water pollution, passed the Federal Water Pollution Control Act Amendments of 1972. The 1972 legislation established two fundamental, national goals: eliminate the discharge of pollutants into the nation's waters and achieve water quality that is both "fishable" and "swimmable." The 1972 amendments to the CWA also prohibited the discharge of any pollutant to waters of the United States from any point source (e.g., a discharge pipe)unless the discharge was authorized by a National Pollutant Discharge Elimination System (NPDES) permit. However, non-point source discharges (i.e., stormwater or urban runoff) were not fully covered under the NPDES permit program until Congress amended the CWA in 1987. In the 1987 CWA amendments, Congress directed the Environmental Protection Agency(EPA) to establish a permitting framework under the NPDES program to address stormwater discharges associated with urban areas and certain industrial activities. EPA subsequently developed a two-phased NPDES permitting program. Relative to nationwide stormwater management, the r g re are several sections of the CWA that are important: • Section 303(d)—Total Maximum Daily Loads (TMDLs) • Section 319—Non-point Source Prevention and Control Program ■ Section 402—NPDES Program Nationwide Urban Runoff Program htt,p://www.gpa.gov/ost/stormwater Between the time of the 1972 and 1987 CWA amendments, EPA initiated the Nationwide Urban Runoff Program (NURP) as a means to gather significant amounts of urban runoff Addendum 11/15/01 Page 9 of 24 quality data and disseminate this information to the general public. Many Federal, State, regional, and local agencies assisted EPA in this program from 1978 through 1983. The objectives of the program were to: J P �' ■ Quantify urban runoff characteristics, ■ Assess urban runoff impacts on receiving water quality, and ■ Examine the effectiveness of control practices that remove urban runoff pollutants. Data was compiled from 81 representative outfalls in 28 metropolitan areas over an average of 28 storm events, accounting for a total of 2,300 separate storm events nationwide. Runoff constituents that were measured included: ■ Total suspended solids (TSS) • Total copper, lead and zinc ■ Total and dissolved phosphorous ■ Total Kjeldahl nitrogen (TKN) ` Nitrite,plus nitrate nitrogen P g ■ Biological and chemical oxygen demand From these extensive nationwide measurements, typical concentration ranges for each of these constituents was determined for runoff from residential, commercial, mixed residential and commercial, and open/non-urban land uses. The results of this program formed the benchmark for many stormwater and urban runoff studies upon which comparisons were made to determine the impacts of various pollutants in runoff. Federal NPDES Permit Program http://cfpub l.epa.gov/nydes CWA Section 402 prohibits the discharge of pollutants into waters of the United States from any point source without an NPDES permit. Although this program initially focused on point- source discharges of municipal and industrial wastewater, results of the NURP reinforced the findings of the Statewide Water Quality Inventory and Assessments (required by CWA Section 305(b)) and identified contaminated stormwater as one of the primary causes of water quality impairment. To regulate stormwater (non-point source) discharges, EPA developed the following two-phased NPDES permit program: NPDES Permit Program—Phase I In November 1990, under Phase I of its stormwater program, the EPA published NPDES permit application requirements for municipal and industrial stormwater discharges. These application requirements include the following: ■ Municipalities which own and operate separate storm drain systems serving populations of 100,000 or more, or which contribute significant pollutants to waters of the United States, must obtain municipal stormwater NPDES permits. Addendum 11/15/01 Page 10 of 24 ■ A municipality must develop and implement a stormwater management program to obtain a permit. ■ The municipal stormwater management program must address how to reduce pollutants in industrial stormwater discharges and other discharges that are contributing a substantial pollutant load to their systems. ■ Facilities that are discharging stormwater associated with industrial activity, including construction activities that disturb 5 or more acres, must acquire industrial stormwater NPDES permit coverage. NPDES Permit Program—Phase II On August 7, 1995, EPA amended the NPDES permit application requirements in order to focus on Phase H stormwater discharges, such as discharges caused by: ■ Commercial, light industrial, and institutional activities, ■ Construction activities under 5 acres, and ■ Municipal storm drain systems serving populations under 100,000. Similar to Phase I requirements, the NPDES Phase II permit program also requires the development and implementation of stormwater management plans to reduce such discharges. Affected agencies must apply for a NPDES Phase II permit by March 2003. State Regulations Water Quality Control Plan for Ocean Waters of California Ocean Plan) http://www.swrcb.ca.gov/pinspols/oplans/trienrev.doc The State Water Resources Control Board (SWRCB) created the Ocean Plan in 1972 and most recently amended in 1997. The objective of the Ocean Plan is to protect "the quality of the ocean waters for use and enjoyment by the people of the State." The provisions of the Ocean Plan apply to both point source and non-point source discharges to the ocean waters of California. The Plan sets forth water quality objectives and effluent limitations for the oceans of the State. Porter-Cologne Water Quality Control Act http://www.swrcb.ca.gov/water laws Under the Porter-Cologne Water Quality Control Act (Porter-Cologne; California Water Code Section 13000), the SWRCB is provided with the ultimate authority over state water rights and water quality policy. However, Porter-Cologne also established nine Regional Boards to provide oversight on water quality issues at a regional and local level. Although the Regional Boards are responsible for a variety of water quality functions, one primary function is the preparation and updating of regional Basin Plans, which serve to control water quality within various hydrologic and geographic regions. Basin Plans establish: Addendum 11/15/01 Page 11 of 24 • The beneficial uses of individual water bodies to be protected. • Water quality standards, commonly known as water quality objectives, for both surface water and groundwater. • Actions necessary to maintain these standards such that non-point and point-source pollution in California waters is controlled. The full Basin Plan is available from the California Regional Water Quality Control Board, Santa Ana Region through their office or web site (http://www.swrcb.ca.gov/rwgcb8). To protect the beneficial uses of State waters, the Basin Plan requirements are incorporated into the State NPDES program described below. California Coastal Non-point Pollution Control Program The Coastal Zone Act Reauthorization Amendments (CZARA) of 1990 requires states with coastal zones to develop and implement Coastal Non-point Pollution Control Programs. The objective of this program is for states and local t al o work jointly to develop and J P �' J Y P employ management measures to control non-point source pollution, including urban runoff, to restore and protect urban waters. The Coastal Commission and the Regional Boards are responsible for development and implementation of the California Coastal Non-point Pollution Control Program. CZARA provides guidance on required management measures to address various sources of non-point source pollution, including certain urban runoff but excluding discharges regulated by NPDES permits. CZARA requirements also apply to stormwater discharges that are not regulated under the current Phase I NPDES program. California NPDES Permit Programs In many states, EPA has delegated administration of the NPDES permit program to the state water quality control authority. Therefore, in California, SWRCB and its Regional Boards administer the NPDES permit program. Currently, discharges from construction, industrial, and municipal activities are regulated under the NPDES program, all of which are described further below. Construction Permits http://www.swrcb.ca.gov/stormwtr/construction.html Construction site stormwater management is governed by the State Board under Water Quality Order 99-08-DWQ / NPDES General Permit No. CAS000002. These regulations prohibit discharges of stormwater to waters of the United States from construction projects that encompass five or more acres of soil disturbance unless the discharge is in compliance with an NPDES permit. The California General Permit (enforced by the nine Regional Boards) requires all dischargers where construction activity disturbs five acres or more to: Addendum 11/15/01 Page 12 of 24 • Develop and implement a Storm Water Pollution Prevention Plan (SWPPP) which specifies Best Management Practices (BMPs)that will prevent all construction pollutants from contacting stormwater and with the intent of keeping all products of erosion from moving off site into receiving waters. • Eliminate or reduce non-stormwater discharges to storm sewer systems and other waters of the nation. ■ Perform inspections of all BMPs. Construction activity subject to this General Permit includes clearing, grading, disturbances to the ground such as stockpiling, or excavation that results in soil disturbances of at least five acres of total land area. Construction activity that disturbs less than five acres of soil is subject to this General Permit if the construction activity is part of a larger common development plan (encompassing five acres or more of disturbed soil) or if the construction causes significant impairment to local water quality. Construction activity does not include routine maintenance to maintain original line and grade, hydraulic capacity, or original purpose of the facility, nor does it include emergency construction activities required to protect public health and safety. A construction project that involves a dredge and/or fill discharge to any jurisdictional surface water (e.g., wetland, channel, pond, or marine water) also needs a CWA Section 404 permit from the U.S. Army Corps of Engineers and a CWA Section 401 Water Quality Certification from the Regional Board and State Board. Stormwater discharges from dredge spoil placement, which occur outside of Corps jurisdiction (upland sites), and are part of construction activity that disturbs five or more acres of land are covered by this General Permit. It is the responsibility of the landowner to obtain coverage under this General Permit prior to commencement of construction activities. To obtain coverage, the landowner must file a Notice of Intent (NOI) with a vicinity map and the appropriate fee with the State Board. Coverage under this permit does not occur until the applicant develops an adequate SWPPP for the project. Section A of the General Permit outlines the required contents of a SWPPP. For proposed construction activity on easements or on nearby property by agreement or permission, the entity responsible for the construction activity is required to file an NOI and filing fee and is responsible for development of the SWPPP, all of which must occur prior to commencement of construction activities. This General Permit does not apply to stormwater discharges from: ` Tribal Lands; ' The Lake Tahoe Hydrologic Unit; • Construction by municipal entities with a population under 100,0001; • Construction under five acres, unless part of a larger common plan of development or sale; 1 These construction activities are addressed by United States EPA under the Phase II regulations.Construction activities conducted by municipalities with a population less than 100,000 may be required to apply for a permit under the Phase II regulations. Addendum 11/15/01 Page 13 of 24 • Projects covered by an individual NPDES Permit for stormwater discharges associated with construction activity; and Landfill construction that is subject to the general industrial permit. Industrial Permits hnp://www.swrcb.ca.gov/storrnwtr/industrial.html Industrial site stormwater management is governed by the State Board under Water Quality Order 97-03-DWQ / NPDES General Permit No. CAS000001. These regulations prohibit discharges of stormwater to waters of the United States, unless in compliance with a NPDES permit, from a broad range of industrial activities, including mining, manufacturing, disposal, recycling, and transportation. To receive coverage under and comply with the State General Industrial Activities Stormwater Permit (General Permit), the owner or operator of an industrial facility must: • Send the State Board an NOI to comply with the General Permit; • Prepare and implement a SWPPP that: 4. Discusses characteristics of the site and specific pollutants which could impact stormwater quality, and 5. Describes BMPs that the owner or operator will implement to control sources of stormwater pollution to the maximum extent practicable; ■ Verify that any illicit connections to storm drains have been eradicated; ■ Develop and execute a Monitoring Plan to assess the effectiveness of BMPs through visual inspection of storm drains during wet and dry weather and storm sampling; ■ Maintain a copy of the SWPPP and Monitoring Plan onsite such that it is available for regulatory agency staff and public inspection; • Prepare and submit an annual report with monitoring results and a certificate of compliance by July 1 st annually; and ■ Pay an annual fee of$500. If the facility discharges to a storm drain system that is regulated by a municipal NPDES stormwater permit, the annual fee is $250. An industrial facility has the option to request an individual, site-specific NPDES permit instead of the General Permit. However, Regional Boards typically only consider adopting an individual permit when the facility has exceptional characteristics or poses a considerable threat to stormwater. Municipal Permits The Regional Boards implement the municipal stormwater NPDES permit program. The State issues area-wide permits for urban areas that are considerable sources of pollutants or contribute to water quality standard violations. Regardless of population, the area-wide permits cover all municipalities within the defined urban area. Addendum 11/15/01 Paae 14 of 24 Orange County Municipal Permit—"Waste Discharge Requirements for the County of Orange, Orange County Flood Control District, and the Incorporated Cities of Orange County within the Santa Ana Region,Urban Storm Water Runoff Management Program, Orange County, Order No. 01-20 (NPDES No. CAS 618030)"Dated December 19, 2001 The County of Orange and the Orange County Flood Control District(OCFCD) along with the cities of Anaheim,Brea,Buena Park, Costa Mesa, Cypress,Fountain Valley,Fullerton, Garden Grove,Huntington Beach,Irvine,Laguna Woods, La Habra,La Palma,Lake Forest,Los Alamitos, Newport Beach, Orange,Placentia, Santa Ana, Seal Beach, Stanton,Tustin, Villa Park, Westminster, and Yorba Linda (collectively referred to as permittees or dischargers), submitted NPDES Application No. CAS 618030 (Report of Waste Discharge)for reissuance of their areawide storm water NPDES permit. The permittees developed and submitted a Drainage Area Management Plan (DAMP)that included BMPs Responsibilities of the co-permittees include, but are not limited to, the implementation of: • Management programs, • Monitoring programs, and • Plans and all BMPs outlined in the DAMP within each relevant jurisdiction. Consistent with Order No. 01-20 (NPDES No. CAS 618030) the permittees are required to develop Water Quality Management Plan as specified below: B. WATER A Y QU LIT MANAGEMENT PLAN (WQMP)FOR URBAN RUNOFF (FOR NEW DEVELOPMENT/SIGNIFICANT REDEVELOPMENT): 1. By March 1, 2003, the permittees shall review their existing BMPs for New Developments (Appendix G of the DAMP) and submit for review and approval by the Executive Officer, a revised WQMP for urban runoff from new developments/significant re-developments for the type of projects listed below: a.All significant re-development projects, where significant re-development is defined as the addition of 5,000 or more square feet of impervious surface on an already developed site.This includes additional buildings and/or structures, extension of existing footprint of a building, construction of parking lots, etc. b. Home subdivisions of 10 units or more. This includes single family residences, multi-family residences, condominiums, apartments,etc. c. Commercial developments of 100,000 square feet or more. This includes non-residential developments such as hospitals,educational institutions (to the extent the permittees have authority to regulate these developments), recreational facilities, mini-malls,hotels, office buildings, warehouses, and light industrial facilities. d. Automotive repair shops (with SIC codes 5013, 5014, 5541, 7532-7534, 7536-7539). e.Restaurants where the land area of development is 5,000 square feet or more. f. All hillside developments on 10,000 square feet or more which are located on areas with known erosive soil conditions or where the natural slope is twenty-five percent or more. Addendum 11/15/01 Page 15 of 24 g. Developments of 2,500 square feet of impervious surface or more adjacent to (within 200 feet)or discharging directly into environmentally sensitive areas such as areas designated in the Ocean Plan as areas of special biological significance or waterbodies listed on the CWA Section 303(d) list of impaired waters. h.Parking lots of 5,000 square feet or more exposed to storm water. Parking lot is defined as a land area or facility for the temporary storage of motor vehicles. 2.The permittees are encouraged to include in the WQMP the development and implementation of regional and/or watershed management programs that address runoff from new development and significant re-development. The WQMP shall include BMPs for source control, pollution prevention, and/or structural treatment BMPs. For all structural treatment controls, the WQMP shall identify the responsible party for maintenance of the treatment system, and a funding source or sources for its operation and maintenance. The goal of the WQMP is to develop and implement practicable programs and policies to minimize the effects of urbanization on site hydrology,urban runoff w rates flow to or velocities and pollutant loads. This goal may be achieved through watershed-based structural treatment controls, in combination with site-specific BMPs. The WQMP shall reflect consideration of the following goals, which may be addressed through on-site-and/or watershed-based BMPs. a.The pollutants in post-development runoff shall be reduced using controls that utilize best available technology(BAT) and best conventional technology(BCT). b.The discharge of any listed pollutant to an impaired waterbody on the 303(d) list shall not cause an exceedance of receiving water quality objectives. 3.During the time that the WQMP is being revised,the permittees shall implement their existing requirements for new development(Appendix G of the DAMP). If the Executive Officer does not approve the revised WQMP by October 1, 2003, as meeting the goals proposed in XH.B.2, above and providing an equivalent or superior degree of treatment as the sized criteria outlined in XII.B.3,below, structural BMPs shall be required for all new development and significant redevelopment 4.Minimum structural BMPs must either be sized to comply with one of the following numeric sizing criteria or be deemed by the Principal Permittee to provide equivalent or superior treatment, either on a site basis or a watershed basis: A. Volume Volume—based BMPs shall be designed to infiltrate, filter, or treat either: 1.The volume of runoff produced from a 24-hour, 85 th percentile storm event, as determined from the local historical rainfall record; or 2.The volume of annual runoff produced by the 85 th percentile, 24-hour rainfall event, determined as the maximized capture storm water volume for the area, from the formula recommended in Urban Runoff Quality Management, WEF Manual of Practice No. 23/ASCE Manual of Practice No. 87 (1998); or 3.The volume of annual runoff based on unit basin storage volume, to achieve 80 %or more volume treatment by the method recommended in California Stormwater Best Management Practices Handbook—Industrial/Commercial (1993); or Addendum 11/15/01 Page 16 of 24 4.The volume of runoff, as determined from the local historical rainfall record, that achieves approximately the same reduction in pollutant loads and flows as achieved by mitigation of the 85 th percentile, 24-hour runoff event; or B.Flow Flow-based BMPs shall be designed to infiltrate, filter, or treat either: 1.The maximum flow rate of runoff produced from a rainfall intensity of 0.2-inch of rainfall per hour; or 2.The maximum flow rate of runoff produced by the 85 th percentile hourly rainfall intensity, as determined from the local historical rainfall record,multiplied by a factor of two; or 3.The maximum flow rate of runoff, as determined from the local historical rainfall record, that achieves approximately the same reduction in pollutant loads and flows as achieved by mitigation of the 85 th percentile hourly rainfall intensity multiplied by a factor of two. The UR AP outlined in the attached Appendix will be consistent with the above numeric sizing criteria. Where new development is defined as projects for which tentative tract or parcel map approval was not received by July 1, 2003 and new re-development is defined as projects for which all necessary permits were not issued by July 1, 2003. New development does not include projects receiving map approvals after July 1, 2003 that are proceeding under a common scheme of development that was the subject of a tentative tract or parcel map approval that occurred prior to Jul 1 2003 P Y Addendum 11/15/01 Page 17 of 24 APPENDIX OUTLINE OF URBAN RUNOFF MANAGEMENT PLAN PARKSIDE ESTATES Addendum 11/15/01 Page 18 of 24 Section 1 INTRODUCTION 1.1 DESCRIPTION OF THE STUDY AREA Under this section a description of the study area, characteristics of receiving waters, environmentally sensitive areas and an overview of existing as well as planned developments to be provided. In addition locations of mitigation measures, water quality control features and other significant facilities to be described and identified. 1.2 BACKGROUND History of Parkside Estates development, prior reports and analysis,hydrologic analysis, prior approvals and decisions to be described. 1.3 OBJECTIVES Objective of the study related to urban runoff water quality control for construction level as well as long-term mitigation measures to be stated. 1.4 DESCRIPTION,PURPOSES AND FUNCTIONS OF MITIGATION MEASURES How the mitigation measures function and their purposes to be stated. 1.5 DESCRIPTION OF CONDITIONS Existing, Construction Period and Developed Conditions to be described. 1.6 CRITERIA,PROCEDURE AND METHODOLOGY Water quality assessment to be performed for Existing and Developed Conditions. For Developed BMP design, the Regional Water Quality Control Board, Santa Ana Region guidelines contained in the draft Urban Storm Water Runoff Management Program, Orange County, Order No. 01-20(NPDES No. CAS 618030)"Dated December 19, 2001 will be used. Addendum 11/15/01 Page 19 of 24 Section 2 EXISTING CONDITION 2.1 LAND USE AND SOIL Historical land uses, characteristics of sediment and Hydrologic Soil Group Classification are to be described. 2.2 DRAINAGE FEATURES All drainage courses, watersheds and drainage facilities that are in place under Existing Condition are to be shown and described on a map. 2.3 HYDROLOGY FOR EXISTING CONDITION Results of the hydrologic analysis performed by Hunsaker and Associates for Existing Condition as well as those performed by Rivertech Inc. will be summarized and documented. Rivertech's hydrologic analysis will be based on Rational Method and for the following return periods: • 10-Year, 5-Year, 2-Year Expected Value (EV) Hydrologic analysis will also include rainfall-duration analysis and development of the First Flush hydrograph using the SWMM. 2.4 WATER QUALITY ANALYSIS FOR EXISTING CONDITION Pollutant load analysis for Existing Condition is to be based on Event Mean Concentration (EMC) data developed for the NURP water quality-monitoring program, or other appropriate local/regional data. Pollutant load analysis to be performed using the EPA Storm Water Management Model (SWMM)or equivalent for the following constituents: • Total Suspended Solids (TSS) • Total Dissolved Solids (TDS) • Total Phosphorus • Dissolved Phosphorus • Total Kejldahl Nitrogen (TKN) • Nitrate plus Nitrite (NO2 +NO3) • Total Lead(Pb) • Dissolved Lead • Total Copper(Cu) • Dissolved Copper • Total Zinc (Zn) • Dissolved Zinc Addendum 11/15/01 Page 20 of 24 • Total Cadmium (Cd) • Dissolved Cadmium • Biological Oxygen Demand(BOD) • Chemical Oxygen Demand (COD) Section 3' DEVELOPED CONDITION 3.1 LAND USE Planned land uses,major landscape areas,commercial areas and pollutant producing as well as natural areas are to be delineated and described. 3.2 DRAINAGE FEATURES Planned drainage facilities other than those exclusively planned for mitigation measures are to be shown on a map and described. 3.3 HYDROLOGY FOR DEVELOPED CONDITION Results of the hydrologic analysis performed by Hunsaker and Associates for Developed Condition as well as those performed by Rivertech Inc. will be summarized and documented. Rivertech's hydrologic analysis will be based on Rational Method and for the following return periods: • 10-Year, 5-Year, 2-Year Expected Value (EV) • Hydrologic analysis will also include rainfall-duration analysis and development of the First Flush hydrograph using the SWMM. 3.4 WATER QUALITY ANALYSIS FOR DEVELOPED CONDITION Pollutant load analysis for Developed Condition is to be based on Event Mean Concentration (EMC) data developed for the NURP water quality-monitoring program, or other appropriate local/regional data. Pollutant load analysis to be performed using the EPA Storm Water Management Model or equivalent for the following constituents: • Total Suspended Solids (TSS) • Total Dissolved Solids (TDS) • Total Phosphorus • Dissolved Phosphorus • Total kjeldahl Nitrogen (TKN) Addendum 11/15/01 Page 21 of 24 • Nitrate plus Nitrite (NO2+NO3) • Total Lead (Pb) • Dissolved Lead • Total Copper(Cu) • Dissolved Copper • Total Zinc (Zn) • Dissolved Zinc • Total Cadmium(Cd) • Dissolved Cadmium • Biological Oxygen Demand (BOD) • Chemical Oxygen Demand(COD) Section 4; IMPACTS OF EXISTING AND PLANNED DEVELOPMENT; COMPARISON OF EXISTING AND DEVELOPED CONDITIONS 4.1 DRAINAGE AREA COMPARISON Drainage area comparison is to be made for the two conditions of Existing and Developed. Any diversion planned during developed condition is to be identified. 4.2 STORM RUNOFF IMPACTS AND COMPARISON Identify storm runoff impacts of Existing and Developed conditions. These impacts include peak discharge under each storm event identified in Sections 3.3 and 4.3 as well as the volume of the first flush hydrographs. Section 5' MITIGATION MEASURES 5.1 STORMWATER MITIGATION MEASURES In this section all stormwater conveyance facilities that mitigate the impacts of development under both Existing and Developed Conditions are to be delineated and identified. The return periods for discharges are to correspond to those shown in Sections 3.3 and 4.3. Addendum 11/15/01 Page 22 of 24 5.2 URBAN RUNOFF MITIGATION MEASURES In this section all wetlands, water quality control basins, bio-filters and other structural and non-structural measures that mitigate the impacts of development under Developed Conditions are to be delineated and identified. The mitigated first flush pollutant loads for the constituents identified in Section 3.4 under Developed Conditions are to be compared to those corresponding to Existing Condition. In addition to the event mitigation measures, facilities and their locations to manage and control dry weather flow are to be described. Section 6" CONSTRUCTION IMPACTS AND MITIGATION 6.1 SEDIMENT,EROSION AND POLLUTANT CONTROL This section should provide a general discussion of methods and practices to address sediment, erosion, and pollution issues related to construction activities within the Parkside Estates development site. Consistency with the County PFRD and/or City of Huntington Beach Grading Manual as well as Drainage Area Management Plan (DAMP) should also be discussed. 6.2 STORM WATER POLLUTION PREVENTION PLAN(SWPPP) This section should summarize the role and requirement for a SWPPP. A SWPPP will be required for any site disturbing more than 1 acre, and must at a minimum contain the information presented in the SWPPP Checklist available form the State Regional Water Quality Control Board. The City of Huntington Beach may require that additional information be presented in the SWPPP. Section 7 IMPLEMENTATION PLAN 7.1 RESPONSIBILITIES OF CONTRACTOR AND HOMEOWNER ASSOCIATIONS • The URMP should specify a plan to be implemented by the Contractor and Home Owner Association (HOA). The plan to describe schedule of implementation for all water quality and stormwater mitigation measures, structural and non-structural Best Management Addendum 11/15/01 Page 23 of 24 Practices (BMPs) and education programs. In addition, guidelines for the Covenants, Conditions, and Restrictions (CC&Rs) should be specified in the URNIP. Catch Basin Inserts: • Describe technology to be used and how maintenance will be conducted • Identify actual/potential maintenance cost • Discuss effect that catch basin inserts have on downstream sedimentation/pollutants. 7.2 RESPONSIBILITIES OF OWNER Owner's responsibility to terminate the SWPPP occurs when "Notice of Termination"is submitted to the Regional Board. Until such time the URMP is to specify Owner's responsibilities to maintain and operate the stormwater and water quality control mitigation measures. The URMP is also to specify specific mitigation measures, locations, schedule of maintenance and individuals or entities responsible for maintaining and operating the recommended measures. 7.3 LONG-TERM RESPONSIBILITIES The Quality Plan of the ROMP to describe post-development long-term mitigation measures as well as their maintenance and operation schedule. Organizations, municipalities and entities responsible for long-term maintenance and operation program should be identified by the URMP(i.e. identify which agencies have assumed maintenance responsibility for which drainage facilities—facilities for which the OCFCD will maintain should be confirmed by a letter from OCFCD). Addendum 11/15/01 Page 24 of 24 s • 6. CITY OF HUNTINGTON BEACH, USDA, CORPS OF ENGINEERS, AND VANDERMOST CORRESPONDENCE: A) NOVEMBER 1091998, REGARDING PRIOR CONVERTED CROPLAND; B) NOVEMBER 20, 199$9 REGARDING PRIOR CONVERTED CROPLAND; C) AUGUST 11, 1999, REGARDING SECTION 10 PROVISIONS OF THE RIVERS AND HARBORS ACT; AND D) JUNE 29, 2000 VANDERMOST CONSULTING SERVICES, INC., REGARDING JURISDICTIONAL DETERMINATION OF THE EXISTING WGGE CHANNEL; E) AUGUST 29, 2000 CORRESPONDENCE, REGARDING CONCURRENCE OF THE JURISDICTIONAL DETERMINATION OF THE EXISTING WGG E CHANNEL AND SUPPLEMENTAL EPA WETLAND AND PICKLEWEED LOCATION EXHIBITS 000 P02 DEC 07 198 11:47 -�� City of Huntington Beach 2000 MAIN STREET CALIFORNIA 92648 DEPAWWNT OF COMMUWTr DEVELOPMENT BuDding &VWM41 Phming S35-Ml November 10, 1998 National Resource Conservation Service 950 Ramona Blvd., Ste. 6 San Jacinto, CA 92582 Attention: Robert Hewitt Reference: Request for Letter Regarding Prior Converted Cropland Designation, Shea Homes Property, City of Huntington Beach Mr. Hewitt: . This letter is a follow up on your telephone conversation last week with Lisa Kegarice of Tom Dodson &Associates regarding the status of the prior converted cropland designation issued by the U.S. Army Corps of Engineers for Shea Homes' property (TT#15377) in Huntington Beach, California. This parcel is approximately 45 acres and is situated between the Wintersburg Flood Control Channel to the south, Graham Street on the east, and an existing residential development (Tract #5792) to the north. Shea Homes is proposing to develop this site for residential use, and the City of Huntington Beach is the lead agency on the EIR for this proposed development. A Prior Converted Cropland (PCC) designation was issued by the Corps on May 20, 1992 on this parcel (a copy of that letter is attached). Recently, as part of the EIR process for this project, the City has been questioned regarding the validity of the prior converted cropland designation on the property. The Corps has told the City's environmental consultant (EDAW) there is no expiration to the PCC designation. EDAW has requested a [after from the Corps stating the PCC designation was still valid. The Corps said they were unable to issue such a letter because the jurisdiction over agricultural lands is now being determined by the National Resource Conservation Service (NRCS). We are requesting a letter from you regarding the status of the PCC designation for this parcel. Attached please find the updated delineation completed by Lisa Kegarice of Tom Dodson & Associates. The site has been studied by Ms. Kegarice (TDA), under contract to the City. Mr. Eric Stein (formerly Corps Regulatory Branch) and Ms. Fad Tabatabai (Corps Regulatory Branch) in June 1998 have also evaluated the site. It is our understanding that the investigation resulted in no evidence being observed to indicate jurisdictional wetlands occur on the parcel. lbcfim.:`am actobw 30 000 P03 DEC 07 '98 11:47 National Resource Conservation Service November 10, 1998 Page 2 We request a letter stating that the NCRS believes the Corps letter is still valid, or the results of your jurisdictional determination for this site. We are most anxious to resolve this issue in order to complete the EIR. If you have any questions or comments regarding this request or the information in the updated delineation, please call me at (714) 374-1553 or contact Ms. Kegarice at (909) 882-3612. ncerely, James Bames Project Planner Attachments: (1) Letter dated May 20, 1992 (2) Updated Delineation by L. Kegarice xc: Howard Zelefsky, Planning Director Scott Hess, Senior Planner Jayna Morgan, EDAW Ron Metzler, Shea Homes Lisa Kegarice, Tom Dodson &Associates swilc vv4mooroba30 000 PO4 DEC 07 '98 11:47 Usp e, United States Natural 950 N. Ramona Boulevard, Suite 6 Department of Resources San Jacinto, CA 92582 Agriculture Conservation (909) 654-7139 ♦ Fax: (909) 654-5334 Service November 20, 1998 James Barnes Project Planner City of Huntington Beach RECEIVED 2000 Main Street Huntington Beach, Ca. 92W NOV 2 51998 WAMVWoF PWAKo Subject: Prior Converted Cropland Designation, Shea Homes Property Dear Mr Barnes, After review' all of the materials available m8 to me regarding the Shea Homes Pr Huntington Beach, I have based my response of the following information: Property in 1. Evidence shows that the property Ywas being farmed prior to 1985. 2. Designation of this property as "Prior Converted Cropland" by the Army Corps of Engineers in 1992, review of their designation in 1998, and an independent report from Lisa Kegarice of Tom Dodson and Associates in December of 1997 have determined that this property meets the criteria for Prior Converted Cropland. Based on this information, the Natural Resources Conservation Service (MRCS) concurs that the Army Corps of Engineers' 1992 designation of Prior Converted.Cropland for the Shea Homes Property is still valid. Sincerely, Robert S. Hewitt District Conservationist, San Jacinto cc: Lisa Kegarice, Tom Dodson& Associates The Natural Resourcee Conservation Service, formerly the Sell conservation service, is an agency of the Untied States Department of Agriculture AN EQUAL OPPORTUNITY EMPLOYER T DEPARTMENT OF THE ARMY U LOS ANGELES DISTRICT,CORPS OF ENGINEERS P.O BOX 53271 !A:UG 16 1999LOS ANGELES,CALIFORNIA 90053-2325 REPLY TO ATTENTION OF: August 11,1999 Office of the Chief Regulatory Branch Mr.Ronald C.Metzler Shea Homes P.O.Box 1509 Brea,CA 92822-1509 Dear Mr.Metzler: Reference is made to your request of June 7, 1999 (File No. 980062800-F'1) under the provisions of Section 10 of the Rivers and Harbors Act of March 3, 1899 (33 U.S.C. 403). You are hereby authorized to impact 1.5 acres of historically tidal land for construction of a residential development in the City of Huntington Beach, Orange County, California, as shown on the enclosed drawings. The owner or authorized responsible official must sign and date all copies of this Letter of Permission(LOP)indicating that he/she agrees to the work as described and will comply with all conditions. One of the signed copies of this Letter of Permission must be returned to the Corps of Engineers (a pre-addressed envelope is enclosed). In addition, please use the two attached postcards to notify this office as to the dates of commencement(within 10 days prior to the start of construction)and completion of the activity(within 10 days following the end of construction). Thank you for participating in our regulatory program. Sincerely, Richard J.Schubel Chief,Regulatory Branch PERN=E DATE �Y= VANDERMOST CONSULTING SERVICES, INC. Government Affairs - Community Relations - Regulatory Assistance June 29, 2000 Mr. Jae Chung U.S. Army Corps of Engineers 911 Wilshire Blvd. 11'Floor Los Angeles, CA 90017 Dear Jae; Please consider this letter a request for a jurisdictional determination of the existing Wintersburg Channel, located near the intersection of Warner Ave. and Graham St. in the City of Huntington Beach. Local and regional site vicinity maps are attached as Figures 1 and 2.As shown in the attached photographs,Figure 3,the channel banks are improved earthen banks. There is little vegetation growing on the banks of the channel. As discussed during our site visit on Tuesday,May 23`d the existing Wintersburg Channel may require future improvements associated with a proposed adjacent Shea Homes . residential development, located north of the channel. We are requesting Corps concurrence of our delineation for future project planning purposes. In response to our May 23m,2000 meeting on-site, the channel was re-surveyed based on the jurisdictional parameters of the channel that we discussed. Measurements were taken approximately every 100 feet at three points on the bank as described below and shown graphically on the attached Figure 4: 1. North side of the berm top to the toe of slope as determined by Hunsaker& Associates; 2. South side of the berm top to the ordinary high tide line, as we identified at our field - meeting; 3. Ordinary high tide line of south side of the berm to the waters edge. The attached Figure 4 shows the resulting calculations. Since the channel is tidally influenced, establishing a jurisdictional limit from the high tide line of the south side of the berm,to the water edge is a variable number. However,the measurement from the top of the berm to the high tide line,is a constant number and can be used to establish the jurisdictional limits of the site. On average,the length from the top of the south side of the north berm to the line called out by the Corps ranges from 11.47 to 14.07 feet,as shown on the attached Figure 5. 27312 Calle Arroyo - San Juan Capistrano,California 92675 949.489.2700 - Fax 949.489.0309 Mr.Jae Chung June 29, 2000 Page 2 Based on the Corps site visit and attached graphics, we request that the Corps issue a Jurisdictional Determination confirming the limits of Corps jurisdiction as shown on the attached Figure 5,using the measurement from the top of the south side of the north berm to the ordinary high water line. Please call me at(949)489-2700 ext. 206 with any questions. Thank you for your assistance. Sincerely, Sherri Cohen Project Manager Cc: Ron Metzler, Shea Homes Fred Graylee,Hunsaker&Associates s 52 clo Ei Um VS �-� -.� a - 6 E +f)frsr P OR 1115E ^'6� ¢. 7 1� r E =s wl" J I LIR r1RO 1 4 LIEGE z ri .4 GLENC+'� DR x U ti � w 11F rt:-. TURTUCA. w' KENIL1ORT DR Y �a z DR a w Y. � Y� 4 �f _ r-i/c �[R , - _ d f DR *RME VIEW WORL�I �a cl \ C ; f�a` � � �: aPIk5S1l �� r` ut jCIR R ! ^ r SERENE MGt 0 v QR. ti qrP A f)P. nR fit LA 4' C I ram. a i/R'Q'S717f ER SHEA HOMES, WINTERSBURG CHANNEL LOCAL VICINITY MAP VANDERMOST CONSULTING SERVICES,INC. 27312 Calle Arroyo San Juan Capistrano,CA 92675 (949)489-2700 fax(949)489-0309 Figure • o r. t _ llf c A I "vy'V W •l Tkl� mt ' _ IJ BOLS{i AsayD : � � -- Itl ■ Q m ...a\.. a WAFMER o "I w M ¢! Ei W JOI _ W_ O _ F JEW a 2 9 J GARFIELO dA. e — — ay-$�,� G SHEA HOMES, WINTERSBURG CHANNEL REGIONAL LOCATION MAP VANiDCRR'M®ST CONSULTING SERVICES,ffNC. 27312 Calle Arroyo San Juan Capistrano,CA 92675 (949)489-2700 fax(949)489-0309 FagIII-e 2 • ,7 WINTERSBURG CHANNEL., FEW"", .'^:,a"'� qk " •-, FIGURE 3 WINTERSBURG CHANNEL TYPICAL CROSS SECTION Existing '•. Homes Future 2 1 Development South 3 ,• North Berm ✓.r r.r r rry r ry r r✓r rv✓r err✓r•r•rr r i� •' Berm .r}r••.nr•.r.rrvv'+��r•✓••r••r,r.nrr�r`r••�v%rwnr•,rr••r..• . •.r•r•.�^✓•.r,rrr•_�r•.r•✓rrr.n.�,r•.r•.rv.r•.rrw✓r•✓. . tiV4J��✓tir'•J'••r'•Nor+./'•J`✓+r+hr•✓•./✓+.I'••./'•rJ•./,,/+Jti FIGURE 4 h 'OF H411 MQ, BEACH M on File with City Clerk DEPARTMENT OF THE ARMY 0��LkLOS ANGELES DISTRICT,CORPS OF ENGINEERS ES, BOX 53LOS ANGEU:S,CALIFORNIARNI 90053-2325 August 23,2000 RECEIVED AUG 2 2000 REPLY TO ATTENTION OF: Office of the Chief Regulatory Branch Vandermost Consulting Attention: Julie Vandermost 27312 Calle Arroyo San Juan Capistrano,California 92675 Dear Ms.Vandermost: Reference is made to your letter(No.200001279-YJC)dated June 29,2000 for a determination of jurisdictional extent from the Department of the Army on behalf of Shea Homes for a project involving construction of residences adjacent to the East Garden Grove Wintersburg Channel in Huntington Beach,Orange County,California. Based on the information funushed in your letter and from a field meeting on May 23, 2000,we have determined that your proposed project is adjacent to a water of the United States. Your submittal dated June 29,2000 shows the jurisdictional extent of waters of the United States in relationship to the existing summer flows and the tops of the flood control berms. We concur with your determination of the upper limits for jurisdictional waters of the U.S.under both Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act. At this time,we are not able to determine whether the project would need a permit under Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act,because no project description was provided. Should the project discharge any dredged or fill material into the channel or conduct any type of work within tidally or historically-tidally influenced waters, the project proponent will need to apply for a permit from the Army Corps of Engineers. The receipt of your letter is appreciated. If you have any questions,please contact Jae Chung of my staff at(213)452-3292. Sincerely, Mark Durham Chief,South Coast Section Regulatory Branch Parkside Estates EIR 97-2 City ofHundngton Beach j, I=6 A q 1. 521 t j,- A A 9ja & 11r Q LOT C 0, DEL / NEB ok, 12 NOTES �St�`_� _ / \S �/ / 1. EXISTING LAND USE: VACANT. 2 SOLSA CHICA SPECIFIC PLAN MEDIUM DENSITY RESIDENTIAL (PORTION). 3' PROPOSED LAND USE: RESIDENTIAL LOW DENSITY. 4. PARK REOUIREMEN75 TO BE MET BY LAND DEDICATION. 5. WATER SERMCE: CITY OF HUNTINGTON BEACH WATER SYSTEM. 6. SEWER SERVICE: CITY OF HUNTINGTON BEACH PUBLIC'CDOG WORKS &ORANGE COUNTY SANITATION DISTRICT. 7. GAS SERVICE: SOUTHERN CALIFORNIA GAS COMPANY. 8 ELECTRIC SERVICE: SOUTHERN CALIFORNIA EDISON COMPANY. % � ��// RPNG / / 9: TELEPHONE SERVICE: GENERAL TELEPHONE COMPANY OF CALIFORNIA. 10. CABLE TELEVISION! TIME WARNER. 11. SCHOOL DISTRICT: HUNTINGTON BEACH CITY SCHOOL DISTRICT AND HUNTINGTON BEACH UNION HIGH SCHOOL DISTRICT. 12. MULTIPLE MAPS MAY BE FILED PURSUANT TO SECTION 66456.1 OF THE CALIFORNIA GOVERNMENT CODE- 13. THIS IS AN APPLICATION FOR A DEVELOPMENT PERMIT. LAND USE SUMMARY LOT No. USE 1-27 (27 LOTS) SINGLE FAMILY RESIDENTIAL(5000 SO.FT.WIN.) 1989 EPA POCKET WETLAND DELINEATION A-B LANDSCAPE LOT. MAINTAINED BY HOA. (SHEA AREA 0.45 AC.)(NAP AREA = 0.07 AC.) C DRAINAGE LOT.MAINTAINED By HOA. LEGAL DESCRIPTION MAPPED EXTENT OF SALICORNIA-DOMINATED PATCHY COASTAL ,/�A MARSHLAND REMNANT. JAN, 1997 (APROX. 0.1 ACRES) PORTIONS OF PARCELS 6, 7. a & 9 AS CONVEYED To THE METROPOLITAN WATER DISTRICT OF SOUTHERN CALIFORNL4 By AREA OF HIGHLY-DISTURBED MAP DATE IDENTIFIER RUDERAL AND MARSH VEGETATION CORPORATION OUITCLAIM DEED RECORDED F-EBRLARY 22. 1974 DATE OF LATEST LM04E TO THIS MAP LESS THAN 20%COVER BY IN BOOK 11080, PAGE 287 OF OFFICIAL RECORDS OF E-2/i 7/00 ey:jjc NATIVE SPECIES. JAN. 1997 (APROX. 0.1 ACRES) ORANGE COUNTY. _j DATE OF 7H1S PLOT MITAMW MAO fa LUO 41cafe: (approx.) I"=150' 1 02/18/00 LOCATION MAP EDAW, Inc. Source: Hunsaker&Associates Irvine,Inc. EPA Wetland and Pickle Weed Location Map Alternate (9 Lot) Parkside Estates EIR 97-2 City ofHuntington Beach - - -- _-� V �Vf III' �I �L \ \ 1 G O ��I� ij NO. i _�6 1 �.•' o�� A).' to ---�r.��.. J 1 �.f i 1� 1 1 � su u.�:-� I:�� �'•S�� �I ICI I s. 0. y/ / 'S`� \ '�x x/ -(�\ �; 12 ;• I�.I `�y��f/ I j 1 r- �I ''� <�J;; I I �I�I �x �°' 1� �.�-'a3 � �1�1� j_ .�p.N ll s�� I I �-- — E-- — � �� __ I v 2 I� Lb7 A '.I n11•'�11� 6 j68 =� /,ICI I,i i >x�p2 i ��C�Q C jS�Sc,LF�"C ;ap% o �'l �f:cco co°` ��'�? ` s•��,r x \`• g. '4 Z.w g � � � :..�°` xT,,, J.S� �� /- ` � �' ,I /x, s ;,� I i i 15 e•9° '� yP G't'p G, ON O,Q �F9 .® 1���' � � `- y j� /S �,N O GROG / l � NOTES x GPR / So � ' � S� / 1. EXISTING LAND USE: VACANT. 2. BOLSA CHICA SPECIFIC PLAN MEDIUM DENSITY RESIDENTIAL (PORTION). 3. PROPOSED LAND USE: RESIDENTIAL LOW DENSITY. 4. PARK REQUIREMENTS TO BE MET BY LAND DEDICATION. 5.= WATER SERVICE: CITY OF HUNTINGTON BEACH WATER SYSTEM./ 6. SEWER SERVICE: CITY OF HU BEACH PUBLIC, G WORKS $ORANGE COUNTY SANITATION N DISTRICT. 7. GAS SERVICE: SOUTHERN CALIFORNIA GAS COMPANY. 8. ELECTRON SERVICE: SOUTHERN T CALIFORNIA COMP COMPANY. 9. TELEPHONE SERVICE: GENERAL TELEPHONE COMPANY OF CALIFORNIA. 10. CABLE TELEVISION: TIME WARNER. —����• ° _ ,� jE1.1/ / 11. SCHOOL DISTRICT: HUNTINGTON BEACH CITY SCHOOL DISTRICT AND HUNTINGTON BEACH UNION HIGH SCHOOL DISTRICT. 12. MULTIPLE MAPS MAY BE FILED PURSUANT TO SECTION 66456.1 / j• / / THE CALIFORNIAGOVERNMENT CODE.THIS 13. THIS IS ANN APPLICATION FOR A DEVELOPMENT PERMIT. j LAND USE SUMMARY 1989 EPA POCKET WETLAND DELINEATION LOT No. USE (SHEA AREA = 0.45 AC.) 1_27 (27 LOTS) SINGLE FAMILY RESIDENTIAL(5000 SO. FT.MIN.) AREA = 0.07 AC.) A-B LANDSCAPE LOT,MAINTAINED BY HOA. MAPPED EXTENT OF C DRAINAGE LOT,MAINTAINED BY HOA. SALICORNIA-DOMINATED PATCHY COASTAL LEGAL DESCRIPTION MARSHLAND REMNANT, JAN. 1997 (APROX. OJ ACRES) —' AREA OF HIGHLY—DISTURBED PORTIONS OF PARCELS 6, 7, 8 & 9 AS CONVEYED TO THE MAP DATE IDENTIFIER RUDERAL AND MARSH VEGETATION METROPOLITAN WATER DISTRICT OF SOUTHERN CALIFORNIA BY DATE OF LATEST CHANCE TO THIS MAP LESS THAN 20%COVER BY �2/17�00 BY:JJC�;�C � f NATIVE SPECIES. JAN. 1997 (APROX. 0.1 ACRES) CORPORATION QUITCLAIM DEED RECORDED FEBRUARY 22, 1974 DATE OF THIS PLOT 1RAlY 1�» IN BOOK 11080, PAGE 287 OF OFFICIAL RECORDS OF Cale: (approx.) 1"=150' 02 18 00 LOCATION MAP ORANGE COUNTY. EDAW, Inc. Source: Hunsaker&Associates Irvine,Inc. EPA Wetland and Pickle Weed Location Map (27 Lot) 7 7. CALIFORNIA COASTAL COMMISSION CORRESPONDENCE: A) JuNE 29, 2001 REGARDING RE- ESTABLISHED REMNANT MARSHLAND; B) JULY 39 20019 REGARDING PROPOSED PARKSIDE ESTATES DEVELOPMENT AND HABITAT ANALYSIS, PARKSIDE ESTATES TENTATIVE TRACT No. 15419 (CouNTY PARCEL), DECEMBER $, 2000 STATE OF CALIFORNIA-THE RESOURCES AGENCY GRAY DAVIS, Govemor CALIFORNIA COASTAL COMMISSION South Coast Area Office 200 Oceangate,Suite 1000 Long Beach,CA 90802-4302 June 29, 2001 m (562)590-5071 Shea Homes Attn: Ron Metzler P.O. Box 1509 Brea, CA. 92822 Violation File Number: V-5-98-034 Violation Description: Vegetation Removal and Grading in a Wetland in 1998 Property location: Huntington Beach Mesa, south of the intersection of Los Patos Avenue and Bolsa Chica Street, in the Bolsa Chica area of unincorporated area of Orange County. Dear Mr. Metzler: The purpose of this letter is to summarize the status of the above-mentioned violation and to clarify that any future development (including vegetation removal) on the subject site will require the issuance of a Coastal Development Permit. On October 9, 1998, you were given a Notice of Violation for the unpermitted clearance of approximately 0.2 acres of wetland vegetation (pickleweed) at the above location. Since that date, the approximately 0.2 acre portion of the site where the unpermitted clearance of pickleweed occurred in 1998 has naturally revegetated and the extent of sensitive pickleweed habitat on site has actually expanded. Based on these unique circumstances, this coastal violation is considered resolved and our file has been closed. However, please note that although we consider the matter of the unpermitted vegetation removal that occurred in 1998 to be resolved, this letter serves as notice that any future development on the subject site (including, but not limited to, disking, vegetation removal, construction, grading, test wells, etc.) will require the issuance of a Coastal Development Permit. Failure to obtain a coastal permit for such development will be considered a knowing and intentional violation on your part. As such, you should be aware that Coastal Act Section 30820 (a) provides that any person who violates any provision of the Coastal Act may be subject to a penalty of up to $30,000. In addition, to such penalty, Section 30820 (b) states that a person who intentionally and knowingly undertakes development that is in violation of the Coastal Act may be civilly liable in an amount which shall not be less that $1,000 and not more than $15,000 per day for each day in which the violation persists. Thank you for your cooperation. Please contact Grace Noh with any questions regarding this matter at (562) 590-5071. Sincerely, Steven M. Hudson Sou he n Districts ZEfrcement Supervisor RECEIVED Grace Noh JUL - 2 2001 Enforcement Officer cc: Teresa Henry,District Manager,South Coast District,CCC �L�� ��1, Steve Rynas,Orange County Area Supervisor,CCC STATE OF CALIFORNIA-THE RESOURCES AGENCY GRAY DAVIS, Govemor CALIFORNIA COASTAL COMMISSION South Coast Area Office 200 Oceangate,Suite 1000 •"�' Long Beach,CA 90802-4302 0 (562)590-5071 July 3, 2001 Ron Metzler RECEIVED Vice President, Planning and Development Shea Homes JUL - 6 2001 P.O. Box 1509 Brea, CA 92822-1509 PLAN & DEV SUBJECT: Proposed Parkside Estates Development Dear Mr. Metzler: Shea Homes is proposing residential development on property that was formerly owned by the Metropolitan Water District. This property consists of two discrete parcels. The first parcel is an approximate 44 acre parcel within the City of Huntington Beach. The City of Huntington Beach has a certified local coastal program (LCP). However, this parcel was deferred certification into the City's LCP due to potential wetland values'. Though the area may have contained wetlands in the late 1980's, the Department of Fish and Game (March 16, 1998) concurred with a wetland evaluation by Lisa Kegarice of Tom Dodson and Associates (December 17, 1997) that the 44 acre City Parcel did not currently meet wetland criteria. Furthermore, it is our understanding that this parcel has been and is currently being used for agricultural purposes. The second parcel is a five acre parcel that is located in unincorporated Orange County. This parcel is within the area regulated by the Bolsa Chica Local Coastal Program. The Coastal Commission designated this area as Conservation (November 16, 2000). However, on May 8, 2001 the County of Orange voted to decline acceptance of the Commission's suggested modifications2. Therefore, the Bolsa Chica LCP area is not certified. The available documentation for the five acre County parcel have indicated two principal resource/habitat facts. First, that the five acre County parcel has been identified in numerous public documents as containing wetlands3. Second, that the ' Because the parcel in the City is deferred, the standard of review for any project proposed in the City parcel is the Coastal Act and a coastal development permit is needed from the Commission for any proposed development. 2 Additionally, pursuant to Section 13537 of Title 14 of the California Code of Regulations, the Commission's certification lapsed on May 16, 2001. 3 Department of Fish and Game Letter, June 15, 1998 Ron Metzler July 3, 2001 2 County parcel has not been used for agricultural use. A biological evaluation prepared by Frank Hovore (July 11 , 1997) substantiated the lack of historic or current agricultural use of the County parcel. On March 7, 2001 Commission staff met with your staff on the County parcel to further consider the status of the wetlands. At this meeting Shea Homes presented to Commission staff a wetland assessment conducted by LSA Associates, Inc. (December 8, 2000) between September 1999 and September 2000. This estimation identified approximately 1 .2 acres of wetland habitat indicators such as Bassia Scrub, Sea-Blite Scrub, and Saltgrass. Furthermore, the LSA assessment identified .9 acres of Eucalyptus woodland. The Eucalyptus woodland has been considered environmentally sensitive habitat in Bolsa Chica as it provides perching and nesting habitat for raptors. Though the LSA Associates estimate of December 8, 2000 provides additional biological information on the status of the wetlands on the County parcel, it is a preliminary and cursory document. The letter states that it "does not attempt to delineate the extent of potential wetlands." Consequently, when Shea Homes submits to the Commission an application for a coastal development permit for residential development, Shea Homes will need to provide a formal wetland delineation in compliance with the Commission's wetland criteria. Through such a scientific investigation the areal extent of the wetlands in relation to the proposed residential development can be determined. For example, we note that several wetland plants (such as five-hook bassia) have been included in the Ruderal Herbaceous category b LSA. Additional stud of this area may conclude that 9 Y Y Y Y wetlands exist within Ruderal Herbaceous area. At this time, we also need to reiterate that the buffer between any residential development and wetland or other ESHA areas may not limited to 100 feet. Depending on the resource values in the vicinity, Commission staff may recommend a buffer from 100 feet to 300 feet in width. Resource values are currently considered high in this area based on the necessity to preserve the wetlands and raptor habitat. Consequently, the County parcel was designated Conservation by the Commission in November 2000 when it acted on the Bolsa Chica LCP. Department of Fish and Game Letter, March 16, 1998 Parkside Estates EIR#97-2, EDAW Inc., April 1998 Biological Evaluation, Shea Homes Property, by Frank Hovore, July 11, 1997 Existing Habitat Maps, by Hunsaker and Associates, March 21, 1996 1996 Recirculated Draft Environmental Impact Report, The Balsa Chica Local Coastal Program EIR #551, Orange County Environmental Management Agency, March 21, 1996. A Determination of the Geographical Extent of Waters of the united States at Balsa Chica, Orange County, California, United States Environmental Protection Agency, February 10, 1989. Ron Metzler July 3, 2001 3 We appreciate the work of Shea Homes and LSA Associates in providing us with a better understanding of the wetlands on the County parcel and we look forward to a formal wetland delineation and biological study. This information will be crucial for evaluating the appropriateness of residential development and, if appropriate, how impacts from proposed residential development can be mitigated. Should you have any additional questions regarding the status of these two parcels please do not hesitate to contact me at 562-590-5071 . Sincerely, Stephen Rynas, AICP Orange County Area Supervisor cc: Deborah Lee,Coastal Commission H:\Letters\Shea Homes\sheal1.doc ASS OTHER A LSA PAR CIATES, INC. BERKE OFFICES: L S ONE PARK PLAZA, SVITE 500 949.553•0666 TEL BEHKELEY RIVERSIDE IRVINE, CALIFORNIA 92614 949.553.8076 FAX PT. RICHMOND ROCKLIN December 8, 2000 Mr.Ronald C. Metzler,Vice President Planning and Development,Southern California Shea Homes 603 S.Valencia Avenue Brea,CA 92823 Subject: Habitat Analysis,Parkside Estates Tentative Tract No. 15419(County Parcel), Orange County,California Dear Mr. Metzler: At your request,LSA Associates,Inc. (LSA)has completed an evaluation of the current habitat conditions of Shea Homes' five acre parcel(Tentative Tract No. 15419),hereinafter referred to as the "study area,"located adjacent to the City of Huntington Beach corporate boundary in the County of Orange,California. Initially,LSA biologists conducted a very brief,reconnaissance level examination of the study area on September 2, 1999, and again on November 24, 1999. A follow-up site visit was conducted by LSA on August 25,2000,to check the condition of the vegetation on site. With the exception of a few foot trails extending across the site,vegetation had reestablished within the study area at the time of the August 25,2000, site visit. On September 21, 2000,LSA prepared a ma of the habitat es occurring in the stud area. The current distribution of these habitat detailed p typ g y types is shown on the attached vegetation map. This analysis identifies the dominant vegetation and its distribution within the study area,but does not attempt to delineate the extent of potential wetlands. The prevalence of hydrophytes does not in and of itself constitute a wetland. Vegetation is merely one parameter in a multiparameter definition of wetlands. According to Section 13577(b)of the California Coastal Commission Administrative Regulations,wetlands are defined as"lands where the water table is at,near,or above the land surface long enough to promote the formation of hydric soils or to support the growth of hydrophytes." However,many of the hydrophytes(e.g., common woody pickleweed,five-hook bassia, saltgrass,shrubby sea-blite)present on site are also halophytes and,therefore,are frequently associated with saline soils irrespective of the existence of saturated or inundated soil conditions. That is to say,the presence of hydrophytes may be attributed to the soil conditions(i.e.,high salinity) rather than to the current hydrologic regime. In particular,those plants classified as hydrophytes that occur at the upper elevational limits(northern and eastern portions)of the study area,where wetland hydrology appears to be lacking,are more likely to be present as a result of the soils. Therefore,any wetlands delineation should include a specific evaluation of the hydrological regime. 12/8/00((P:\SH0931\Metzler Letter 2.wpd)) PLANNING I ENVIRONMENTAL SCIENCES I DESIGN LSA ASSOCIATES, INC. In the Biological Resources Assessment(1997)prepared by Frank Hovore&Associates(FHA),the pickleweed dominated habitat was described as"low, spreading cover dominated by pickleweed and saltgrass(Distichlis spicata),with a few shrubby rush (Juncus sp.,prob. balticus) interspersed." At the time LSA mapped the habitat types on site, common woody pickleweed(Salicornia virginica) was scattered about the study area but was not a dominant plant species in any of the habitat types. Also,no shrubby rush was evident at the time LSA mapped the vegetation. Specific plant species comprising the current habitat types are identified in the following habitat descriptions. Myoporum Shrubland. This habitat type is composed almost exclusively of clusters of the non- native shrub myoporum (Myoporum laetum). Myoporum is not recognized by the U.S.Army Corps of Engineers(Corps)as a hydrophyte, or wetland plant. Therefore,this would be considered an upland habitat type. Myoporum Shrubland comprises approximately 0.2 acre of the study area. Bassia Scrub. This wetland habitat type is composed of a variety of herbaceous hydrophytes. Bassia Scrub is dominated by two wetland plant species,five-hook bassia(Bassia hyssopifolia)and alkali heath,and one upland plant species, small-flowered ice plant(Mesembryanthemum nodiorum). Other common hydrophytes include shrubby sea-blite(Suaeda moguinii),western sea- purslane(Sesuvium verrucosum),and scattered individuals of common woody pickleweed. Bassia Scrub comprises approximately 0.7 acre of the study area. Sea-blite Scrub. Although dominated by shrubby sea-blite, a wetland plant species,this habitat type is also composed of other hydrophytes, including five-hook bassia, spearscale(Atriplex triangularis), alkali heath(Frankenia Salina),and some scattered common woody pickleweed. Sea-blite Scrub comprises approximately 0.3 acre of the study area. Ruderal Herbaceous. This habitat type is dominated primarily by upland ruderal forbs, including small-flowered ice plant,mallow(Malva sp.),Oriental sisymbrium (Sisymbrium orientale),Russian thistle(Salsola tragus),and common knotweed(Polygonum arenastrum). Five-hook bassia,a wetland plant species, is also a dominant plant species. Other scattered plants include castor bean (Ricinus communis),bristly ox-tongue(Picris echioides),wild radish(Raphanus sativus),Bermuda grass(Cynodon dactylon),and salt heliotrope(Heliotropium curassavicum). A few scattered individuals of common woody pickleweed have emerged in a small portion of this habitat type within the study area. Ruderal Herbaceous comprises approximately 1.7 acres of the study area. Disturbed Saltgrass. Composed entirely of herbaceous hydrophytes,this wetland habitat type is dominated by saltgrass(Distichlis spicata),with five-hook bassia and alkali weed(Cressa truxillensis)frequently interspersed. Disturbed Saltgrass comprises approximately 0.2 acre of the study area. Ruderal Grassland. This habitat type is dominated primarily by upland ruderal grasses, including littleseed canary grass(Phalaris minor),hare barley(Hordeum murinum ssp. leporinum),and Bermuda grass. Nuttall's monolepis(Monolepis nuttalliana),a wetland plant species,is also a dominant plant species. Other scattered plants include Oriental sisymbrium,mallow,five-hook 12/8/000PASH093 I\Metzler Letter 2.wpd» 2 LSA ASSOCIATES, INC. bassia,Russian thistle, and bristly ox-tongue. Ruderal Grassland comprises approximately 0.4 acre of the study area. Eucalyptus Woodland. Eucalyptus Woodland is a highly disturbed and decrepit woodland composed almost exclusively of senescent eucalyptus trees(Eucalyptus sp.). This habitat type in the study area appears to have persisted for several decades. Eucalyptus Woodland comprises approximately 0.9 acre of the study area. In summary,the approximately 1.2 acres of hydrophyte dominated vegetation would seem to be more extensive today than the estimated 50 foot by 150 foot area(less than 0.2 acre)of pickleweed dominated"marshland"previously reported in the Biological Resources Assessment prepared by FHA in 1997,although the habitat types and species composition are presently different from those described by FHA. If you have any questions concerning the contents of this letter, please do not hesitate to contact me at (949) 553-0666. Sincerely, LSA ASSOCIATES,INC. im Harrison Botanist/Project Manager Attachment: Vegetation Map of Tentative Tract No. 15419 cc: Rick Harlacher,LSA Art Homrighausen,LSA 12/8/00((P:\SH093nmeuler Letter 2.wpd)> 3 r/� / _ - -\,/ /.. - .�I�f. \ •�` F� ter- r_ Z\\ r , . \ _ _ 6.0 , 10.0 10 4 _ ) 1 \ j \ • Al Tom.43 - - �, -� r��/'���-. / •. \ S \\ © t.i / � (S :�------- - mil �_.irl - i __ _ tag _ ° r= = LEGEND • - �- gib__- : - - f\ 0 Myoporum Shrubland Q Disturbed Saltgrass © Bassia Scrub Q Ruderal Grassland Sea-blite Scrub Q Eucalyptus Woodland - u, INTO Q Ruderal Herbaceous Q Disturbed(Dirt Road) \ - - - Base Map Source.Hunsaker&Associates R I2/s/oo(SHo931) Figure N Scale in Feet L S A -� o 45 90 Vegetation Map of Tentative Tract No. 15419 8 • 8. MAY 219 2002 DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS ,AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY AND COMPOSITE RESOUR E C MAP FOR COUNTY PARCEL NIAP,'PREPARED BY LSA DELINEATION OF WETLANDS SUBJECT TO U . S . ARMY CORPS OF ENGINEERS AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419 COUNTY OF ORANGE, CALIFORNIA Submitted to: Shea Homes 603 S.Valencia Avenue Brea,California 92823 Prepared by: LSA Associates,Inc. 20 Executive Park,Suite 200 Irvine,California 92614 (949)553-0666 LSA Project No. SH0931 L S A May 21, 2002 FIGURES AND TABLES FIGURES Figure1: Study Area Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Figure 2: Wetland Study Area and Monitoring Well Locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 3: Installation Detail of Shallow Monitoring Well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 4: Vegetation Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 5: Groundwater Elevations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 6: Normal Rainfall for Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 7: Groundwater Elevations and Combined Rainfall for 1999/2000 . . . . . . . . . . . . . . . . . . . 18 Figure 8: 1999/2000 Rainfall for Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 9: Potential Jurisdictional Wetlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 TABLES Table A: Hydrophytic Vegetation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 PASH0931\Delineationlshea homes rev.wpd(K5/21/02N Il LSA ASSOCIATES. INC. DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419. ORANGE COUNTY. CALIFORNIA INTRODUCTION The following evaluation of regulatory jurisdiction has been prepared for use by the U.S.Army Corps of Engineers(Corps)and California Coastal Commission(Commission)as part of their review of applications for permit authorization under Section 404 of the federal Clean Water Act and for a Coastal Development Permit(CDP)pursuant to the California Coastal Act. Shea Homes owns two adjoining parcels in the Bolsa Chica lowlands of coastal Orange County, California. One parcel is approximately 45 acres and is located within the City of Huntington Beach. The other parcel is approximately five acres and is located within unincorporated Orange County. In 1992,the Corps determined that the 45-acre City parcel did not contain any federal wetlands,but no delineation was conducted concerning the five-acre County parcel. The five-acre County parcel (Parkside Estates Tentative Tract No. 15419),hereinafter referred to as the study area,is the subject of this jurisdictional wetlands delineation conducted by LSA Associates Inc.(LSA). The study area,ranging in elevation from 1.1 foot below mean sea level to almost six feet above mean sea level,is located in section 28 of Township 5, South and Range 11,West on the USGS 7.5 minute series Seal Beach quadrangle,and is located northwest of the Wintersburg Flood Control Channel,northeast of the Bolsa Chica Wetlands, southeast of the upper Bolsa Chica Mesa,and southwest of the City parcel(Figure 1). REGULATORY BACKGROUND U.S.Army Corps of Engineers The Corps regulates discharges of dredged or fill material affecting waters of the United States. These waters include wetlands and nonwetland bodies of water that meet specific criteria. Corps regulatory jurisdiction pursuant to Section 404 of the federal Clean Water Act is founded on a connection,or nexus,between the water body in question and interstate commerce. This connection may be direct,through a tributary system linking a stream channel with traditional navigable waters used in interstate or foreign commerce,or may be indirect,through a nexus identified in Corps regulations. The following definition of waters of the United States is taken from the discussion provided in 33 CFR 328.3: "The term waters of the United States means: (1)All waters which are currently used,or were used in the past,or may be susceptible to use in interstate or foreign commerce...; (2)All interstate waters including interstate wetlands; (3)All other waters such as intrastate lakes,rivers, streams(including intermittent streams) ...the use,degradation or destruction of which could affect interstate or foreign commerce...; (4)All impoundments of waters otherwise defined as waters of the United States under the definition; and PASH09310elineation\shea homes rev.wpd 05/21/02» 1 fry - j is Rohl 11 Sch I�/—�� ����I r 105 - • - •- a •': Marina `? _J, 91 High Sch,.T.:.i �l ,t• Wheeler y16 ubstaPark Los Angeles .. _ --;..:._... ..__... County , - `— E NOER !2 Orange County 405 EFSch tj.....f� _ • 1 - 11 g View Z i fr"• Schte 1 �In _ Y Stss� 8 Ulil Y �Iat w Vie lll , n A o Rt Sch SCENAR 3 DR _ _ y 22 • 11 r Y 7UR1 DR 1- �—t--1 P rk of i ,off , N PasfC' STUDY AREA - Q LOCATION t — �• /ram' nr_�1 D ° al %.. IL ct• % . ��� i•• . ` _ :'.: �r►iLrt, far 1 _ jry �I1(1i• _k / (�.° A N R ell:...i lr--. .i V£ .._. .,.;.:. - : -f .I'. .s -_ _- o° -; ...:•�:•� :-... -- ,� .y '. Lark VT •_ •�'` ,+ r-- C e- •,, �y-• � ' �—� Trail "1 ...i:.►• .-- ZSch - != Par A • STUDY AREA s t�29- All-WA ,., a` LOCATION t 1 N>r.� ;•f:.�f:...pp 'WeWTI -+ .•1l ji' _A- I h ••r�slh �i' �A�:jJ �� '1 4`T' r^ YJl , Water tz 40 F F ff� — .i � .t � mil, �� `: ;�(' � —�=-'.r= •` �...5'.' •\ .A,`Y�..� 9 '�J� \ -, '-f' :to of Source:USGS 7.5 Topographic Quadrangle, Seal Beach,Calif. ,,,,: . ., 1•;. ; y,:• »�a Y ,� :. 1. 5/15/02(SH0931) Figure I 4*r, N Scale in Feet Parkside Estates Tentative Tract Number 15419 L S D - - 0 1000 2000 Study Area Location LSA ASSOCIATES, INC. DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419. ORANGE COUNTY. CALIFORNIA (5)Tributaries of waters defined in paragraphs(a)(1)-(4)of this section;" The Corps typically regulates as waters of the United States any body of water displaying an ordinary high water mark(OHWM). The landward limits of Corps jurisdiction in tidal waters of the United States extend to the high tide line,and Corps jurisdiction over non-tidal waters of the United States extends laterally to the OHWM or beyond the OHWM to the limit of any adjacent wetlands,if present(33 CFR 328.4). The OHWM is defined as"that line on the shore established by the fluctuations of water and indicated by physical characteristics such as a clear natural line impressed on the bank,shelving,changes in the character of soil,destruction of terrestrial vegetation,the presence of litter and debris,or other appropriate means that consider the characteristics of the surrounding area"(33 CFR 328.3). Jurisdiction typically extends upstream to the point where the OHWM is no longer perceptible. The Corps and EPA define wetlands as follows: "Those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support,and that under normal circumstances do support,a prevalence of vegetation typically adapted to life in saturated soil conditions." In order to be considered a jurisdictional wetland under Section 404,an area must possess three wetland characteristics: hydrophytic vegetation,hydric soils,and wetland hydrology. Each characteristic has a specific set of mandatory wetland criteria that must be satisfied in order for that particular wetland characteristic to be met. Several parameters may be analyzed to determine whether the criteria are satisfied. Hydrophytic Vegetation. Hydrophytic vegetation is plant life that grows,and is typically adapted for life, in permanently or periodically saturated soils. The hydrophytic vegetation criterion is met if more than 50 percent of the dominant plant species from all strata(tree, shrub and herb layers)are considered hydrophytic. Hydrophytic species are those included on the National List of Plant Species That Occur in Wetlands: California(Region 0) (Reed, 1988),published by the U.S. Fish and Wildlife Service(USFWS). Each species on the list is rated according to a wetland indicator category,as shown in Table A. PASH0931\Delineation\shea homes rev.wpd K5/21/02» 3 LSA ASSOCIATES, INC. DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No_ 15419, ORANGE COUNTY, CALIFORNIA Table A: Hydrophytic Vegetation Category Code Probability Obligate Wetland OBL Almost always occurs in wetlands(estimated probability>99%) Facultative Wetland FACW Usually occurs in wetlands(estimated probability 67%D-99%D) Facultative FAC Equally likely to occur in wetlands and nonwetlands(estimated probability 34%-66%) Facultative Upland FACU Usually occurs in nonwetlands(estimated probability 67%D-99%) Obligate Upland UPL I Almost always occurs in nonwetlands(estimated probability>99%) To be considered hydrophytic,the species must have wetland indicator status, i.e.,be rated as OBL, FACW,or FAC(excluding FAC-). The delineation of hydrophytic vegetation is typically based on the three(five, if only one or two strata are present)most dominant species from each vegetative stratum(strata are considered separately);when more than 50 percent of these dominant species are hydrophytic(i.e.,FAC [excluding FAC-],FACW or OBL),the vegetation is considered hydrophytic. Recent Corps guidance(Corps of Engineers, 1992)provides that alternative ecologically based methods for determining dominant species are also acceptable,and suggests using methods described in the Federal Manual for Identifiing and Delineating Jurisdictional Wetlands(1989 Manual)(Federal Interagency Committee for Wetland Delineation, 1989)as appropriate alternatives to the vegetation methods included in the Corps of Engineers Wetlands Delineation Manual(1987 Manual) (Environmental Laboratory, 1987). In particular,the Corps recommends use of the"50/20"rule from the 1989 Manual for determining dominant species(Wetland Research and Technology Center, 1993). Under this method,dominant species are the most abundant species(when ranked in descending order of abundance and cumulatively totaled)that immediately exceed 50 percent of the total dominance measure for the stratum,plus any additional species comprising 20 percent or more of the total dominance measure for the stratum. Hydric Soils. Hydric soils are saturated or inundated long enough during the growing season to develop anaerobic conditions that favor growth and regeneration of hydrophytic vegetation. Soils are considered hydric when the National Technical Committee for Hydric Soils(NTCHS)criteria are met. Current criteria(as of October, 1992)are as follows: 1. All Histosols except Folists; or PASH0931\De1ineation\shea homes rev.wpd 05/21/02» 4 LSA ASSOCIATES. INC. DELINEATION OF WETLANDS SUBJECT TO U.S.ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419. ORANGE COUNTY. CALIFORNIA 2. Soils in Aquic suborders,Aquic subgroups,Albolls suborder, Salothids great group,Pell great groups of vertisols,Pachic subgroups,or Cumulic subgroups that are: A) Somewhat poorly drained and have a frequently' occurring water table at less than 0.5 foot from the surface for a significant period(usually more than two weeks)during the growing season;or B) Poorly drained or very poorly drained and have either: (1) A frequently occurring water table at less than 0.5 foot from the surface for a significant period(usually more than two weeks)during the growing season if textures are coarse sand,or fine sand in all layers within 20 inches;or (2) A frequently occurring water table at less than 1.0 foot from the surface for a significant period(usually more than two weeks)during the growing season if permeability is greater than 6.0 inches/hour in all layers within 20 inches; or (3) A frequently occurring water table at less than 1.5 feet from the surface for a significant period(usually more than two weeks)during the growing season if permeability is less than 6.0 inches/hour in all layers within 20 inches;or 3. Soils that are frequently ponded for long duration or very long duration'during the growing season;or 4. Soils that are frequently flooded for long duration or very long duration during the growing season. There are a number of indirect indicators that may signify the presence of hydric soils, including hydrogen sulfide generation,the presence of iron and manganese concretions,certain soil colors, gleying,and the presence of mottling. Generally,hydric soils are dark in color or may be gleyed (bluish, greenish,or grayish),resulting from soil development under anoxic(without oxygen) conditions. Bright mottles within an otherwise dark soil matrix indicate periodic saturation with intervening periods of soil aeration. Hydric indicators are particularly difficult to observe in sandy soils,which are often recently deposited soils of floodplains(entisols)and usually lack sufficient fines(clay and silt)and organic material to allow use of soil color as a reliable indicator of hydric conditions. Hydric soil indicators in sandy soils include accumulations of organic matter in the surface horizon,vertical streaking of subsurface horizons by organic matter,and organic pans. In some situations, it may be impossible to find any hydric soil indicators due to recent deposits of sandy soils. These are described as"Atypical ' The term"frequent"is defined by the NTCHS as more than 50 years out of 100 or more than 50 percent probability in any one year. 2 "Long duration"is defined by the NTCHS as a single event ranging from 7 to 30 days;"very long duration" is defined as a single event that lasts longer than 30 days. PASH0931\De1ineation\shea homes rev.%pd«5/21/02» 5 LSA ASSOCIATES. INC. DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419. ORANGE COUNTY. CALIFORNIA Situations" in the 1987 Manual,which prescribes use of the other two parameters(vegetation and hydrology)for wetland delineations when no hydric soils indicators can be found. Wetland Hydrology. Under natural conditions,development of hydrophytic vegetation and hydric soils is dependent on a third characteristic: wetland hydrology. Areas with wetland hydrology are those where the presence of water has an overriding influence on vegetation and soil characteristics due to anaerobic and reducing conditions,respectively(Environmental Laboratory, 1987). The wetland hydrology parameter is satisfied if the area is seasonally inundated or saturated to the surface for a consecutive number of days equal to 12.5 percent or more of the growing season' (Corps of Engineers, 1992). Areas saturated to the surface for less than five percent of the growing season do not meet the hydrology criterion. Areas saturated to the surface between 5.0 and 12.5 percent of the growing season may or may not meet the hydrology criterion; in these situations,other hydrology indicators must be considered, and the vegetation test should be critically reviewed(Corps of Engineers, 1991). Hydrology is often the most difficult criterion to measure in the field,due to seasonal and annual variations in water availability. Some of the indicators that are commonly used to identify wetland hydrology include visual observation of inundation or saturation,watermarks,recent sediment deposits, surface scour and oxidized root channels(rhizospheres)resulting from prolonged anaerobic conditions. Wetland Determination. Wetland delineations for Section 404 purposes must be done according to the 1987 Manual(Environmental Laboratory, 1987). This manual provides two different approaches to delineating wetlands(i.e.,routine and comprehensive),depending on the complexity of the site and whether there is a need for quantitative evaluation and extensive documentation. For the majority of wetland delineations,the routine on-site evaluation method is appropriate. When all three wetland criteria are present,the area being evaluated is determined to be a wetland. The Corps typically verifies the wetland delineation and makes the final determination as to what is or is not subject to its jurisdiction. California Coastal Commission The Commission,through provisions of the California Coastal Act, is empowered to issue Coastal Development Permits(CDP)for any project located within the Coastal Zone. The definition of wetlands,as defined in Section 30121 of the Coastal Act and Title 14 §13577 of the Commission's regulations, is distinctly different from the Corps'definition of wetlands. According to the Commission's regulations,wetlands are defined as"land where the water table is at,near,or above the land surface long enough to promote the formation of hydric soils or to support the growth of ' The growing season is defined as that portion of the year when the soil temperature at 19.7 inches below the ground surface is greater than biologic zero(5°C,41°F)(U.S.Department of Agriculture, 1975);this can be estimated from regional climatological data such as that provided in County soil surveys(Natural Resources Conservation Service, 1992). PASH0931\Delineation\shea homes rev.wpd K5/21/02N LSA ASSOCIATES. INC. DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419. ORANGE COUNTY. CALIFORNIA hydrophytes." Both definitions focus on three wetland criteria: hydrology, soils,and vegetation. However,while the Corps'definition requires positive indicators of all three criteria in delineating an area as wetlands,the Commission's definition is based on only two criteria: hydrology and either vegetation or soils(exceptions include certain areas that lack wetland soils and vegetation). METHODS Prior to any fieldwork,LSA reviewed a variety of pertinent technical documents, including previous biological and wetland/jurisdictional analyses of the study area and surrounding areas. The fieldwork for this evaluation was conducted by LSA biologists Jim Harrison,Leo Simone,and Julian Calabrese. A jurisdictional wetlands delineation was conducted of the study area according to the 1987 Manual. Preliminary reconnaissances surveys were conducted on September 2, 1999,and on November 24, 1999. LSA conducted more in-depth fieldwork between December, 1999,and May,2000. Additional follow-up fieldwork was conducted between December,2001 and March,2002. Duringa wetlands delineation,the extent and frequency of surface inundation and soil saturation near q Y the surface are the most reliable indicators of wetland hydrology. Therefore,LSA determined that it would be appropriate to have a series of shallow groundwater monitoring wells installed throughout the study area to better understand the hydrology on site. A total of 16 shallow groundwater monitoring wells was installed in early December, 1999(Figure 2). The specific location of each well was mapped using a global positioning system(GPS)unit. The design of the shallow monitoring wells allowed for groundwater elevations to be monitored near the surface. As shown on Figure 3,the monitoring wells were constructed of two inch diameter, partially perforated(i.e.,0.01 inch slot)PVC pipe that was permanently capped on one end and had a removable,threaded cap on the other end. Using a hand held auger,a vertical hole having a six to eight inch diameter was excavated to an approximate depth of five feet below grade. The permanently capped end of the PVC pipe was placed in the bottom of the hole,and the lower 4 to 4.5 feet were backfilled with quartz filter sand. The next five to six inches were backfilled with Bentonite chips to seal the hole and prevent any surface water from flowing directly into the monitoring wells. A metal vault with locking lid was installed at the top of the well to assist in the prevention of potential vandalism and tampering. LSA biologists recorded the groundwater elevations associated with these monitoring wells during the rainy seasons from December, 1999,to May,2000,and again from December,2001,to March, 2002. During this period,LSA conducted the monitoring approximately once a week during active periods of rainfall and approximately once every two weeks during drier periods. The actual data collected and the specific dates of the monitoring are shown in Appendix A. Based on the groundwater data collected during 1999/2000,LSA suspected that some of the monitoring wells closest to the Wintersburg Flood Control Channel(i.e.,wells 10, 13,and 14)may be tidal influenced. However,the groundwater data did not suggest tidal influence of other monitoring wells in the study area(e.g.,wells 2 and 5). On July 25,2000,an LSA biologist monitored the three wells(i.e.,wells 10, 13,and 14)located closest to the earthen berm that separates the Wintersburg Channel from the study area. The groundwater elevations associated with each of PASH093 I\Delineation\shea homes rev.wpd«5/21/020 7 AA, q*klf,�) f • 4721f AM (;,j I W, I"10� it P p 11 ,e. k f. A • 1Q jj xr y - — ' 4 4tSA M3 , 15 11 m O vR� jh t S.? , A t. QTV? 1 , ^ ... IK 7 y < . •tSr• 7,N . . l7 .P x Ftvi' , ­ � W f. 2 �,V /Qq . 7 >( Ok . LiSA-#4A 0­ O7N , l l. <4_�OA hI ' 'k%l It"I", kA 'C' t, j � '" NY % 1 _ 14 V we, 17r �J�w- (L45A" 111T7 kk LIA'I iSA4 N t. 't,�iu t A -4, V*7 4; Wi 40 Y >-13 4C L4 TN­�j ALS #9 �I •L' , . ?"J__ �I-1i ­ - I \. -7 d? r ........... rJ P.� 15 t ......40 plxv L W A ^IWAXW6,4p!'' -F-, ........ VT LS-1 #1 io 'tr 112 / +' �M ya�},ra rw x - ` 0LSQ Ala tale ' ;lOtSA#10 q,, LSA5. -0-1Z:5Fd JA "�� I 1.0, ­ 0 a8 W pLA NEP C TER. X ♦ V<il 44i OWN LEGEND A LSA Monitoring Well Locations pu Study Area Boundary Z4_ ,�' .. r r� ��, f S•1ii. ,f •` ...••�''� ...•• rT�41'�itr.:.. 1 /.1 •�, ,�rit�bti+r�+.r e " :� ' 4 1) O'L ....... Ef 7 J.'Base Map Source:Hunsaker&Associates.' II if- 5/15/02(SH093 1) • Figure 2 -P ftt Scale in Feet Parkside Estates Tentative Tract Xurnber 15419 LSD mmmmmm� 0 45 90 Wetland Study Area and Monitoring Well Locations 3 in.to 4 in. Deep Metal Vault with Locking Lid 2 in.Threaded Cap Grout Footing 3 in.to 4 in. Grade 9.A.sr �����Ev:rl.„NT3� � — 84'FiYmmEY@aEaCmmr's@atr �Weei �Wm$txWwc Wa -- = B$aWa aaIDBZEWaa50aa •a rxafzY�.r '.'A"; eY@mmaaEmma' 5 in.to 6 in. reZRwC sSBSnSa. Bentonite .aa a�Emma...m t Chip Seal :R . . Ar aaB4' _6 'fEfaf'3;v?,""•^" .:�':,�;y".`afEfa'f wafaf r� t?�� FQ@Ear•. +.rM.. :'t.0+ saf Ef 9froan f $ .L'Y` U>.�cu?btyR%% aon. Carol ;..CAM%fta y ?n . 'c.....r'; Maws . .lot. .+. lsfaf xros iaasSi afrea .$aecas '�2,?�'s�„ ++>xzzii Enrol samaa ,., .asaf rsiiki z.' zsx' ;5,.. iroxai .CRC NG ,,,t M+W'y:4 pYVSB2 MWaR . .. -re_ae mr.am tmmlle W1.2 Ni `t'`.;.�... 4ERSBi II3_aC ..`S"'YLS" !"t.:x C@foe ImBERW "vim: y.....',>ai.i nWBzwi Kslis im "2'a"''S`,afaaaf _ aWfas;xtik WaBm e R•- @fa-.Ea PZWCA kGR 3t �`.ana:� •K:. a#ate Rz Praa....+is�'s��"r.,+i w4x;�2 eaaaree aEwrB: Quartz Filter Sand tlif.E a!a#E! aw RAt:?�y - RWaCI... k �.`.10.4.9. mr.oa. RanANi two �..i .;�,yi�, fa@snc or" a� "_'s;: Esasaa 4 ft. -4.5 ft "W"x r _ . Arai au lrrc%azEsaa �`�'`' µ.�.... srBYni az ,•rr'a'`5. ;.i3 E$az%z aeg+Y.`,;M-Z�: .. 4i�:. WBaefY �rNE .ti? SC..S' u .,a fYBiaa^ .crass: ^ azaaN: aaE�' a$aaa$ - arRc '@IIaaaa Esa: f;g: sYE$az 6Ati� fSNZow IIa Maio PA:w@ v+%�w,���',a"•s'Y^r �yi a@a@a4 ilwi" f._m'.� — r. fYa$AY 0.01 in. Slot PVC Star 1@R41 as ZE �af a8a@ $oYi Mr4ma got Mnst =R—a' ......... @ataa@ Ira@a ++ Raawas sssaEft Sam yam as^si$ww3s' maa2 aCS 84Wa }` �Yre-1104 MacW.ax_ EaNB@Esamt PNR aaN@ QCWi (d_ly�a.r ^tV`,X+ fv wawai V.N. +PYfaw@_A'w. _ffiw@I twnmsl +aW! 'rema$AmAAa W}E4W WaWx "•@ +.$as aN wR_aws._rw rtl a. tsar •-aamaartmaaamtaEWt:a $.- 6 in. to 8 in. Diam. Augered Hole 5/15/02(SH0931) Figure 3 Parkside Estates Tentative Tract Number 15419 L Installation Detail of Shallow Monitoring Well LSA ASSOCIATES, INC. DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419, ORANGE COUNTY, CALIFORNIA the three wells were recorded three times at three hour intervals to see if there were any changes in the groundwater elevations. Areas of repeated inundation observed within the study area following storm events were mapped. In addition,to better understand the current condition of the study area and to gain some historic perspective of the wetlands in the vicinity,LSA examined several historic aerial photographs of the study area in order to note any previous inundation on site(Hunsaker&Associates Irvine,Inc., 1997). In addition, seasonal rainfall data for the study area were obtained from the County of Orange's gage at Station 170 in Los Alamitos. This was the nearest,most reliable rainfall data available in the vicinity of the study area. The rainfall data used in this delineation are provided in Appendix B. During brief,reconnaissance level surveys of the study area conducted by LSA biologists on September 2, 1999, and again on November 24, 1999,the vegetation conditions on site were examined. A more detailed analysis of the vegetation communities in the study area was conducted by LSA during an August 25,2000,site visit. The vegetation communities were mapped onto a 50 foot scale topographic base map of the study area. Habitat types were classified according to the dominant plant species present. On April 11,2002,LSA conducted a follow-up analysis of the vegetation communities and made changes to the previous mapping as warranted. The current distribution of these habitat types in the study area is shown on the Vegetation Map(Figure 4). The soils characteristics and composition in the study area were examined during the September 2, 1999,and August 25,2000,site visits. Indicators of hydric soils were noted when present. The historic aerial photographs were also used to evaluate the disturbances to the soils on site. RESULTS AND DISCUSSION - Historical and Current Site Conditions Historically,Bolsa Chica was part of a large,estuarine marsh complex. Activities beginning in the late 1800s significantly altered the area such that today,much of Bolsa Chica is cut off from tidal influence. Several wetland delineations have been conducted regarding the Bolsa Chica wetlands. In 1989,the Environmental Protection Agency(EPA), operating under a Special Case designation pursuant to a Memorandum of Agreement with the Corps,released its determination of the extent of federal wetlands at Bolsa Chica. The EPA prepared a wetland delineation in which it was determined that eight acres of the 45-acre Shea Homes property,located within the City of Huntington Beach, met the criteria for waters of the United States. However,none of the County parcel was included in the wetland determination. Subsequently,in 1992 the Corps determined that the eight acres in question were not jurisdictional wetlands due to their status as"prior converted croplands." As part of the California Department of Fish and Game's(CDFG)"Determination of the Status of Bolsa Chica Wetlands"(1981),the Shea Homes property—both the City and County parcels—was determined to be historically part of the Bolsa Chica wetland complex,but so severely degraded that it was no longer considered a functional wetland. PASH09310elineation\shea homes rev.wpd«5/21/02» 10 ♦ � 2 i� / �•y`A/� �' II � Z 2J 2f I �� / / /� • - rrr•r � O k X / I ✓/ ;I/ me � k �J 1, 44 k k � ae f� k .- k k O ©f.J ee .r•.--�-6A -03 k 4e 4 �? X1 k .•--r • r• • k a) O.J j .�� r•.�i-rr.•- - 6.0 0.3 k — ;:.•••r 6 e LEGEND Q Myoporum Shrubland Q Ruderal Grassland 0 Bassia Scrub Q Eucalyptus Woodland Sea-blite Scrub 0 Disturbed(Dirt Road) 0 Ruderal Herbaceous Q Pickleweed/Sea-blite Scrub L p�STR��T RNA Q Disturbed Saltgrass Base Map Source:Hunsaker&Associates TR� 5/14/02(SH0931) Figure 4 N Scale in Feet Parkside Estates Tentative Tract Number 1541g L S A --- 0 45 90 Vegetation Map LSA ASSOCIATES. INC. DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419. ORANGE COUNTY. CALIFORNIA The current disturbed condition of the Shea Homes property,particularly the study area,is attributed to a variety of past land use activities. The study area supports primarily ruderal vegetation,and in the past has been subject to illegal dumping of trash and debris,abandonment of vehicles,and off- highway vehicle degradation. Trespassing on the study area due to foot traffic,bicycling,and equestrian activities has been observed regularly. Corps Jurisdiction There are no streams or other drainages within the study area. Intertidal coastal salt marsh, associated with the Bolsa Chica Wetlands, is south and west of the study area. With the construction of the Wintersburg Channel,the study area has clearly been severed geographically from the Bolsa Chica wetlands. Several areas within the study area exhibited two or more of the Corps'wetland criteria. These are discussed in more detail below. Vegetation. The vegetation within the study area was greatly disturbed some time between September 2, 1999,and November 24, 1999;however,with the exception of a few foot trails extending across the site,vegetation had reestablished within the study area at the time of the August 25,2000, site visit. Specific plant species comprising the current vegetation communities, or habitat types,are identified in the following descriptions: Myoporum Shrubland is composed almost exclusively of clusters of the non-native shrub myoporum (Myoporum laetum). Myoporum is not recognized by the U.S.Army Corps of Engineers(Corps)as a hydrophyte,or wetland plant. Therefore,this would be considered an upland habitat type. Bassia Scrub is composed of a variety of herbaceous hydrophytes. Bassia Scrub is dominated by two wetland plant species,five-hook bassia(Bassia hyssopifolia)and alkali heath,and one upland plant species, small-flowered ice plant(Mesembryanthemum nodiflorum). Other common hydrophytes include shrubby sea-blite(Suaeda moquinii),western sea-purslane(Sesuvium verrucosum), and scattered individuals of common woody pickleweed. Although dominated by shrubby sea-blite,a wetland plant species, Sea-blite Scrub is also composed of other hydrophytes, including five-hook bassia, spearscale(Atriplex triangularis), alkali heath (Frankenia saliva),and some scattered common woody pickleweed. Ruderal Herbaceous is dominated primarily by upland ruderal forbs, including small-flowered ice plant,mallow(Malva sp.),Oriental sisymbrium(Sisymbrium orientate),Russian thistle(Salsola tragus),and common knotweed(Polygovum arenastrum). Five-hook bassia,a wetland plant species, is also a dominant plant species. Other scattered plants include castor bean(Ricinus communis), bristly ox-tongue(Picris echioides),wild radish(Raphanus sativus),Bermuda grass(Cynodon dactylon), and salt heliotrope(Heliotropium curassavicum). A few scattered individuals of common woody pickleweed have emerged in a small portion of this habitat type within the study area. PASH0931\Delineation\shea homes rev.wpd K5/21/02N 12 LSA ASSOCIATES. INC. DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419. ORANGE COUNTY. CALIFORNIA Disturbed Saltgrass,while composed entirely of herbaceous hydrophytes, is dominated by saltgrass (Distichlis spicata),with five-hook bassia and alkali weed(Cressa truxillensis)frequently interspersed. Ruderal Grassland is dominated primarily by upland ruderal grasses, including littleseed canary grass (Phalaris minor),bare barley(Hordeum murinum ssp. leporinum),and Bermuda grass. Nuttall's monolepis(Monolepis nuttalliana),a wetland plant species, is also a dominant plant species. Other scattered plants include Oriental sisymbrium,mallow, five-hook bassia,Russian thistle,and bristly ox-tongue. Eucalyptus Woodland is a highly disturbed and decrepit woodland composed almost exclusively of senescent eucalyptus trees(Eucalyptus sp.). This habitat type in the study area appears to have persisted for several decades. Pickleweed/Sea-blite Scrub occurs in areas that were previously dominated by shrubby sea-blite and various ruderal herbaceous plants;however,as observed on April 11,2002,these areas are now dominated by a mixture of common woody pickleweed, shrubby sea-blite,five-hook bassia,and alkali heath. Hydrophytic vegetation is prevalently associated with Pickleweed/Sea-blite Scrub in the study area. It is important to note that the vegetation classification types referred to in this delineation were based on the associated plant species and not on wetland functions. For instance,some of the Sea-blite Scrub and Pickleweed/Sea-blite Scrub may occur in jurisdictional wetlands,while other areas composed of these habitat types do not appear to be associated with wetlands as defined by either the Commission or the Corps. Therefore,the vegetation in these areas is not associated with functional wetlands. Clusters of hydrophytes are scattered throughout many of the vegetated areas within the study area. In some cases they are dominant components of habitat types(e.g.,Bassia Scrub, Sea-blite Scrub, and Pickleweed/Sea-blite Scrub). For instance,these areas on site are dominated primarily by shrubby sea-blite, common woody pickleweed, and/or five-hook bassia,all of which are hydrophytes. However, it should be noted that these hydrophytes are also quite weedy and often are associated with upland areas that do not meet the wetlands criteria. In addition,these plants are also halophytes, adapted for survival in highly saline conditions. Finally, in a highly disturbed condition such as the one that exists in the study area,it is possible that at least some of these opportunists have been inadvertently introduced into the site from surrounding areas and have adapted well to the disturbed conditions. Soils. In general,the soils within the study area consist of a fine,powdery silt on or near the surface with a heavy clay soil underneath. In the vicinity of monitoring wells 9, 10, 12, 13, 14, and 16, hydric soil indicators were evident. These indicators included dark(chroma of 1)clay soils,mottles, rhizospheres,and some gleying. In some cases.where sufficient soil saturation to support wetlands is lacking,the hydric soil indicators, as indicated above,may be relictual,or remnants,from a time prior to the construction of the Wintersburg Channel when the study area was directly connected to the Bolsa Chica Wetlands. These physical characteristics of hydric soils can persist for years,even PASH093Melineationlsheahomes rev.wpd E(5/21/02)) 13 LSA ASSOCIATES. INC. DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419. ORANGE COUNTY. CALIFORNIA decades,following the elimination of wetlands hydrology. When the hydrologic regime has been artificially altered,such that the groundwater or surface water is no longer sufficient to support a prevalence of hydrophytic vegetation,drained hydric soils are the result. Another likely possibility is that the soils exhibiting hydric indicators were deposited on site,and were then intermixed with the native soil during past ground disturbance activities. Hydrology. It is clear from the discussions of vegetation and soils that hydrology is the key criterion for understanding where the potential jurisdictional wetlands occur. The study area is geographically isolated from the Bolsa Chica wetlands complex in the area,and initially appeared to be hydrologically isolated as well. Based on these observations,the hydrology associated with the study area was believed to be driven by rainfall as opposed to tidal influence and fluctuations in the groundwater. At the beginning of groundwater monitoring,LSA discovered that groundwater elevations ranged from below five feet from the surface for over half of the monitoring wells(nine monitoring we lls)to 1.8 feet below the surface for well 13, which consistently had the shallowest groundwater depths. Substantial rainfall starting in mid-February,2000,caused groundwater to rise from two to over four feet on average by March 1,2000,as shown on Figure 5. Appendix A contains the groundwater data collected during 1999-2000 and 2001-2002. The groundwater data collected for part of 2001-2002 did not provide any new results that deviated from the data collected in 1999-2000. Also,2001-2002 turned out to be a very dry rainy season and was obviously not going to be near a normal rainfall year. Therefore, although the data are provided in Appendix A,LSA did not incorporate the data into the analysis of this report. Typical of Mediterranean climates,Bolsa Chica receives limited rainfall,almost all of which occurs during winter. Due to its close proximity to the Bolsa Chica wetlands,the rain gage located at Huntington Beach Fire Station No.45 would normally be used to collect rainfall data for the study area. However,much of the current rainfall data from this station are either incomplete or erroneous. Consequently,data for the 1999-2000 rainfall season were compiled from the Los Alamitos Station No. 170,which was the next nearest location with the most reliable data. Upon comparison of the two locations,Los Alamitos Station No. 170 and Huntington Beach Fire Station No.45 are believed to be essentially analogous with respect to climate. LSA prepared a graph of normal rainfall for the study area based on cumulative median rainfall totals for the preceding 30 day period(Figure 6). The 30-day cumulative median is used because changes in groundwater elevations occur gradually over a period of time following rainfall events;that is to say,single rainfall events do not typically result in immediate changes in groundwater elevations. These data were derived from the complete 42 year period of rainfall records for the Los Alamitos gage(Appendix B). LSA used median values,rather than means,to construct the graph. Medians are less influenced by extreme events,which should not be the basis for evaluating wetland hydrology. Rather than define normal conditions based on a percentage of the mean or median, normal conditions were described based on frequency and intensity of rainy periods. The graph of normal rainfall is shown in Figure 6. Rainfall for the 1999-00 season(6.49 inches)was within 25.5 percent of the median of 8.71 inches for the study area. However,the 1999-00 rainy season was clearly drier than normal. PASH0931\Delineation\shea homes rev.wpd(t5/21/02)J 14 1 d W c w< 0 0 m d ' LL C L m a) i0 k s 12I17/ 12/30/ 1/W00 1/20/0 1/260 2/1/00 2/1810 ZI25l0 3/10/0 3/17/0 324/0 3131Po IGW �� 4P10/0 �, 99 99 0 0 0 0 0 0 0 0 0 We9 1 4.5 ---- tWe92 4.90 4.55 ass AW 4.55 4.W 4.W 4.WAW AW WON - -- --- --- -_Xt WON 5 4.15 4.4 4.50 4.70 4.90 4.85 --*--WON 6 _ +Well7 - -_ 0.00 0.10 -2.45 025 4.75 Well B 1 4.95 4.35 4.65 -4.9 4.90 4.85 -Well9 395 4.10 4.05 [-4.10 3.&5 -3.90 315 0.00 -2.45 0.10 -240 -2.60 -2.60 -2.85 -256 -2.95 Well 10 -2.35 -2.45 -2.405 -1.90 -2.05 -0.90 -0.40 -1.00 -0.80 -1.15 -1.55 -1.05 -1.75 -1.30 -1.65 _W Well 11 4.85 420 -&90 -4 65 355 -4 30 -4 65 -4 85 -4 95 4.55 WON 12 4.9D -290 4.00 -3.95 375 370 -3.00 -1.35 -215 -1.40 -2.10 -235 4_35 -7-65 -2.30 -2-75 * WON 13 -1.80 -1.90 -1.90 -2-00 -1.40 -1.50 -0.40 0.00 0.00 -0.25 -OM -0.% -0.45 -1.15 -0.60 -1.10 AIL-Well 14 3.05 3.20 -&05 3.10 -2.55 -2.70 .1.95 -0.40 -1.2D -0.40 -12D -1.55 -1.55 -1.90 -1.50 -2.00 We915 -4-W 4.90 425 -120 -2.45 -1.0D -2.10 -2.60 -2.90 3.15 -2115 3.50 We916 325 3.35 3.30 3.30 -290 -2.80 -2.10 -0.60 1 -1.35 -0.75 -1.30 .1.60 .1.65 -1.95 -1.65 -2.10 We 5/15/02(SH0931) Figure 5 LA Parkside Estates Tentative Tract Number 15419 J f\ 1999/2000 Groundwater Elevations Normal Rainfall: Los Alamitos Based on 30-Day Cumulative Median -42 Year Period of Record 4.00 3.50 - 3.00 -- -- d c 2.50 v Historic 30-Day Median 2.00 A- A ----- 1.50 v 1.00 Median Rainfall : 8.71" 0.50 0.00 .,n 1 8 15 22 29 6 13 20 27 3 10 17 24 31 7 14 21 28 6 13 20 27 3 10 17 24 1 8 15 22 29 Nov Dec Jan Feb Mar Apr May 5/17/02(SH0931) Figure 6 Parkside Estates Tentative Tract Number 15419 LS A Normal Rainfall for Study Area LSA ASSOCIATES. INC. DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419. ORANGE COUNTY. CALIFORNIA As noted above, 1999-00 was a below normal rainfall year,with rainfall representing approximately 75.5 percent of normal. Even with the below normal rainfall, some inundation was observed in low- lying areas on site following the storms of February and March,2000. Based on these field observations,these low-lying areas are expected to experience inundation during periods of extended rainfall in most years. However,the surface ponding tends to dissipate rather quickly at the end of these rainfall events(generally within one week),and this surface ponding does not always correlate to groundwater depths at all locations within the study area. For instance,monitoring well 16 never registered groundwater any closer than 0.6 feet from the surface,yet surface ponding was observed immediately adjacent to the well. Therefore,during most years the areas of surface ponding described above may not meet the Corps' wetland hydrology criterion. A comparison of rainfall and groundwater well data for the 1999-00 season is presented in Figure 7. As indicated on Figure 7,groundwater levels respond rapidly and dramatically to precipitation events,with groundwater elevations rising one foot or more within a few days after heavy rains. Similarly,groundwater elevations dropped during extended dry periods,but at a much slower rate,as shown on Figure 7. LSA used the data from the 1999-00 season to evaluate hydrologic conditions for this evaluation. Data collected by LSA show that the rise and fall of groundwater are directly related to storm intensity. The frequency and intensity of these storm events appears to ultimately determine whether the wetland hydrology criterion is met in most years. Although 1999-2000 was a drier than normal rainfall year,the rainfall that occurred between February 18,2000,and April 3,2000,was above normal for that period(Figure 8). Figure 8 shows the relationship between the 30-day cumulative medians from that period compared and the 30-day cumulative medians over the entire 42 year period for which there are rainfall data. The hydrologic regime associated with the study area is primarily a function of surface water originating from rainfall. However,even though the study area was initially suspected of being hydrologically isolated from the nearby wetlands of Bolsa Chica,the groundwater data collected during this analysis suggest that at least a portion of the study area,closest to the dike associated with the Wintersburg Channel,may be subject to tidal influence. On July 25,2000,an LSA biologist monitored the three wells(i.e.,wells 10, 13,and 14)located closest to the earthen berm that separates the Wintersburg Channel from the study area. As stated in the Methods Section,the groundwater elevations associated with each of the three wells was recorded three times at three hour intervals to see if there were any changes in the groundwater elevations. The groundwater elevation for well 10 dropped from 1.8 feet(feet below the surface)at 7:15 a.m.to 1.9 feet at 10:12 a.m.to 2.1 feet at 1:05 p.m. The groundwater elevation for well 13 remained at 1.3 feet below the surface from 7:25 a.m.to 10:17 a.m.,but dropped to 1.55 feet at 1:09 p.m. Similarly,the groundwater elevation for well 14 remained at 2.9 feet below the surface from 7:18 a.m.to 10:21 a.m.,but dropped to 3.1 feet at 1:14 p.m. Since there was no surface hydrology to influence the data,LSA concluded that the areas associated with these three well locations immediately adjacent to the dike for the Wintersburg Channel are slightly tidally influenced. The growing season in this part of Orange County is essentially year-round. Therefore, soils would need to be saturated within 12 inches of the surface for a minimum of five percent of the growing season,or about 18 consecutive days, in order to satisfy the wetland hydrology criterion. A definitive determination would require saturation for 12.5 percent of the growing season,or about 45 PASH093 I\Delineation\shea homes rev.wpd K5/21/02» 17 7i Water Depth (in Feet) Below Ground Surface Rainfall (in Inches) 0 N X L 6 W N N -• O O O 4n <l� N O Vt O O O O O O O O O O b O O S O S O O O O tD Oo J T (n A O N O 12/17/99 - 12/17/99 12/24/99 12/30/99 12/31/99 115100 1/7/00 �t 1120100-1 1/14/00 p 1/26/00 1/21/00 ?' n 2/1/00 �p 1128100 214100 b � a 2/18/00 2/11/00 O 2/25/00 m <, 2/18/00 Cn 313100 C PL 3/10/00 2125100 a W ti 3117100 J 313100 C O 3 M 3/24/00 110100 G- 3117100 3 3124100 /31/00 N r" 4/7/00 '� 3131100 �- c 417100 0 4/20/00 4114100 M c' A 4121100 a 5/3/00 S �y M* 4128100 OCD O1(► p (a Q Normal Rainfall vs. 1999-2000 Season: Los Alamitos Based on 30-Day Cumulative Median -42 Year Period of Record 5.00 4.50 ......--...._.........-.........................._.._ _ Historic 30-Day Median ------1999-2000 30-Day Median 4.00 --- 3.50 -_- '-"�- 3.00 2.50 Feb. 18 2.00 -- -- E Median Rainfall: 8.71" Apr. 3 v -� V 1.50 1.00 -- 0.50 0.00r"'I:f L 1 8 15 22 29 6 13 20 27 3 10 17 24 31 7 14 21 28 6 13 20 27 3 10 17 24 1 8 15 22 29 Nov Dec Jan Feb Mar Apr May 5/15/02(SH0931) Figure A Parkside Estates Tentative Tract Number 15419 L S 1999/2000 Rainfall for Study Area L S A ASSOCIATES. INC. DELINEATION OF WETLANDS SUBJECT TO U.S.ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419. ORANGE COUNTY. CALIFORNIA consecutive days. Therefore areas that are inundated or saturated to the surface for 45 or more consecutive days in most years will meet the Corps' wetland hydrology criterion,and areas that are inundated or saturated to the surface for 18 to 44 consecutive days in most years may or may not meet the wetland hydrology criterion. Within the study area,six of the monitoring wells had groundwater that reached within one foot of the ground surface during the 1999-2000 rainfall season. However,only two of the monitoring wells had groundwater within one foot of the surface for at least 18 consecutive days(approximately 27 days for well 10, and approximately 54 days for well 13). During this portion of the rainy season, only four other wells(wells 7,9, 14,and 16)registered groundwater within one foot of the surface. The data from monitoring well 7 were disregarded, since the well location is associated with a dirt road where compacted soils and road ruts artificially influence the results. Monitoring well 14 indicated saturation within 0.5 feet of the surface on two occasions following substantial rainfall events;however,despite the above normal rainfall during this relatively brief period,this location never became inundated,and the groundwater levels quickly dropped to below one foot in less than a week. Monitoring wells 9 and 16 responded identically to well 14 except that areas immediately adjacent to wells 9 and 16 became inundated for a brief period(less than one week). Therefore,based on total rainfall and frequency of rainfall events during February and March, it is reasonable to conclude that most of the study area,with the exception of the area around monitoring wells 10 and 13,does not experience inundation or saturation near the surface for 18 consecutive days in most years. Commission Jurisdiction According to Section 13577(b)of the California Coastal Commission Administrative Regulations, wetlands are defined as"lands where the water table is at,near,or above the land surface long enough to promote the formation of hydric soils or to support the growth of hydrophytes." Vegetation. The prevalence of hydrophytes does not in and of itself constitute a wetland. Vegetation should be merely one parameter in a multi parameter definition of wetlands. While g Y P P abundantly distributed about the lower elevations in the study area,many of the hydrophytes(e.g., common woody pickleweed,five-hook bassia, saltgrass, shrubby sea-blite)present on site are also halophytes and,therefore,are frequently associated with saline soils irrespective of the existence of saturated or inundated soil conditions. That is to say,the presence of certain hydrophytes may be attributed to the soil conditions(i.e.,high salinity)rather than to the current hydrologic regime. In particular,those plants classified as hydrophytes that occur at higher elevations,where wetland hydrology appears to be lacking, are more likely to be present as a result of the soils. Therefore, any wetlands delineation should include a specific evaluation of the hydrological re ime. Pg Soils. Hydric soil indicators were observed by LSA in the vicinity of monitoring wells 9, 10, 12, 13, 14,and 16. It does not necessarily follow that, simply because hydric soil indicators are present, sufficient hydrology exists to support the formation of hydric soils. These hydric soil indicators PASH09310elineationlshea homes rev.wpd F(5/21/02)) 20 LSA ASSOCIATES. INC. DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419. ORANGE COUNTY. CALIFORNIA could be relictual and the result of historical wetland hydrologic conditions,or the indicators may be associated with soil imported to the site from another location where wetland hydrologic conditions existed. Hydrology. The Commission does not identify specific wetland hydrology indicators such as used by the Corps. However,the Corps' hydrology criterion is generally a reasonable and consistent approach in evaluating when"the water table is at,near,or above the land surface." Of course,the Commission may elect to interpret the data and conclusions differently. Based on LSA observations, it does appear that once the top layer of soil(i.e.,"A"Horizon)is saturated,surface water originating from rainfall does pond in low-1 Ming areas of the study area following prolonged and/or frequent rainfall events. However,theTtirface ponding tends to dissipate rather quickly at the end of these rainfall events(i.e.,generally within one week). During most years, these areas of periodic surface ponding,as described above,simply do not remain inundated or saturated near the surface long enough to meet the Corps' wetland hydrology criterion;however, these areas may satisfy the Commission's definitions of wetlands in areas where hydrophytic vegetation is dominant. Also,this periodic surface ponding does not always correlate to groundwater depths at all locations within the study area,and could signify top down saturation,or a perched water table. CONCLUSIONS Potential Corps Jurisdiction. LSA found that generally only the areas corresponding to the lowest elevations within the study area could potentially meet the wetland hydrology criterion. For most of the study area,groundwater simply does not rise high enough to meet the criterion. Although the 1999-2000 rainy season as a whole was below normal with regard to rainfall,the period from February 18,2000,to April 3,2000,was above normal for rainfall. It is reasonable to conclude that, if an area did not satisfy the wetland hydrology criterion during this period of time, marked by above normal rainfall,then that area is not likely to ever meet the wetland hydrology criterion. Therefore, LSA determined that only the areas corresponding to and immediately surrounding monitoring wells 10 and 13 are satisfying the wetland hydrology criterion. These areas are also associated with a prevalence of hydrophytic vegetation. Furthermore,while it is uncertain whether the hydric soil indicators that are present are relictual or imported with soil from some other location,we will assume hydric soils are actually present given the apparent presence of wetland hydrology and hydrophytic vegetation. Figure 9 shows the location of potential Corps jurisdictional wetlands. A total of 0.30 acre of potential Corps jurisdiction occurs within the study area. Potential Commission Jurisdiction. If any area is determined to meet all three wetland criteria per the Corps' 1987 Manual,then it stands to reason that those areas would also satisfy the Commission's definition of wetlands. Therefore,the area that is subject to potential Corps jurisdiction,as stated above and as shown on Figure 9, is also subject to potential Commission jurisdiction. PASH0931Melineation\shea homes rev.wpd K5/21/02N 21 - .,,r '` ,<� At a Y.r� a s ,7 S 4 r s r i�- f tp�f ^->•, r�r ! y f��' �f... ry�j .1,..'�.•.kst ti r` n° t✓. I�'�•Fa { r > �r „1 5 ?' ' r i tr ? M.. if!`}f,,.t 77t. Wtk `ci^rf`'`" ' !' ++r mot' ' r��:� � f �•. k,, ^j}j i GF fi'�;`'`14^, �v- ':R,3. Y t' r _ ! y r i' tx.N,ry "`i inr in k,{,, ♦,. ( 7r%.. ' ,�� 3j '_ �•(• .L..a � :} F}`4 �' `F �., Y.:4' i --,/ •Iw x r:� 1 r r.S 1 x 1� 7 t ✓ .33if.. �+�,f .� +.! rl >rtti 3'•{.�. .n,' a°,- .iw�I A..w.M iZ�fai .1"`"' •' 7ifl.t c. I,i,:t 2 4 1 f 7 f! �.+ FY r h ,,jtf ri •3'S'r` f a ;+'?`aS ��Fr`.•' ��c I '.�±v rS� � '!•.,t•!'b:, P •,! -.y,.,.,-._,,..+r � I ;i ..Yr,t ... t'y.�Sd ; •'rfr�" f s<`'f'<:^''� r:"r 'e eft 127^?t�,i i 7� ' .�.r' S>t A, }�f`t .'a• .,, t et i u t. •""`sY r.r rr.wt7..5•i"•,+'! •.fa, 3Y .x._�'t jf,Iln ! �.`ti jti:�,,.n•r' Y'r„^1 'M' �'. ::Y` � 7� ���_},,,� r, 7= .:t•,rx..t�.+"�wr.at'n���,a:F'A'.< N, .I„`'db+,> tt: ^-✓ d 'i. ,-ln i l• .F t.. ,- ' �l n; °`'. 1 .J...{'t k r}``.... 5." 7.a t , Y. '✓,y+ •r!. ,"p�;,, !,{'' 17 Y�- .;� ,✓. •yfpf 1:i rt t11 R He, rm �+ :},� :� i. �ly�-r� ''.h Y.?,.t✓d' ✓ •r;Pr }- f>rr'"II vR ... 1 ' �'.1.78 „' ,1t �..'. 1 y �gty' ��vzir' r .r'j>i 1 s� .'�fl}.�I,.lt�, ! f!� .,� it 7 r,,. '±'Ak 1 }_ 5,.. 11 I { { a.' ,•t ur 'i , ��>{. JY; �r.t•trrr' t .! �✓: ......�„ ._.t KiY S-::"�. .iA {t„y,C ', >, ,+rti< 2, t r` :Fs�,>" u ,>!t♦.f f •Ks t ^t t rav e{- a "L Sari Ss.a f t y ? iar }�^£ p ,� / I✓{ y1 c9 « 1 r 7) 5 r t SN fn: r S'r,i Y !;I�Fi s f; i / AL SA' x"•.'ST;.j r" '4 1 • ^4 TC S v4. ✓ ✓ t . a ay.,. max, i, 'P. !•, '4 r 71 •t,>r'i/ •_• ••t �, !• ♦•d Sj < r ♦ f i j Y}. {>d,.r t tr ;.>•.•r ,: "��. t ` r I ' .T +< •? ,. tx ( t r� n7 r flays re Is ri /,' , a '' t t fi x!F d' "Q I, t F G-., z t •';t "' i + 1 7 r {-0�,��i- rt-,,� i�I;�v P✓:��r:, r�...;t£��"'-�•�iT tr�r t�r��°'�4•afi7�cr I�ysit K��y�t.`�"i f° Yf .iP'f!:�Jjt,1•�. �1 :.pry rt ` •.+' ly ,,,•,'., "}y sr•w, ,k ix,�.' k' Y..x` p , e r ! ,t..Sr. ?1 1 I1 y �i. �:• '7 ys• A nt2�r '� , ac / .',>. 4 r1 ,: +r •rr'n :R�j \ } x,.t Trt� C <,�. ,r�,r ,, � ,. ,+ t+t"r �v ♦x- ,,,i•.. ... 'e,,•,,✓ .rd -J" c% ,� 4. 's r- c_� .,a } ,..t, i ✓r ..ar rq,�,f.: 4 rr"„•01 f! r�J♦,'.'`. '`,'µ S ::,".�{�c�'ri"ts.',.,�?.rC>,�'l�fi�Rt'�.Y•1,�,.✓.,-,.•t „r,• ra9�•'�",=r'+ ,.A'�I .sue+.... �.3fl :�/'t�.`) .� J(!.'3:p �` ..5.'...ac;1: i•,?. f Y�f% + v t}._:) ..'�. - -.�4 "° *s1t 7Y5 - 7r<.<,,;, 6-,.,- r. ry�>Y �3t�r•'.. kt w ,1„ +'f.Y (.7rfT; r'.:y:.r+,�l ,•h r:`"";;•K ' t ,�{ 42. ~'t,. R.., rS t r> tt `Y at'i.e ., .x, .r.t• ''' ♦♦ ��»>�"� ;,�... 4 !r'� Srr't.;n..w 0/r �. '�•r .t}.. '� Yrr�.✓ �('{ � yn�•r '.• r` ,.,,` i� .� � '•� ��( Sw p•cr s, .,. m..,.•, �(,:.,.�� y.t t.. t t,a w�r� t F`` i;,, i �tr• :,1 e, c. • "'� TtT�,„�i;y�.Y.'F.,r+,'`/rrr '!Y`Y r >•"" ' .,t•,,. -�G,. ♦ .l �•q' ,, .. ;-''1.1c.ti 'c,','Y @'. r..,✓. (,•.` '1i t"�..r r':'.: .1 . A r...• ',#�w� 4ru W.�� S � ✓e.�,'f �'� Yr. ♦ .r,,, .f 2 „•,„ Yi` �Jt #. ♦ .�-:� I"7,W� ��r•� �.,2) , ^1 j.• 1 ',1`� �w'_,.eT$• !. 1. }}'�.t�,`'Zi1,rtr{ .f..•L�, .lrl`',�,✓..f'r'"`'f'`." {d '�"a'•�♦I.,ir �'�`rx• `' � ��ef'y t '\ j'.a•` u '� Zcv.ye � x,. •�).,.�\l.f' •.. , .{,f^5'4.te,R�rltyf�.<�* ::WSJ,,,,%'fr,�.�" CZfi ♦Y� �^ `''+t- `Ike=.;L&-+%`/i L.3r' 'S,',,, 7 •<:.tt .y,�•�,;. ,� .a•;1,'`'..;,- ,.�-,� .><f�,a :�tg:,. ~y <, 4a, ,r ._- .,r:,w, q" !•,. ;I�. , �.:c . 5.2, °" ,{%` + yxxf ��3 .` 1., ,. yu ?ate ^ ^bad ,,. tt 'Zni� } I 'tvf..}'"�` � :• ... s+° '" T t r lvi ;� '�'Y-:3 r,•; ,j ',.� I e? M "1 Y•:t• f i 51...yy {fit ��` Fut. _ (''`� ', .� 1 y Y5' •i:.. ~ `1k `•�. y r' ".} 7 Fn'. ,f �fL a rK t ' �7`>: ? < r ts a r � t Y'l.c� � ` .3' •, ."'`•,. �.R 9 �YY ra�"' ,r t 11, .T.... +`t`1Y'r dt}.•�s•' I, �,._,.vs;,�X*..y'' . '- k1' �`` ', � r•.. � - ,f'' 3w�l,y 1 n.'S. 2 �,., �,.yf F.•,l +-.y�.. �,,t'r%''S� ��, ,'��+;'' � � r s r r x I 'R} �•�. �.fjj�< t .� J".....• � � t y, =Y., 1.�;:}� 7' �;. 1^ti J' ,,,yi-• r t� .3- ' N .¢ , .C �+a�, J` r "V� i`'. W k"`� >-S' '�•'� '4.�;^...:• w�v ,;f�^..a4 r ;`Yw.......� II `f +"•' .. 't,}�„%•'z., `�' - ••1,..•t. 'dy'. �.✓..✓��A'�v'" §•,J`g w,r ,,^f '`i -i''•j Y F 'tb�.', r' ''':. �} t y„!}'L rrtY+�''� ,;r?t; /, >. '' �/' Ui.9Q ,•1;` Yh\•>• u, s 1 ,.w�n�i �a�,,. ..�,�.;� �fr6' % ! SsTt'.,. t, .1..-• ', 1 + � i ,.,.....,,,, •'; '� f 0 >'! . 'lc .r .1✓ 5`"jf-- N , A t y.....,.., ,� S ,,•w;,•-' r�,Y� ',,,. M*• I1 ? j� "ir .I:JAX �''Sc�,"�ii'`r`` .•+'�r..'"'`' ,�. „^"' j 9. ,,.:,•rn �"•,..... - ""`•',e�° +J''' +'%""�,r*,rr'�Zt+` !✓', ,� .i t+?\ ,y LS .�`�.f1 C3F ,•�-.' r<t`Y�, '-`. j f,+' t17` ,r,-..•... 1j�� ,�•; ... 3,,. d; c <"y ''� f,,e,',{�_',/y,a r"fw.w ,{ Ay- ✓'" 1 4 7 ; •'r, �j �"�..r.., ...r;,t7,.�`R^ .) �'� `it"�...1<' ttTy1 J i i4.75 .. : tra�,Pr'•,"^.''rr "'f+ tL-..�.,{ t ((��i(', >7" "�%� �ry � c.. I `•� :,t,t 1 { 4 ;�, y"•Ht .a,,. �! / �,t"Y` t. ::> tft_h���; A# ..jarz �'iY• 1 , < xt"rcr j •' 'i l,S:` ,.,,� 't',• '8' , ,., t '{, #• "r ' '1R ! + . y.' Potential tOmmiss�on.. �' tm>t•f +,112. ..., ,.. � ,•.-Ica,.. .; ...s 1, a3 !` (Sa#4 Y... �'l ,y Y �• .5 �t. 1'v y �...-. •err'.• j '{N tjpn S Qn�• `'•• •-•,� 0.�$ ,,.,;.1«' { •r �...•��.��5."]•' .•. „♦y. "�.•.,»-•+'" .rv`{ri'v��+ , '•G`��tt ✓ I .7, � J k� �> 'i. � .... « ! "{• '"'j .>'� iSti(J nq�•� ,'`}r^,f .j�..a;�t�tk'g ',:2"jhi'.�+r�'�"«.� � 1t.�''�' tis; ii ��;� �1 K�cs� tiq;y . i"'I;� jrp:F d:s 1 y �....... �_ fJ tl �^ :,• .. �s y r x7, r ♦w ^N t � ��}il �.- t` �' +,6-=°'/ f'` <• t.i;r':t� .:•� .,,t,,,• "�'�•.. 1„3 f `�'!.: ;� ti♦�,•.•^' it ,. ;Y.t �, - {"�-t t..,! ��' 1• $P ,WA#Vf V t r 3;-1 j y;< �:r�.:•.A� 1�' ;:��{ ` ,�;.♦ram .r^`. .:,v' _ y ��y>�'•Ned+"a+>y�jc�>�''v r ✓ 31. ��, _'v )•. •l� 1. �as, .r. t 3' �••••'+•'r 'r ". t f v!♦ a '•'• :.>• ."'.�„ r,ti. fJ �f ♦ ' : . 7 ••fit x * .rti rt�}3�0i,y +, �3^�<.. Nt'' •4, i 0111 , . f•l•r L A' . 1 t +pr�:' irM� + 't'.-"+t� "gird' ••.' c+as ! - t,� e LS•i IYi' rr,r•��: '4-`.:•r• �T 'd+.yr xaty ^f i.1H# , J�.� ••+' ;;;. 11fi , ,•.y♦/ "i': y 'X t �•' t.Sq 1' ;r:r;r'r.r r ,.•� a' dh „ „'. w[••" .r ¢ q si?7 tr t ` ., t1,3j� .�;'' ti::?ti:•.:•• r x rr ire >;,. z.t w A c LEGEND r!'� ti:•rL'•••' " i j i a wi ` v 'a ,.;. Area of potential)uTisdictional Wetlands at y t J �t: iA tttidF ti BasedonMonitoringWeffs { �}.r. •r•r•r yi <a{ 'i't JY+o H d.�. ', r.: �� I`'•w•• •,••. ry+ ,,�rFS;Y�^ ict " {ye,, pondingBused rti� Areas of Surface f` '�• ; "S. 1 1l ti•4•w:w:ti r♦ .�i � .. ,r•,ry �. .� .`�"�,'� 7 .vF.sJt rho 3F� � onVisual Observations t� ij r r r r ✓ fl�ci 1 ram i�wa locations 4 Y i r 7' '''� •r 'Wh FC w a a, g Well N{onitotin #�6 f$ y .MT!lli ��.! ,a x¢ h ? 'w,t• k r Y''f`. jSA tttA. i} : ? r"` ,�1 r Y y n ,.z •r i rs w��Anf�i t .... Study Area Boundary f r . ,J �� ,:�•-; � •�C� r�8ttomm�ssion .,. ♦. a y •>f.._ ✓i./( ''r'.r `n. ""•' -.w`; PotenfialltOlP` T�v, f� '�i r:7r�,+wY�. ."` '�".' gyp^• �>Sx�atY ,�+„ WYt�`"'- •••'i r, ,1 yv L Y • l� .,s. n a.e•''rr r?,.f 4."'�""��".R �e,<^:.�G•'x" rt`•'ate t'N�tG1rt°"�' .! .�^ � wfit-�'i'I � ,6 ✓ :•' r�•+ ;""}�♦♦ � p e...r �, � •R7 �,x„,�,�r" ,,, },,,,.-t „ ..•pjr r - k.t•" '1�„tYyl 7�+.•"' a i .� �rr y�!✓ ✓.,>:^r~" + Id ...•a.r*My �`•;;:,'3' ,.f•'•".a,�R�.'f�yH:S�� .1 ,,,».."""•' �� i(�rj 3'i"t. ,_r �_ ,;.t5t .3 �, kyRA .• Figure 1 Y«Y j`•Mnrw' ;�� oax, v� Ir`` t( 7 Base Map Source:Hunsaker&Associates.,i, (",L 11l22loo(Sfi0931) Parkside Estates Tentatiae Tract Number 15¢r9 N , potential jurisdictional Wetlan s Scale in Feet fia45 -° V LSA ASSOCIATES. INC. DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419. ORANGE COUNTY. CALIFORNIA While two small areas(one near well 16 and the other near well 9)do become inundated for short durations following a storm event,they do not remain inundated,or even saturated near the surface, ' However, i iodic inundation and long enough to meet the Corps wetland hydrology criterion. this pen soil saturation may be of sufficient duration to satisfy the Commission's wetland definition, subject to the Commission's discretion. Potential Commission jurisdiction within the study area would include two small cross-hatched polygons(0.03 acre each)where periodic inundation occurs in addition to the 0.30 acre area identified above as potential Corps jurisdiction. Therefore,a total of 0.36 acre of potential Commission jurisdiction occurs within the study area,as shown on Figure 9. PASH0931\Delineation\shea homes rev.wpd Et5/21/02» 23 LSA ASSOCIATES. INC. DELINEATION OF WETLANDS SUBJECT TO U.S.ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419, ORANGE COUNTY, CALIFORNIA REFERENCES Bilhorn,T.W. 1987. Appendix E to Determination of Waters of the United States, including wetlands,at Bolsa Chica,California: Observation well time series. Prepared for the Signal Bolsa Corporation,Irvine,CA. 1986a. Seasonal variations in the extent of ponded surface water in the Bolsa Chica lowland,Orange County,California. Prepared for the Signal Bolsa Corporation,Irvine,CA. 1986b. Shallow groundwater system of the Bolsa Chica lowland,Orange County, California. Prepared for the Signal Bolsa Corporation,Irvine,CA. 1986c. Rainfall,evaporation and surface water drainage in the Bolsa Chica lowland, Orange County,California. Prepared for the Signal Bolsa Corporation,Irvine,CA. Corps of Engineers. 1992. CECW-OR Memorandum: Clarification and interpretation of the 1987 manual. . 1991. CECW-OR Memorandum: Questions and answers on the 1987 manual. Dillingham Corporation. 1971. An environmental evaluation of the Bolsa Chica area. Prepared for Signal Properties,Inc. 3 vol. Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. U.S.Army Engineer Waterways Experiment Station,Vicksburg,MS. Federal Interagency Committee for Wetland Delineation. 1989. Federal Manual for Identifying and Delineating Jurisdictional Wetlands. U.S.Army Corps of Engineers,U.S.Environmental Protection Agency,U.S.Fish and Wildlife Service,and U.S.D.A. Soil Conservation Service, Washington,D.C. Cooperative Technical publication. 76 pp.plus appendices. Frank Hovore&Associates. 1997. Biological Resources Assessment, Shea Homes Property,Project #6N153.01,Huntington Beach,California. Prepared for Shea Homes, Walnut,CA. Hickman,J.C.,ed. 1993. The Jepson Manual.Higher Plants of California. University of California Press,Berkeley and Los Angeles,CA. 1400 pp. Huffman,R.T. 1987. Determination of the presence of wetlands and aquatic habitats at Bolsa Chica, Huntington Beach, California. Prepared for the U.S. Environmental Protection Agency,Region IX, San Francisco,CA. 1981. Multiple parameter approach to the field identification and delineation of aquatic and wetland ecosystems. Report No. 1 -Technical Standards. Technical Report EL-80- DRAFT. United States Army Engineers Waterways Experiment Station,Vicksburg,MS. PASH09310elineationlshea homes rev.wpd( 21/02)) 24 LSA ASSOCIATES. INC. DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419. ORANGE COUNTY. CALIFORNIA Hunsaker&Associates Irvine,Inc. 1997. Report of Historical Site Usage. Evaluation of photographs by Frank Hovore&Associates. Prepared for Shea Homes,Walnut,CA. LSA Associates,Inc. 1994. Delineation of Wetlands Subject to Jurisdiction under Section 404 of the Clean Water Act,Fieldstone Parcel,Bolsa Chica,Orange County,California. Prepared for The Fieldstone Company,Newport Beach,CA. Munsell Color. 1994(rev.ed.). Munsell Soil Color Charts. Macbeth Division of Kollmorgen Instruments Corporation,New Windsor,NY. Pacific Soils Engineering,Inc. 2000. Summary of Groundwater Monitoring,Portions of Tentative Tracts 15377 and 15419,City of Huntington Beach,California. Prepared for Shea Homes, Walnut,CA. Reed,P.B.,Jr. 1988. National List of Plant Species that Occur in Wetlands: California(Region 0). U.S.Fish and Wildlife Service Biological Report 88(26.10). 135 pp. Roberts,F.M.,Jr. 1998. A Checklist of the Vascular Plants of Orange County, California, Second Edition. F.M.Roberts Publications,Encinitas,CA. 96 pp. Sanders,D.R. 1987. Determination of waters of the United States, including wetlands,at Bolsa Chica, California. D.R. Sanders and Associates,Inc.,Vicksburg MS. Prepared for Beveridge and Diamond,P.C.,Washington,D.C. 61 pp.plus App. U.S.Department of Agriculture,Soil Survey Staff. 1975. Soil Taxonomy. Agriculture Handbook No.436. U.S.Government Printing Office, Washington,D.C. 754 pp. U.S. Environmental Protection Agency,Region IX. 1989. A determination of the geographic extent of waters of the United States at Bolsa Chica,Orange County,California. 33 pp.plus App. Wachtell,J.K. 1978. Soil Survey of Orange County and Western Part of Riverside County, California. U.S.Department of Agriculture, Soil Conservation Service and Forest Service, in cooperation with University of California Agricultural Experiment Station. Wetland Research and Technology Center. 1993. Draft training package,wetland delineation certification program. Environmental Laboratory,EP-W,Vicksburg,MS. PASH09310elineatioMshea homes rev.wpd(( 21/02)) 25 LSA ASSOCIATES, INC. DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419. ORANGE COUNTY. CALIFORNIA APPENDIX A GROUNDWATER DATA PASH0931\Delineationlshea homes rev.wpd f(5/21/02)> 1999/2000 GROUNDWATER DATA Shea Homes Property,Parkside Estates Tentative Tract No. 15419,Orange County,California 17 Dec 1999 30 Dec 1999 5 Jan 2000 20 Jan 2000 26 Jan 2000 1 Feb 2000 18 Feb 2000 25 Feb 2000 3 March 2000 SURFACE WELL ELEV.(ft WDBS' GE1(ft. WDBS' GE2(ft. WDBS' GE=(ft. WDBS' GE=(ft WDBS' GE=(ft WDBS� GE2(ft. GE'(ft. WDBS� GE=(ft. WDBS� GE=(ft No. msl) (ft. msl ft. msl ft. msl (ft.) msl ft. msl ft. msl ft. msl ft. msl ft. msl 1 2.95 -4.50 -1.55 ------ ------- ------- ------- ------- ------ 2 4.50 -•----- ------- ------- ------- ------ ------- ------- -4.90 -0.40 -4.55 -0.05 -3.55 0.95 3 2.70 ------- ------- ------- ------ ....... ------- ------- ....... 4 2.40 ------- ------- ------- ------- ------- ------- ------- 5 4.80 d-4.65 ------ ------ ------- ------- ------- 4.15 0.65 -4.40 0.40 ------- ------- ------- ------- ------- ------- ------- ------- 6 3.30 ------- ------- ------- ------- ....... ------- ...... ------ ------- ------- ------- ------- ------- ------- ------- ------- ------- 7 2.70 - - ....... - - ....... ---=-- ....... ------- ....... 0.00 2.70 0.10 2.60 -2.45 0.35 8 1.30 ------- ------- ------- ------- ------- ------- ----•-- ------- ....... ------- ------- ------- ------- -4.95 -3.65 ------- ------- 9 0.75 -3.95 -3.20 -4.10 -3.35 -4.05 -3.30 -4.10 -3.35 -3.10 -3.90 -3.15 -3.15 -2.40 0.00 0.75 -2.45 -1.70 10 1.45 -2.35 -0.90 -2.45 -1.00 -2.40 -0.95 -2.45 -1.00 -0.45 -2.05 -0.60 -0.90 0.55 -0.40 1.05 -1.00 0.45 ------- -3.70 ------- ------- -4.20 -3.25 -3.90 -2.95 -4.65 -3.70 12 0.75 -4.90 -4.15 -2.90 -2.15 -4.00 -3.25 -3.95 .3.20 -3.75 -3.00 -3.70 .2.95 -3.00 .2.25 -1.35 -0.60 -2.15 -1.40 13 0.70 -1.80 -1.10 -1.90 -1.20 -1.90 -1.20 -2.00 -1.30 -1.40 -0.70 -1.50 -0.80 -0.401 0.30 0.00 0.70 0.001 0.70 14 0.05 -3.05 -3.00 -3.20 -3.15 -3.05 -3.00 -3.10 -3.05 -2.55 -2.50 -2.70 -2.65 -1.95 -1.90 -0.40 -0.35 -1.20 -1.15 ------- -4.90 -5.25 -4.90 -5.25 -4.25 -4.60 -1.20 -1.55 -2.45 -2.80 l6 -0.40 -3.25 -3.65 -3.35 -3.75 -3.30 -3.70 -3.30 -3.70 -2.90 -3.30 -2.80 -3.20 -2.10 -2.50 -0.60 -1.00 .1.35 -1.75 • Top of well casing inundated with water due to surface pounding Water Depth Below Surface. 2 Groundwater Elevation(mean sea level). 5115102(P:1SH09311groundwater'99.'Oo.xlslData) I 1999/2000 GROUNDWATER DATA Shea Homes Property,Parkside Estates Tentative Tract No. 15419,Orange County,California 10 March 2000 17 March 2000 24 March 2000 31 March 2000 7 April 2000 20 April 2000 3 May 2000 SURFACE WELL ELEV.(ft WDBSr GE2(ft. WDBSr GE2{ft. WDBSr GE=(ft. WDBS' GE2(ft. WDBS' GE2(ft. WDBSr GE2(ft. WDBS' GE2(ft. No. msl ft. msl ft. msl (ft.) mo ft. msl ft. msl ft. msl ft. msl 1 2.95 ------- ------- ------- ------- ....... ------- ------- 2 4.50 -4.351 0.15 -4.55 -0.05 -4.60 •0.10 .4.60 -0.10 -4.60 -0.10 -4.60 .0.10 -4.65 -0.15 3 2.70 ....... ------- ------- ------- 4 2.40 ------- - =----- ------- 5 4.80 -4.50 0.30 -4.70 0.10 -4.90 -0.10 ------- -----•- -4.85 -0.05 ------- ------- 6 3.30 ------- ----•-- ------- -- ------- •------ 7 2.70 0.25 2.95 no data* ------- no data' ------- no data' ------- no data* ------- 4.75 -2.05 ----•-- ------- 8 1.30 -4.35 -3.05 -4.65 -3.35 -4.90 -3.60 -4.90 .3.60 ------- .4.85 -3.55 ------ ------- 9 0.75 0.10 0.65 -2.40 -1.65 -2.60 -1.85 -2.60 4.85 -2.85 -2.10 -2.55 -1.80 -2.95 -2.20 10 1 1.45 -0.80 0.65 -1.15 0.30 -1.55 -0.10 -1.05 0.40 -1.75 -0.30 -1.30 0.15 -1.65 -0.20 11 0.95 .3.55 -2.60 -4.30 3.35 -4.65 -3.70 -4.85 -3.90 -4.95 -4.00 -4.55 •3.60 ------- ------- 12 0.75 .1.40 .0.65 -2.10 -1.35 .2.35 •1.60 -2.35 -1.60 -2.65 -1.90 -2.30 -1.55 -2.75 .2.00 13 0.70 -0.25 0.45 -0.50 0.20 -0.95 -0.25 -0.45 0.25 -1.15 -0.45 .0.60 0.10 -1.10 -0.40 14 0.05 -0.40 -0.35 -1.20 -1.15 -1.55 -1.50 -1.55 -1.50 -1.90 -1.85 -1.50 -1.45 -2.00 1.95 15 -0.35 -1.00 -1.35 -2.10 -2.45 -2.60 -2.95 -2.90 -3.25 -3.15 -3.50 -2.85 -3.20 -3.50 16 -0.40 1 -0.75 .1.15 -1.30 .1.70 .1.60 -2.00 -1.65 -2.05 -1.95 -2.35 -1.65 -2.05 -2.10 * Top of well casing inundated with water due to surface pounding Water Depth Below Surface. 2 Groundwater Elevation(mean sea level). 5115102(PtVH0931\groundwater'99•'00 xlsWata) 2001/2002 GROUNDWATER DATA Shea Homes Property,Parkside Estates Tentative Tract No.15419,Orange County,California 21-Dec-01 31-Dec-01 14-fan-02 28-Jan-02 31-Jon-02 15-Feb-02 18-Feb-02 SURFACE WELL ELEV.(ft. WDBS' GE1(ft. TIME WDBS' GEC(ft. TIME WDBS' GO(ft. TIME WDBS' GO(ft. TIME WDBS' GE'(ft. TIME WDBS' GE'(ft. TIME WDBS' GE=(ft. TIME No. msl ft. msl) OF DAY ft. msl OF DAY ft msl OF DAY ft. msl OF DAY ft. msl OF DAY ft. msl OF DAY ft. msl OF DAY 1 2.95 - -5.35 -2.40 11:45 2 4.50 4.75 -0.25 9:30 -4.75 -0.25 10:35 -5.00 -0.50 11:15 4.90 -0.40 11:35 1 4.90 -0.40 13:35 -5.05 -0.55 12:25 4.85 -0.35 10:35 3 2.70 4 2.40 5 4.80 -5.05 -0.25 -5.00 -0.20 5.50 -0.70 11:30 -5.45 -0.65 10:40 6 3.30 -5.25 -1.95 10:10 -5.15 -1.85 11:10 -5.30 -2.00 11:00 -5.30 -2.00 11:55 -5.30 -2.00 13:25 -5.30 -2.00 12:35 -5.20 -1.90 10:45 7 2.70 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 8 1.30 -5.45 -4.15 10:25 -5.25 -3.95 11:25 -5.45 -4.15 10:10 -5.50 4.20 10:30 -5.55 4.25 13:55 9 0.75 -3.25 -2.50 10:35 -2.90 -2.15 11:30 -3.55 -2.80 10:55 -3.45 -2.70 10:25 -3.60 -2.85 13:50 -3.70 -2.95 12:40 -3.30 -2.55 10:55 10 1.45 -0.70 0.75 10:40 -0.651 0.80 11:40 -1.40 0.05 10:50 1.10 0.35 11:20 1.50 -0.05 13:45 1.75 -0.30 12:45 -1.40 0.05 11:00 11 0.95 -5.20 -0.25 11:30 12 0.75 -3.15 -2.40 10:55 -2.80 -2.05 11:55 -3.35 -2.60 10:15 -3.30 -2.55 11:00 -3.40 -2.65 14:05 -3.50 2.75 12:55 3.20 2.45 11:25 13 0.70 -0.30 0.40 11:05 -0.25 0.45 12:00 -0.70 0.00 10:20 -0.55 0.15 10:50 -1.10 -0.40 14:10 -1.15 -0.45 12:50 -0.80 -0.10 11.05 14 0.05 -2.20 -2.15 11:15 -1.70 -1.65 12:10 -2.35 -2.30 10:25 -2.30 -2.25 11:05 -2.45 -2.40 14:15 -2.60 -2.55 12:55 -2.15 -2.10 11:10 15 -0.35 -4.70 5.05 11.25 -4.60 -4.95 12:20 -4.75 -5.10 10:40 -4.80 .5.15 I1:15 -4.85 -5.20 14 55 -4.90 -5.25 13:05 -4.80 -5.15 11:20 l6 -0.40 -2.55 -2.95 11:35 -2.05 -2.45 12:35 -2.65 -3.05 10:30 .2.50 -2.90 11:10 -2.75 -3.15 14:20 -2.60 -3.00 13:00 2.50 -2.90 11:15 • Top of well casing inundated with water due to surface pounding Water Depth Below Surface. = Groundwater Elevation(mean sea level). 5115102(P.•WHO931Wround-eeOl-'02.xls12002) 2001/2002 GROUNDWATER DATA Shea Homes Property,Parkside Estates Tentative Tract No. 15419,Orange County,California 4-Mar-02 I I-Mar-02 19-Mar-02 27-Mar-02 SURFACE WELL ELEV.(ft. WDBS' GO(ft. TIME WDBS' GE'(ft. TIME WDBS' GE'(ft. TIME WDBS' GE2(ft. TIME No. ft. msl) OF DAY ft. msl OF DAY ft. msl) OF DAY ft. msl OF DAY 1 2.95 ------- -------1 2.95 2.95 2 4.50 1 4.85 -0.35K14: -4.85 -0.35 9:20 -4.85 -0.35 7:03 -4.90 -0.40 12:40 3 2.70 - - - -- 2.70 2.70 4 2.40 _.._. ....... - - ....... 2.40 2.40 5 4.80 ---- ------- -5.45 =0.65 9:25 4.80 4.80 6 3.30 -5.15 -1.85 -5.15 -1.85 9:30 -5.15 -1.85 7:13 -5.20 -1.90 12:47 7 2.70 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 8 1.30 ------- ....... -5.45 -4.15 9:35 1.30 1.30 9 0.75 -3.60 -2.85 14:15 -3.40 -2.65 9:40 -3.55 -2.80 7:21 -3.50 -2.75 12:54 10 1.45 -1.85 -0.40 14:20 1 -1.50 -0.05 9:45 -1.80 -0.35 7:25 -1.55 . -0.10 12:57 11 0.95 -5.20 4.25 14:45 -5.25 -4.30 10:10 0.95 -5.35 -4.40 12:21 12 0.75 -3.35 -2.60 14:30 -3.25 -2.50 9:55 H-2.70 -3. 7:33 -3.30 -2.55 13:06 13 0.70 -1.30 -0.60 14:25 -0.85 -0.15 9:50 7:31 -1.00 -0.30 13:01 14 0.05 -2.55 -2.50 14:30 -2.34 -2.29 10:00 7:38 -2.40 -2.35 13:10 15 -0.35 -4.75 -5.10 14:40 -4.70 -5.05 10:05 7:45 4.70 -5.05 13:17 16 -OAO -2.70 -3.10 14:35 -2.60 -3.00 10:05 7:41 -2.55 -2.95 13:14 • Top of well casing inundated with water due to surface pounding Water Depth Below Surface. 2 Groundwater Elevation(mean sea level).. 5117102(P:1fH0931lgroundwaterOl 01.xlsVO02) LSA ASSOCIATES. INC. DELINEATION OF WETLANDS SUBJECT TO U.S. ARMY CORPS OF ENGINEERS MAY 2002 AND CALIFORNIA COASTAL COMMISSION REGULATORY AUTHORITY PARKSIDE ESTATES TENTATIVE TRACT No. 15419. ORANGE COUNTY. CALIFORNIA APPENDIX B RAINFALL DATA PASH0931\Delineation\shea homes rev.wpd E(5/21/02)> RECEIVED BY USA, li•C - Table 14 NOV 10 2000 ORANGE COUNTY PUBLIC FACILITIES& RESOURCES DEPARTMENT Precipitation Summary 1999-2000 Los Alamitos-Sta. 170 GAGE ELEVATION: 7 LATITUDE 33.45.24 SEASON JULY AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN TOTAL SEASON TOTAL• 6.49 - LONGITUDE 1184*43 1959.1960 0.00 0.00 0.00 0.00 0.05 1.91 2.04 225 -020 1.30 0.04 1 O.OD 7.89 RECORDS: 1959 to Present 40 YEAR BASE PERK:' 1960.2000- 1960.1951 0.00 0.00 0.00 0.00 1.61 0.09 0.64 0.00 0.37 0.02 0.0D 0.00 273 MEAN:' 10.25 MEAN: 10•36 1961-1962 0.00 O.OD 0.06 0.00 1.00 1.18 1.84 6.92 1.01 0.00 0.34 0.01 1236 SEASON AS%: 63.3 SEASON AS W. 626 1962-1963 0.W 0.00 0.00 0.00 0.00 QOt 0.00 4.15 228 0.96 0.04 0.80 823 DAY1 JULY I AUG I SEP OCT NOV DEC JAN FEB MAR APR MAY JUN.DAY 1963-1964 0.00 0.00 1.77 029 227 0.01 0.68 0.00 0.92 0.57 0.05 0.13 6.69 1 1 1 0.07 1 1964-1965 0.00 0.00 0.01 1 0.10 121 1.41 1 0.44 022 128 4.76 0.00 0.03 9.46 2 1 1 2 1955.1986 1 0.04 027 0.65 1 0.00 5.05 293 1 0.94 1.16 0.31 0.00 0.07 0.0D 11.42 3 1 1 3 iq66.iwl 0.00 1 0.00 O.OD 1 0.02 1.08 3.83 2.97 0.00 1.03 2.79 0.00 0.00 11.72 4 029 4 1967-1988 0.00 0.00 0.48 0.00 208 1.14 0.46 028 210 0.59 0.02 0.00 7.15 5 0.44 5 1968-1969 NR 0.00 0.00 021 0.34 1.09 9.84 5.04 0.98 0.34 0.07 0.00 17.91 6 0.44 6 1969.1970 0.02 0.00 0.00 0.00 1.64 0.06 2_03 0.93 1.61 0.00 0.00 0.15 6.44 7 7 1970-1971 0.W 0.W O.OD 0.00 3.03 3.88 0.84 0.61 0.19 0.52 0.39 0.00 9.46 8 0.06 0.11 0.11 8 1971-1972 0.00 0.00 0.00 0.12 0.14 3.97 0.00 0.04 0.01 0.08 0.01 0.07 4.44 9 0.13 0.03 0.05 9 1972-1973 0.W 0.10 020 0.16 3.42 122 2.66 &97 204 0.00 0.00 0.00 13.67 10 10 1973.1974 O.OD 0.W 0.00 0.13 1.77 025 4.44 0.01 2-65 022 0.00 0.00 9.47 11 0.40 11 1974-1975 0.00 0.00 0.00 0.25 0.01 4.08 0.14 1.62 2.09 1.09 0.00 0.00 9.28 12 0.35 12 1975-1976 0.00 0.00 0.00 0.30 0.27 0.09 0.00 1.91 0.58 1.06 0.U0 0.15 4.36 13 13 1976.1977 0.00 O.W 1.74 O.M 122 027 244 0.37 1.06 0.00 2.11 0.00 924 14 0.16 14 1977-1978 0.00 1.61 0.00 0.00 0.00 2.39 629 5.91 4.89 1.00 0.00 O.OD 22.09 15 15 1978-1979 0.00 0.0D 0,90 0.08 1.12 0.99 5.05 224 2.71 0.00 0.00 0.00 13.07 16 0.06 t6 1979.19W 0.00 0.00 0.00- 0.20 0.46 027 6.41 &74 1.87 0.42 0.00 O.OD 18.37 17 0.04 028 17 1980.1981 0.00 0.00 O,OD 0.00 0.00 1.86 1.72 1.00 3.18 0.22 0.01 QOO 7.97 18 0.81 18 1981-1962 0.00 0.00 0.00 0.64 2.62 0.69 1.52 0.38 3.10 0.85 0.07 QOD 9.87 19 19 1982-19M 0.00 0.02 0.34 021 228 0.83 7-04 268 7.33 1.82 0.32 0.00 17.87 20 0.15 20 1983.1984 0.00 024 1,02 1.64 2.42 1.49 024 0.00 0.05 0.82 0.00 0.00 7.93 21 0.79 21 1984.1985 0.00 0.05 0.04 0.34 0.88 4.92 124 129 0.42 0.00 0.00 Q00 8.18 22 0.46 22 1985.19W 0.00 0.00 OAS 0.03 3.09 0.34 1,13 4.02 2.64 023 0.00 0.00 11.63 23 0.12 23 1986.1997 0.12 0.00 0.87 0.10 0.84 0.45 1.60 0.78 C.49 0.16 0.0D OAO 521 24 0.43 24 1987-1988 0.03 0.00 0.00 0.50 129 1.17 1.54 0.08 027 1.62 0.00 0.00 7.10 251 1 1 0.21 0.03 25 1989.1990 0.00 0.00 0.38 0.51 0.11 0.00 1.51 1.72 0.12 0.35 0.73 0.02 &45 26 0.30 26 1990.1991 0.00 0.04 0.00 0.00 0.32 0.08 1.39 1.38 5.04 0.04 0.00 0.00 829 27 27 1991-1992 0.08 0.W 0.08 0.00 0.06 1.59 1.52 4.46 3.35 025 0.00 O.OD 11.39 28 0.06 28 1992-1993 0.04. 0.00 0.00 0.55 0.00 5.48 8.09 3.14 1.61 OAO 0.00 0.80 19.71 29 29 1993.1994 0.00 MOD 0.00 0.04 0.51 0.67 0.28 4.53 1.97 0.44 024 0.00 &38 30 30 1994-190 0.00 O.OD 0.00 0.11 0.47 0.85 11.73 0.45 3.90 0.66 0.10 0.15 1&42 31 0.11 31 1995.1996 0.03 OAO MOD 0.00 0.00 1.32 1.30 3.24 0.98 0.46 0.00 0.00 7.33 0.19 0.00 0.00 O.OD 0.18 0.00 0.69 326 1.33 0.81 0.03 0.00 1996a1997 0.00 0.00 '0.00 0.77 2.00 296 4.76 0.12 QOO 0.00 0.00 0.00 JOAO -LEGEND- 1997-1998 0.00 0.00 0.65 0.00 1.59 3.98 1.70 &58 251 1.16 Q80 0.12 20.77 A-ESTIMATED C-INCOMPLETE NR-NO RECORD 1998.1999 0.00 Q00 0.05 0.15 Q77 0.78 1.09 0.79 1.37 215 0.06 0.34 7.55 8-PARTIALLY ESTIMATED D-DATE UNCERTAIN T-TRACE 1999.2000 0.19 0.00 1 0.00 1 0.00 0.18 0.00 0.69 325 1.33 0.81 0.03 0.00 6.49 P-INCLUDED IN FOLLOWING TOTAL Totals 0.55 233 929 7.46 47.00 60.53 9523 8&85 69.53 27.75 5.30 277 414.59 Average 0.01 0.08 023 0.19 1.18 1.51 238 217 1.74 0.69 0.13 0.07 1Q36 REMARKS Max 0.19 1.61 1.77 1.64 5.05 5.48 11.73 &56 7.33 4.76 2.11 0.80 22.09 1988-1989 not aduftd SEASON TOTAL 6.49" MASS CURVE VS.AVERAGE RAINFALL TO DATE SEASON TOTALS vs.AVERAGE RAINFALL 1200 ,,:... 25.00 _ -MASS CURVE .. .AVERAGE RAINFALL _ .... 10251NCNES ` ' . 10.00 -AVERAGE RAINFALL "' „„... 20.00 . ;•.: .. ,_„Y�,.... .. ... -., ' TO DATE y fn a 3 W = B.oD cWzi 15.00 , z z z 6.00 ¢ 1000 5 4.00 5.00 200 _ 0.00 DOD .AI Aug Sep OU Nw Oae Jan Fab Mr Apr Mry Jan - - - a I �101� e ICI �I umei�u���n lillilli' llillillimilillillill.I.Ulm 11 111011a0illilligiluillillilliillillilli nN�n�uloll o�nanu� i�u�nueu�� loll loll NO nI! MIm IN loll nmo�u � muiu� _ ii:imillllmumiiiimii ll"MNNli^' INNIN NMI I ���t� �✓r'f..��3�ba?��~ L iy.SP C'�l � - 4 f a � 7 NEW IS MEN• • IF • �g.> •tom, ..,�.»-e.....v Y� P�'s. +o-- d�`S ar �`:c. « 5 .r t' • .z».�ar 1 .a. °.e ,ram at ON • �m°v Y.''.}.f':�,��+4�Y�z }b.a+.a K s�P, kz.*t,'-Gt?+ t�'i`_,a-�" '.. • u�'`�'"r"�2,Ys-.� �,y�.��-�'"-'7}'�.�*t���'�.R1"%�`."`td z'�°�+.�3+x` -f°�a"'"�.vK',.* � a �, .4 P..�,.P. �..,.s il. �1111111111111���1I� l�Nlrlllllillllllllll I I I N111 _ 1111111111111111111111111111111111111111111111111 11111111e®e 1® ® Nil 1111MIN1111Nil 1e11e1111®1111 PRONOUN11111111111111111111�1111111111111 1 r 11111M1. . ..1111111111111111�11���'1111�11111111111� � • ............ . "..` , .{.°,.-'� �uY ''s"'t-.-�.ki'`+�h `i4.-2tTx`"'� �v r�'+� � "�+; g� •-k ,... , ......... '.' J a`' ".:,- r�.c„�:�" JJ� # ""' �.. -`:«..r+; ".ry-J� 3i...«^.,.r� ra.w.s,�.y. ,:• �`,+z ��Y",�..... 111111111111111��1�111111�1111111111111� _. �..11111 ._. ..,...,'._ "' -...__ ��'` �1 d-di ni 3.Yn, \ x k--0e�s�Tx3it e.!�„ �"'",_��-" • _ ::- , _ . .111111�1111111111111111111�1 111111111111111�1111111111111111111111111�1 • ' 1� ' --� .."'si. 1�.. °"'{�,-y.,.in . "' ;" a wit vFJxr ,�.. -r-.:.. • ,. 11. 111111111111�111�11111111111��1111111... : _ _ 111 r i���ti t' i C 3 _ aFt T' Yv'F'scf�Ryi,. �A5����.�•Cb N�C�i�.s?a'F ���" 11111111111111111111111111111111111111111111111�1 -s': a .� � �J�'n.1 •-r �"`��'" r��W ir-,,,�J'k Y�'7��c'r ti.`z`�t�t'r+c,'3':c �'sc'tiS. '4 ram.. 41 111111111�11111����111111111111111111 ::1111111�1 . ,s. f„tn•? -.. ,'�.,'�.'.,��-sv� ,Fr`.�4'','�'' aY.'� .Ju�a.y k rf t`�'e �..��„'�� � �,S�T,°',r'�.yx�+S,;f r.�ll • 111111111�11��111111111111111�1111�111�111 11 • - II���IIIIIIII���II����III��IIIINIIIIIII 1111111111111111�111111��111�1111111111111111111 r•� � �X i _ _ _^•z�f "at.���. r�eR' -F�ir�',f'wS f� y,P fL. ilr�llll�lllllllllill .�. . : •._. � _,. .. , m�• _ ,_ -J,_( 1111�111111111111111IIIIIIIIIIIIIIIIII����111 act ,,..x ,'"a'"+A-4 x+n•m.�t�r:^.."<si.,r i., r x::Y^ cW `i-r h"�^r'�^x� F�..�a` fi—_ 1111111111111111 i 11111111111111111111111 eee®e®®eeee ®eeeee® .11 - eI 11111111111111111111111111�1�111111111111 1TTY i. yc c ta. xr•,C,x:� .inre,R..,Jz;�-vx,aG,,.ac-'�s�s ri,� '�'�d'�` �,� •� ORIIIIIIIIIIIII1111111111111111111111� ....... &�xr.F - 111�11111111111111111111111111111� 1118 111111111111111111111111111111111�111111 .� � ,. Wes' '� 2� �:aS �.:a ��`'�"�<P�a fin,S a�Y-. -;,,-i>-Sr`�E'�-:r�''' ;. • 11111111111111111I111�llli�ll�llllll��lli , w 4.+R-,..e r.. ,"'at 11111111111111111111111111111111111111111 •_ III�II�IIII�IIIIIIII�IIIIIIIi1M1111�11111 , �� 1 , IIIIIIIIIIIIIIII�11111111111111111 111�1 S ry rs �: ,a.'`s 1111�111111111111111111111111111��1111111 . 1111�1111111111111��111�MmE1 mIl��lllilll '1 ,• � �c.-#�� 7 ;8 s , r"d�� �r 1'r�.�' t �pV';..-,u�� ��+5 11111111111111IN-111111111111111111 111 r 1 Illlll�l�llilllll 111111111111111111�1111111111111111111111 oil, �' .3=. � � »'� _ e """"r-.r-7 r'j...3'•� � �, yj 7� V� r�'�41 _ ���' 111111111111111111111111111111111111111111111 .n f� _ .rr^. t• _ `n°�.'`-ct...'s"'+?"S�. _ �i�}_n�n,.;Y`s+' �}„1 IIIIIII�IIIIIIIIIIIIIIIIIIIII�III��IIIMIIIIIB 1111111111111111111111111111111111�111111 .. al iolrr11 r � ''^ 3 '�� v S ry�{'i"+t� c '3Yeni'r�+'i-,� 'e-f2d^i"'��cs�Y`+'aa.. .•y:,.a �1 �` • .ix ,4'GI„n,•',%.->, .�^ X�:,nv'tam:k �'-�'tti"'°r��4"'`y '��W'+�,s�'s ��g'C�r��� ��j a: 11 1111111111111111111111111111111111 •_ � , 1111111111�1 _ . 11111111111111111111���1�1�1���1111111111�1111 , oil _ z zoo 111111111111111111111�1111111111111111111111�1 111111�1����11111���11111111�1�11�111�11111181 y i.a ,y, �.,R^Kr�•E"r +`^ti<+,C{.. °_ ;Z""'.�"'.4�b -' �c?'f- '`" .�Sy3?�, w. 11 illllllllillllillllllllilllllllllill • _ 11111111/1 7 ate` • 111111111111111�111111111111111111111111_�1111 .Js r �-x��r" �,-,r sv-rr z � .��.•-r-as. s ,�„; r3�.r ad •e �r h4..F+.M h.� .d-^c r'St€9.c3.2as,.;.� ^.k^....,�~3.�`+..°�� ��.:fT.,.»a7,�'.�i...w., �..!v,_ 1111111111111111111111111111111111111111111111 AllIlllllrl�llll��lllllllrlllllll�llllllllllllll AP 4.., 11, 111M 1111 s � '•��i � �^ '�krik'.r'�-1- L�x-,..ri-,z cx.sa� z�,r.r�a�a✓�. U ' Y'd v-Cw y �`,'-��,��-•�s, �--'c eP r'�ii .�'�lt�-q•r' S„ r -er .,,�' HIM 1 III Pill�l i'.✓ y"e°�a'}�.r='.�'sCY�`"`.v.��'i'i �{u��r.,�v! ye� ,^s}��.��,.� �-+,<,..`� }" r-, • IIIIIIIIINIIIIIIIIIIIIIIIII _ 1111111111111111111111111111111111 1 �enrineA IAl�I�BII� loll IIIIIIIIIIIININIVIIIIIIIIIIIIIIMINE loll 'F 7f loll all IN MINI loll oil RON ,1111111mil Mimi Ill �Yllel0l I��Ilel .t x +.-a�r"-�'r' .y,.�'r T'�-ct 1j L•�'2 s r ---'� ^� ,-, *n"`..`.�-.,t a`..'`¢"`'a'°''yT"'n„v'�.Y�` � }���-�, �"' � �+ '�a^ a� �a^�Ec"�E'T,1` F��k•����F�3�'�-'�i-���'f�`°� �. Isms mmmmmm MEN All � *d�vu^n x Frs�' i k�. -T � -y�s�k���,��. .-1.y sa" `L✓ :}`' k.�-X7.. kwrO��-.t � .fir r x ���ll���llllllllll�l1111111111111111n111�111 Al 111111 1 11 11111111 1 011111 U HIM I11111111111111 ay�'°��,..1y 1�1111111.. . f l 11111111111111�11111111111111111111 in MAIN r t 1 f ...x 0 11111111 111111111111111111111111111111111 - '�K�--�x4� �� �r��*,',�„°.�.�,.„''''i.F,.�,�,Z ��„��r �•°�� �''�`-r'"-r' x �ter- " J 11100 11111111111 IIII I MEMNON Ill 1 11 1 1 III�IIIIIIIIIII 11 1001111100 1111111 r • : 111111111111111111111111111111�1�11111111111�1 z"'Y �_ j�e. yr.`. 'Y"a J'4 V;rx,.�, "'�:?!c�� �c� •e`r,���sj`a-^..?���1 �Y'�''",'Y"���G�� �'R 11�11��1111111111111111111111�11�1111�1111111 ��� 1�111111111111za- 11111111111111111111111111 111 • T- a "Al 1111111111111�11_� .w� - ~ - - . •11111111111111111�111�1��11111111 '" X .^,—r� j ^�� re ���.r�-�e'3'� ^t � "c_""�.d.,�.T'•r'vC 'xy'. 2"� ,."� -tea'' . i;'.._ ='_ t!.;^c <<'ar�-ram--i ���� i'����i'���tk6•�3_,� ���s*e.'..'F"�,' .cum k 11111�11111111111111111111111�1e�1111111111�1 • �� 4 ae�-& Sy ,�.G� 1a's"3a'� r �`S�"v Jan•t< '6r'iy,.T•i.e'er '�� � 3' ', • 1�1111111111111111.1111111111111111111111111111��� �� 1111111111�1111111111�111 � = =. � _ 1..a� ,�11111111111111111111�1 . ..,,c.. a x 7.�,✓nf7t;, �''Y"-Lv_ �e�, ta,�` 4 ,v ivi� 11111111111111111111111111111111111111111111111�1 �. y 11111 IN�1111111111111111111111111111�1 • 1�1111111111111111111111111M111111111111111111111 • 11111111111111111111111111111111111111111111 111 .w eeeeeeeee®��e®�®�®®®eases®e®®eeeeeeeeeee®e��®elli r 11111111111111111111111111111111111111�11111 �'- r. 1�1111111111111111111111111111111�111111 111 111111 .'�x,",' F� x"�'x�'�.� 1�11111111111111111111'1111111111111111111111111 1 �7 �,d+ i- � n v +: '.x'Hc a.a'�'Y-� a-.'�,y� �'.-.z,-i,� r z"r:..; "'�t �'�'�§" ,r.`te-• 1�111111�111111��11111111111111111111 111�� ?.(���-f�f�^,A+ � `�-sxw .r��'rks eS'xial-a-.+✓.i'xK.e i n 1�111111�111111111111111111111 _ 11111111��11111111111111111111I1111111 _ k _ 2•F IN%. 9L L S^�v. ^T'#f # �'f"-••� 'CRW V ear 111����1�111111 .1 - ..K xtx x ti_ 11� ��1I11111111I11111I11 Nil111111111�1111 1�111111�111�111111111111111111 - .,_ _ 11111�111111111111111�1�11111111111111111 a ^�,S ,••M1 111111�11111111111111�1111111111�1111111l 111 t `-17' m illllllll �11111111-11 `M : - .�,..� 1:. - .1 11111111111111111111 11 e 11111111111111111111111111111111111111111 11��� " x-s`Y'*"�i.y^•.¢cd5 rt""�`w�s`''x`u M^�"`1�r'-..,;. a„1 a J s � A M111IMP I I I1Ill11111111111111111111111 ko 11111111111111111111111111111111111 1 11111 11111111111111111 -.. 111111111111111111111111 111111111111111111111111111111 i l l l l l l l l l l l l l l l IIII�11111111111 �1 ��111111111111111111111 t 111 �} C r� .h �c 7 r"'y""" •�-`��'7'�+��r» 3 �s � '�-t���f�'S'.tai"h��x� t� .. Y..'�-+ <:mot R j` .2r.r r -3, / r,.v.•:st-C,;=r:s.> -t� -t.l-�c • 111111111111111111111111 _. �,: . 1111111111111111111111 _ IIIIIIIIIIIIII�1111111�1111111111111111111111 d !qGZia, �r'CL+ � '�+' '�t.�y..�y'•�"�+t�'�..." � J.. 11111111�11111111111111111111111111111 11 •r 1111 1 < 5 � 111 : .,..111111111111111111111111111111111111111111 • 1111111111111111111111111N11 �11111111 11 •11111 1 oil Z he F rJ'L.X .•�. J b :r rr �y.:J"-ry,^7y �s,,.,y'?2 Fe_:^Ps"'t f �.�' u-.`Y"�e�'�.Gr �•-,e�.�r�-4 eg '� �. '.e.' '4.,tX. -.�"Lg ..;r � ._.:..r..1�c s -n t..tas�:„r ��dx�h��ts it*:Si.�',,��i�•�n�7-ct�+kl�`J'�'�� +�W � �� • 1111111111111111111111Illllil�lll.�:: �1_ . - - -111 y",,-' '9�s �e-,�."ya'Fi Yeas�„�rw-•,.at-A'���_���'��';'�^�b ~'.'ta.4'•z�e"fir } ;:2�4 � -.�"s,. y ��11111111 111111111111111111111111111111111111 1 :. �'`r"e' i 8Y✓'�,f� 4n.J .�,I r � ,^ ��`ie{`� � ����1� , 4<e yi3E"F���'d�$+�A•cJ:3 s�� b � r,.+JtCM_ '�'a�_-s.-�rf�.' t x .dg -+...�,� 1�'��11 1111111111111111111111111111111111111111111111 yr e������a�t�a�fy,. .i ��". '-c�'�P""_',�`t• �. h Y�stYr` z�uSr-...[�{ �-.': ..�;,R' t<L t.tt •s o°ar,E�A`. ib.`x�i.Y....��. ?J -°1,w+;5§+?�.�m�"�'`.t;�'a,"t$ i•�..�-t `3• ,�.t��;��"' 111111111111111111�111111111�����1�11111111111 • �v 4�K�1,.T�n-n.. s° x"�Y+lS �r.� �'m �x .Y��'.irX L�` ".c�}i�i�7•+ axa.;, v+^F"�C•�1 s"�.fc.f, r r >r'�+ fA i�Fi. '�'S`-x7' t >t+3�i,y'._�t"}r''z. "`^�'�m"�r7� ^�11 _ v �-r�-_. :;;�";;57'�`SZ'�_tad � 'Fw`g ,.i .rTTC•C�T Tx'{.,a4+�r � 11111111111�1111111111111111111111111111111111 I11111111111111111111111111111111111111111111 +n 11 IIIIIII�Ii�111111�111M11111�1��11111MARAI 1� 111 "',J�. r +..,�c•c:.. ,G,, .».�, '1✓�'�'"-'°- 'r�-.ua;+rca 7 ^xna�:a.,��.#.:rss '�' '��II11�1111111�111111111111111111�� '��11����111�111111�111��11111�111�� 1�1111111111�111111111111111111111�1 • I�illlllllllllllllllllllllllllllll�l -1IIIIl NO � I� Oil! IIIINIIIIIIIIll 111 17AM � h� v�r�Z"".t" a�34 { .aCYkf,3.4''x.+�.u`+F1'd^+c 'aF,r,'a+"`'a.r y✓ t _ Y I�11111111111111111111111111111111�1 t�+ 110 11111111111111111 ,��ja"� uffra1^S Y" • } F1 TO • i�lllllllllllillllllllllllllllllil�l I�111111111111�1111111111111111111�1 K Y ININUNN IIIIIIIIIIIIIIIIIIII 1�11111111111111111111111111111111�1 • 1�11111111111111111111111111111111�1 • li d . mu�iuu■i�i m�eun a also F UNION Innm umoommnm�m MINIMIEW1111111111,1111011m a. � c br �"ra,. ,*�}�'. 1 i.p.'ea� F a wr aar .a a .r �cj�! �asu a y t,>.q}•:,.- • •�,!-*',�- +_--� r-w sr.„T„fiN�s++�-�a.dJ;s3� � *2,1. }-.r',�.t �t...r.s 'r,¢u>l.'`'...."""�.�-rt • •DTP' �� M f� �a��f�- � � t � 'A��C`T.^t� ha.f ..y.,a. s+. �� .cam.�•r.,a„ ^ss. !� '-�.:^-w�~ ;1 T*+��3i�,u y, Hill NIIIIIII -I! `_i�,--`��''R ✓p-1''.�..a�,y�•�. X.���P z'F"��'a^ � y c q..i, ..Jx ��:s.f��'.�+T� ON IN 111 1 UNION 1111111111 .,` s y3 a'S''Sl"�r y .-5F'i.er.+..7'� I • 1�1111111111111111111111 I�IIM1�11111111111111111111�11�11111�1111111 �r I1111111111NIFORM • 11� � 4 1'N ...r.J i go,it'k,r.'+^INN ts.,.9 k. #. ...'� 1R NINO 1111111111111 -3.It�'l; �r' ..+ ...,f y.G �� �q, �w+f f • ��� 111111-1111 flll 11 - II "MIRK • 1�111111111111111111111111111111111111111111 111111111111111111111111111111111111111!11!111111 eeeeeeeee®eee®e®e®®®eee 111111®e®e®®eeeeeeeeeee®eeee1eee 1111111I111111! z 4 S t �^"`x ...,,�C t� h'^r -�a�'.'Tt"`at:�kr-�2"��� .r'4✓�.r� �,-'i r'�i�.'k.�� � sr7" r1�v.^r' ,_, �111�1111111111111111111111111111111111111111111 ' .-'. ..,;.. ^... r r' r;'•i����N� 'i"+r #�`'��""� �r��1 s9w•}r�f�m`.�"�k'�mo`'� 11�11111111111111111111111��1111111111111111111�1 -r w:s _ �=arm, _ rt�w��s �;.cGwwL.. '�`+`^ ,. u^°r���,�.x�3��' «���r `£ Y i„�r • illllllll lllllllllilli11111111111111�1111111111�1 .. vt•^Xc..�'�+ f`hr" �.`��' k-r X-x`" •...k.r�-s.����v.'��F.'�:'�^'T "A �',��Y- �� .yr�+.d�� .. ..--.::e a .+._..,.r' __-..v:._ .,-'t Y. 3�>�3 �r.^-na--,.a �yen �'�.,}¢'gc?�`Spf4'E. '� s.0 „"d�d�,, • 1111111111111111111111111111111�111�1111�1111111 , J'�.,,rr i` � -� -�� �'+. t.l at2""v ii`.y'rt "ti. ��i'°. <�v � 7-w 1 '.ti^v rx,we '"'+crd»� • 1�1111111�1111111111���1��11�1�1���11�11111�11111 • c� -� >v- f s.. r-, }^L--+.r v' fix' 'r-v rcl•� Tr.- '` �-, a . r'ca--n" +ref r' r'... �v��.c� «v�`.�a"�• �`'t-"�'tv'".»,�✓k+ •'�'rkP'tw. ���w"�' � . Y"•.,'±-rN h c!..`.b�14,^a;!c t't�-c.F P-,3e�'re�•a^L�°a�� Sf tn°�'3'xCy< --•3 '? t�5`_i7 �'! , :. 1��11���11I111�1�Ir11i�1111A111i�IM111�11�� 111 1� Ml111111111111111����111111111111111 �. :^.' �. ...'.' ��.�.rRE'r� �tof}=v"F s�: s Fs-r Ste. � -E ass•. �f�,�5 -f"�5,,.cf."`�k- � � 111111111�11�11111�111�11111�11111111111111111�1 11111111111111�11pill 1111111111111111111111 Ill •�!! � ^ �> 7'r��� �� 'i.Y+.� � mot+ ''-'<-,e-�-��+ r. "x` ' � � : ' • `mow .r✓,RT.,�-m e'"'- �r'C -,.., �+ s��w t e4� - 1111�111�111111111111��1�1�11111M11111111111 __ 11111111111111111111 '1111111�11111111111111 1111 �`^« y.�.1 a.-0a.la v r"r,'"r�'•..�,�t __'N'?'��1sr�e5a.,r�7�.z_..�-,. .� I y°�9.�.5 1�111�111�r1111�1���1111i1111� � � �� l�� �� �111 111111111111111111111111111IN 111�1 Y 1111 1111111111111111111111111111111111111111111111111 RIIIIIIIIII�I 1�1111111��1111111111�1111111111111111111 r 1�1111111�111111111111111111111111111�111 S 1 II1111�IIIIII IN:1 11 • �xy a r �� ��'f-r s � 'm-.L �..a,.a�t.�A„�.a e. +a. .. I�illllllllllllllllllllllll . • .jA [ 4���� � � _ µ ,,, K 11111111111111 E " ,hC i s 1�111111111. 11111111O1111111111111 n. 11/11111 a il Pill IIIIIIIIIIIIII-/1 �11111111111111�111111111111 • 1�1111111111111111111111111111111 h�g� ��� �11111111 - �1 11 1111111111111111111111 "� �} ,kS6:b.. ✓a., y u. ,..c .s s ✓'+-. µ,'1� i3' e' Fl 1�1111111111111111111111�11�11 -- - i son I! - j G , 10111111111111111111111111111111111111111 Y _ 1111111111111 '�x>''�cT r ''";'�"`:``,`�..{ �� � r�'�'`u� ""✓� h : r�'i�°y���'�r �'.Y;�r.�r,. _'ray�}hN�; y" r✓r� �"`-.' ;i^.w4' � �.wx � a, � t ''� r� -'�°ia' i � �J"` Y-�«"'^YY4'"a^� r s.+. �a3 ,y s.��*r�,,•,.a.a y;.`�`��x�i..w�s�,.,av 1�.�� s's f-x�x�-� -s-r ..-�5• a.,e� �Aga � h M .,! � �,a. rr �.�,. � �t;u Yv^a stir ��-� 4hry� �•+�,�c2b-��a' ��'����i,'�n,�,ti�r;'�'`� • � f • .-�C�z"!4 }"t" ._Y�Y). ...r.. v, r^.:l-v..TA���.ro� �.Y`r.Y}, ""�"""""" Bill "� ..'3 ',t � �'^�rr'S�'?Sf•I ��.'!l�-+k #T•'L:4•.xT '�SM:2f1-.1' T+-ar.'t � ( t PW �M '� ��rr� -w v yr � �.r :e�k�kwi'''+�.��M. �y.�,,��`"•r�'n.� 4 57 �,��"' �r".� �,y m.�.1: �- �1 -�t r t.y ry✓�a �+�+�t `z`h-�- rn •r �'' '"+. f • '�'!'f �!�'�!!"""!!!!""'1"����'1""""' � 'P���^�'t�'S7✓1'.�s:..fi #�.��a�.�u'�e »�"�E.."�,e,� Y'`ti"�`' <>-roc'r.r s a � _A.��`'"��t':7L..'.a°'rt��'s��;��:-•Y-a ,� �:�, R.L+'`��.r+7.� a7x^-�T t .r-a �' :'��,.e'�'� :m R T 4t WIN • `RF,N;.C- .2 �.ys' fi j' 7- ate" u"•,:t;e;�:> • PNI "L'A44,d+ .r.:L'yu{''• 4i..v -�!ORa�7+^,'"m* 4t'�^• ^mac a.-+< 1 ! .• • ~�^,,. c r. Oil�3 p�:S,gK"i a N.�i,,yy� ,3'✓ .+�'cT� �� }'k`�+, `4'�... Y wt ,�. : • �.:� �t„�K•�c"..� 3,'-Y���;y�°ga•S�eG:s.c4?>q,�rw� ��3���v v:�r -�`r,c.1..�+4�..., u - ,a......... c ,,T o'er yse��pO '.ur.-�'� �ca�.�� •�'�'�', �"ia,.*2. --3-�tyN�k..,�•,•�2� � s..>y..�� ,�- ,•r= a-c-�,,,, Y'"'�'�. ..r�-a•,��.,'.�+'1�.'Y v .-- a -ff;�'-�'r�+V�"•�"�+., z.. � r +..r .�'- d' A'� 1��.r'v-�.'-N 7r x ....... 3- e 5. J' g w; 'a 1 • NINNIN NOW 'f IIIIIIIIIIIIIIIIAIIIIIIIIIIIIIIIIIIIIIIIIIIIII --------------- �IIII II�II�MI � QIeIIgIIIYtl�ll�l�l IN - 111111111 1li I�II�II.I.NINI EWEII�II■II�IISII■�� ON U �e!i��uiuuuilI �onien��n + . I IIIIIIIIIIIIIIIIIIIIIIl e��ismmu Isi�a�ueinuiuiIIIi LSA ASSOCIATES,INC. Los Alamitos Station No. 170 Rainfall Data: 30-day Cumulative Median Totals Date 30-day Cumulative Rainfall(In Inches)from 1958 to 1980 58.59 59-60 6061 6162 62.63 63�4 64-65 65:66 66-67 67.68 68-69 69-70 70-71 71-72 72-73 73-74 74-75 75-76 76-77 77-78 78-79 79-80 Nov 1 1.35 0 0 0 0 0.29 0.1 0 0.02 0 0.21 0 0 0.12 0.16 0.13 0.25 0.3 0.03 0 0.06 0.2 2 1.35 0 0 0 0 0.29 0.1 01 0.02 0 0.211 0 0 0.12 0.16 0.13 0.25 0.3 0.03 0 0.06 0.2 3 1.35 0.05 0 0 0 0.29 0.1 0 0 0 0.21 0 0 0.12 0.16 0.13 0.25 0.3 0.03 0 0.06 0.2 4 1.35 0.05 0 0 0 0.29 0.1 0 0 0 0.211 0 0 0.12 0.15 0.13 0.25 0.3 0 0 0.06 0.2 5 1.35 0.05 0.21 0 0 0.29 0.1 0 0.02 0 0,231 0 0 0.12 0.15 0.13 0.25 0.3 0 0 0.06 0.2 6 1.35 0.05 0.21 0 0 0.29 0.1 0 0.02 0 0.23 0 0 0.12 0.15 0.13 0.25 0.3 0 0 0.06 0.2 7 1.35 0.05 0.55 0 0 0.29 0.1 0 0.02 0 0.23 0 0 0.12 0.15 0.13 0.25 0.23 0 0 0.06 0.2 8 1.35 0.05 0.83 0 0 0.72 0.1 0 0.32 0 0.23 1.58 0 0.12 0.15 0.13 0.25 0.23 0 0 0.06 0.2 9 1.35 0.05 0.63 0 0 0.72 0.1 0 1.04 0 0.23 1.58 0 0.12 0.16 0.08 0.25 0.23 0 0 0.06 0.66 10 1.35 0.05 0.83 0 0 0.72 0.53 0 1.04 0 0.23 1.58 0 0.12 0.16 0.08 0.25 0.23 0 0 0.06 0.66 11 1.35 0.05 0.83 0 0 0.72 0.53 0 1.04 0 0.23 1.61 0 0.12 0.16 0.08 0.25 0.09 0 0 0.06 0.66 12 1.35 0.05 0.83 0 0 0.72 0.62 0 1.04 0 0.23 1.61 0 0.12 0.51 0.08 0.25 0.05 0 0 0.06 0.66 13 1.37 0.05 0.83 0 0 0.73 0.71 0 1.04 0 0.23 1.61 0 0.26 0,51 0.08 0.25 0.05 1.2 0 0.23 0.66 14 1.37 0.05 0.92 0 0 0.73 0.71 0 1.04 0 0.23 1.61 0 0.26 0.51 0.08 0.25 0.05 1.2 0 0.23 0.66 15 1.37 0.05 1.09 0.14 0 0.73 0.71 0 1.06 0 0.19 1.61 0 0.26 0.61 0.08 0.25 0.05 1.2 0 1.18 0.66 16 1.37 0.05 1.09 0.23 0 0.45 0.71 1.02 1.06 0 0.4 1.61 0 0.14 1.43 0.08 0.25 0.05 1.2 0 1.18 0.66 17 1.37 0.05--- 0.84 0.71 1.52L106 0 0.51 1.64 0 0.14 2.61 0.07 0.25 0.05 1.2 0 1.18 0.66 18 1.37 0.05 1.09 0.23 0 0.84 0.99 2.5 0 0.51 1.64 0 0.14 3.57 0.57 0.25 0.05 1.2 0 1.18 0.66 19 1.37 0.05 1.09 0.23 0 0.84 1.31 2.82 0 0.51 1.64 0 0.14 3.53 1.02 0.25 0.05 1.2 0 1.18 0.66 20 1.37 0.05 1.09 0.23 0 0.84 1.31 2.82 0.24 0.51 1.64 0 0.14 3.43 1.02 0.25 0.05 .1.22 0 1.18 0.58 21 1.37 0.05 1.09 0.23 0 2.27 1.31 2.82 0.52 0.51 1.64 0 0.14 3.43 1.02 0.25 0.05 1.22 0 1.18 0.46 22 0.05 1.09 0.63 0 2.27 1.31 2.82 1.11 0.51 1.64 0 0.141 3.43 1.02 0.25 0.05 1.22 0 1,18 0.46 23 1.37 0.05 1.09 0.63 0 2.27 1.31 3.33 1.08 1.99 0.51 1.64 0 0.14 3.43 0.95 0.26 0.05 1.22 0 1.18 0.46 24 1.37 0.05 1.09 0.63 0 2.27 1.31 4.65 1.08 1.99 0.51 1.64 0 0.14 3.43 1.77 0.26 0.05 1.22 0 1A8 0.46 25 0.02 0.05 1.09 0.63 0 2.27 1.31 4.65 1.08 1.99 0.51 1.64 0 0.14 3.42 1.77 0.26 0.05 1.22 0 1.18 0.46 26 0.02 0.05 1.09 0,89 0 2.27 1.31 5.05 1.08 1.99 0.51 1.64 0.02 0.14 3.42 1,77 0.26 0.05 1.22 0 1.18 0.46 27 0.02 0.05 1.09 1.23 0 2.27 1.31 5.05 1.08 1.99 0.51 1.64 0.28 0.14 3.42 1.77 0.26 0.05 1.22 0 1.18 0.46 28 0.02 0.05 1.61 1.23 0 2.27 1.24 5.05 1.08 1.99 0.511 1.64 0.28 0.14 3.42 1.77 0.241 0.1 1.22 0 1.18 0.46 29 0.021 0.05 1.61 1.231 0 2.27 1.211 5.051 1.08 2.08 0.511 1.64 0.28 0.14 3.42 1.77 0.01,1 0.2 1.22 0 1.18 0.46 30 002T 0.05 1.61 1.23 0 2.27 1.2111 5.05 1.08 2.17 0.341 1.64 2.3 0.14 3.42 1.77 0.011 0.32 1.22 0 1.18 0.46 Dec 1 0.02 0.05 1.61 1.231 0 2.27 1.21 5.05 1.08 2.17 0.34 1.64 3.03 0.14 3.42 1.77 0.01 0.27 1.22 0 1,12 0.46 2 0.02 0.05 1.61 1.23 0 2.27 1.21 5.05 1.08 2.42 0.34 1.64 3.03 0.14 3.42 1.77 0.01 0.27 1.22ZOI 0.46 3 0.02 0 1.7 2.06 0 2.27 i.21 5.05 1.08 2.42 0.34 1.66 3.03 0.14 3.42 1.84 0.01 0.27 1.22 0.46 4 0.02 0 1.7 2.18 0 2.27 1.21 6.05 2.46 2.42 0.34 1.66 3.2 0.32 3.42 1.84 0.01 0.27 1.22 0.46 5 0.02 0 1.49 2.18 0 2.27 1.21 5.05 2.69 2.42 0.32 1.66 3.2 0.59 3.48 1.84 3.28 0.27 1.22 0.46 Dec 6 0.02 0 1.49 2.18 0 2.27 1.21 5.05 4.26 2.42 0.32 1.66 3.2 0.59 4.07 1.84 3.29 0.27 1.22 0.46 7 0.02 0 1.15 2.18 0 2.27 1.21 5.05 4.75 2.42 0.32 1.66 3.2 0.59 4.07 1.84 3.29 0.27 1.22 0.46 8 0.02 0 0,87 2.18 0 1.84 1.21 5.05 4.59 2.42 0.32 0.08 3.2 0.59 4.27 1.84 3.29 0.27 1.22 0 1.12 0.46 9 0.02 0.03 0.87 2.18 0 1.84 1.21 5.05 3.87 2.48 0.32 0.08 3.2 0.59 4.56 1.84 3.29 0.27 1.22 0 1.12 0 10 0.02 0.12 0.87 2.18 0 1.85 0.78 5.33 3.87 2.48 0.32 0.12 3.43 0.59 4.63 1.84 3.29 0.27 1.22 0 1.12 0 11 0.02 0.12 0.87 2.18 0 1.85 0.78 5.96 3.87 2.48 0.33 0.09 3.43 0.59 4.63 1.84 3.29 0.27 1,22 0 1.12 0 12 0.02 0.12 0.87 2.18 0 1.85 0.69 5.96 3.87 2.48 0.55 0.09 3.43 0.59 4.28 1.84 3.29 0.77 1.22 0 1,12 0 13 0.00 0.12 0.87 2.18 0 1.84 0.6 6.15 3.87 2.48 0.55 0.09 3.43 0.45 4.28 1.84 3.29 0.27 0.02 0 0.95 0 5/20/02(PASH0931\Rainfall Data\30daycum.xls) Page 1 LSA ASSOCIATES,INC.. Los Alamitos Station No. 170 Rainfall Data: 30-day Cumulative Median Totals Date I 30-day Cumulative Rainfall(in Inches)from 1980 to 2000 Median 80-81 81-82 82-83 83-84 44.85 85-86 86-87 87-88 88.89 89-90 90-91 91-92 92.93 93-94 94-95 95-96 96-97 97-98 98-99 99-00 Nov 1 0 0.42 0.21 0.83 0.33 0.03 0.1 0.48 0 0.51 0 0 0.37 0.04 0,11 0 0.77 0 0.15 0 0.08 2 0 0.23 0.21 0.42 0.33 0.03 0.1 0.48 0 0.51 0 0 0.37 0.04 0.11 0 0.77 0 0.15 0 0.08 3 0 0.23 0.21 0.96 0.33 0.03 0.06 1.44 0 0.51 0 0 0.37 0.04 0.11 0.04 0.77 0 0.15 0 0.06 4 0 0.23 0.27 0.96 0.33 0.03 0.06 1.44 0 0.51 0 0 0.37 0.04 0 0.04 0.77 0 0.15 0 0.06 5 0 0.42 0.21 0.61 0.33 0.03 0.06 1.44 0 0.51 0 0 0.37 0.04 0 0.04 0.77 0 0.15 0 0.06 6 0 0.421 0.211 0.61 0.33 0.03 0.06 1.44 0 0.51 0 01 0.37 0.04 01 0.04 0.77 0 0 0 0.06 7 0 0.42 0.21 0.54 0.33 0.03 0.06 1.66 0 0.51 0 0 0.37 0.04 0 0.04 0.77 0 0 0 0.06 8 0 0.34 0.21 0.64 0.33 0.03 0.06 1.66 0 0.51 0 0 0.37 0.04 0 0.04 0.77 0 0 0 0.08 9 0 0.34 0.21 0.54 0.47 0.03 0.06 1.66 0 0.51 0 0 0.37 0.04 0.1 0.04 0.77 0 0.58 0.11 0.11 10 0 0.34 0.21 0.54 0.47 0.03 0 1.66 0 0.51 0 0 0.37 0.04 0.1 0.04 0.77 0 0.58 0.14 0.13 11 0 0.34 1 0.64 0.47 0.03 0 1.66 0 6.51 0 0 0.37 0.04 0.3 0.04 0.77 0 0.58 0.14 0.13 12 0 0.34 1.46 0.56 0.44 0.43 0 1.51 0 0.51 0 0 0.37 0.43 0.44 0.04 0.77 0.08 0.58 0.14 0.24 13 0 0.34 1.46 1.21 0.44 0.82 0 1.51 0 0.51 0 0 0.37 0.43 0.44 0.04 0,77 0.08 0.58 0.14 0.30 14 0 0.341 1.461 1.45 0.47 0.82 0 1.51 0 0.51 0 0 0.37 0.43 0.441 0.04 0.77 0.141 0.58 0.14 0.30 15 0 0.34 1.461 1.45 0.47 0.82 0 1.63 0.31 0.51 0 0 0.37 0.43 0.44 0.04 0.77 0.97 0.58 0.14 0.40 16 0 0.34 1.461 1.45 0.47 0.82 0 1.63 0.31 0.51 0 0 0.37 0.39 0.44 0.04 0.77 0.97 0.58 0.14 0.42 17 0 0.34 1.461 1.45 0.17 0.82 0 1.63 0.31 0.51 0 0 0.37 0.39 0.47 0.04 0.77 0.97 0.58 0.14 0.43 18 0 0.34 1.461 1.45 0.24 0.82 0 1.63 0.31 0.51 0 0 0.37 0.39 0.47 0.04 0.77 0.97 0.58 0.18 0.49 19 0 0.34 1.461 1.45 0.24 0.82 0.64 1.63 0.31 0.51 0 0.06 0.37 0.39 0.47 0.04 0.77 0.97 0.58 0.181 0.51 20 0 0.34 1.591 1.45 0.24 0.82 0.64 1.631 0.311 0.51 0 0.06 0.37 0.39 0.47 0.04 0.77 0.97 0.58 0.181 0.51 21 0 0.34 1.59 1.57 0.24 0.82 0.64 1.63 0.31 0.43 0 0.061 0.37 0.39 0.47 0.04 0.77 0.97 0.58 0.18 0.49 22 0 0.34 1.59 1.75 0.24 0.79 0.64 1.63 0.31 0.19 0.24 0.06 0.25 0.391 0.47 0.04 1.04 0.971 0.58 0.18 0.55 23 0 0.34 1.59 1.75 0.24 0.79 0.64 1.38 0.31 0 0.24 0.06 0.22 0.39 0.47 0.04 2.77 0.97 0.58 0.18 0,55 24 0 0.34 '11.59 1.75 0.24 0.79 0.64 1.38 0.31 0 0.24 0.06 0 0.43 0.47 0.04 2.77 0.97 0.58 0.18 0.55 25 0 0.34 1.59 1.75 0.24 0.79 0.64 1.38 0.4 0 0.24 0.06 0 0.43 0.47 0.04 2.77 0.97 0.58 0.18 0,49 26 0 0.34 1.49 2.38 0.86 1.62 0.64 1.38 0.69 0 0.24 0.06 0 ..43 0.47 0.04 2.77 0.97 0.58 0.18 0.61 27 0 0,37 1.49 2.38 0.86 1.62 0.64 1.38 0.69 0.11 0.32 0.06 0 0.43 0.47 0.04 2.77 0.97 0.58 0.18 0.61 28 0 0.64 1.49 2.38 0.86 1.62 0.64 1.3 0.69 0.11 0.32 0.06 0 0.43 0.47 0.04 2.77 1.59 0.58 0.18 0.64 29 0 2.61 1.49 2.38 0.86 1.62 0.64 1.3 0.69 0.11 0.32 0.06 0 0.43 0.47 0.04 2.77 1.59 0.77 0.18 0.73 30 0 2.61 1.541 2.38 0.86 2.84 0.64 1.3 0.69 0.11 0.32 0.06 0 0.43 0.47 0.04 2.44 1.59 0.77 0.18 0.82 Dec 1 0 2.61 2.281 2.38 0.86 3.09 0.64 1.3 0.69 0.11 0.32 0.06 0 0.51 0.47 0.04 2 1.59 0.77 0.18 0.62 2 0 2.61 2.34 2.38 0.86 3.09 6.64 -1.3 0.69 0.11 0.32 0.06 0 0.51 0.47 0.04 2 1.96 0.77 0.18 0.82 31 0 2.61 2.34 1.9 0.86 3.11 0.64 0.34 0.69 0.11 0.32 0.06 0 0.51 0.47 0 2 1.96 1.2 0.18 0.78 4 0 2.61 2.34 1.9 0.95 3.42 0.64 0.34 0.69 0,11 0.32 0.06 0 0.51 0.47 0 2 1.96 1.2 0.18 0.82 5 0.76 2.42 2.34 2.14 0.95 3.42 0.641 1.3 0.69 0.11 0.32 0.06 0 0.51 0.47 0 2 1.96 1.2 0.18 1.16 Dec 6 1.86 2.42 2.34 2.14 0.95 3.42 0.64 0.53 0.69 0.11 0.32 0.061 0 0.51 0.5 0 2 1.96 1.43 0.18 1.17 7 1.86 2.42 2.34 2.14 0.95 3.42 0.8 0.49 0.69 0.11 0.32 0.061 0 0.51 0.5 0 2.16 3.84 1.43 0.18 1.14 8 1.86 2.42 2.34 2.14 0.95 3.42 0.96 0.49 0.69 0.11 0.32 0.06 3.08 0.51 0.5 0 2.16 4.071 1.43 0.18 1.04 9 1.86 2.42 2.34 2.14 1.35 3.42 0.96 0.49 0.69 0.11 0.32 0.25 4.33 0.51 0.4 0 2.16 4.07 0.85 0.07 1.04 10 1.86 2.42 2.34 2.14 1.46 3.42 0.96 0.49 0.69 0.11 0.32 0.4 4.33 0.51 0.4 0 2.16 4.15 0.85 0.04 0.92 11 1.86 2.42 1.55 2.28 1.46 3.43 0.96 0.491 0.69 0.11 0.32 0.4 4.33 0.51 0.2 0 3.03 4.15 0.85 0.04 0.92 121 1.86 2.42 1.091 2.261 2.17 3.031 0.96 0.491 0.69 0.11 0.32 0.4 4.45 0.12 0.06 0 4.07 4.07 0.65 0.04 0.92 131 1.86 2.42 1.091 1.611 2.171 2641 0.96 0.491 0.691 0.11 0.32 0.55 4.451 0.471 0.061 0 4.38 4.07 0.85 0.041 1 0.86 5/20/02(PASH0931\Rainfall Data130daycum.xls) Page 2 4 I-SAMSOCIATES,]NO, Los Alamitos Station No. 170 Rainfall Data: 30-day Cumulative Median Totals Date 30-day Cumulative Rainfall(in Inches)from 1958 to 1980 58-59 59.60 60-61 61-62 62-63 63-64 64.65 65-66 66-67 67-68 68.69 69.70 70-71 71-72 72-73 73-74 74-75 75-76 76.77 77-78 78-79 79-80 14 0.00 0.12 0.78 2.18 0 1.84 0.6 6.19 3.87 2.48 0.55 0.09 3.43 0.72 4.28 1.84 3.29 0.31 0.02 0 0.95 0 15 0.00 0.12 0.61 2.18 0 1.84 0.6 6.39 3,85 2.48 0.55 0.09 3.46 0.72 4.18 1,84 3.29 0,31 0.02 0 0 0 16 0.00 0.12 0.61 2.18 0 1.84 0.6 5.39 3.85 2.48 0.34 0.09 3.46 0.72 3.36 1.84 3.29 0.31 0.02 0 0 0 17 0.00 0.12 0.61 2.18 01.45 0.6 5.34 3.85 2.48 0.27 0.06 3.46 0.72 2.18 1.84 3.29 0.31 0.02 0 0 0 18 0.00 0.12 0.61 2.18 . 0.01 1.45 0.32 4.36 3.85 2.48 0.27 0.06 3.51 0.72 1.22 1.34 3.29 0.31 0.02 0 0.27 0 19 0.00 0.12 0.61 2.18 0.01 1.45 0 4.04 3.85 2.48 0.27 0.06 3.58 0.72 1.22 0.89 3.29 0.31 0.02 0.26 0.67 0 20 0.00 0,12 0.61 2.18 0.01 1.45 0.11 4.04 3.85 2.89 0.27 0.06 5.22 0.72 1.22 0.89 3,29 0.31 0 0.26 0.99 0 21 0.00 0.12 0.61 2.18 0.01 0.01 0.24 4.04 3.85 2.79 0.37 0.06 6.14 0.72 1.22 0.89 3.29 0.31 0 0.26 0.99 0 22 0.00 0.48 0.61 1.78 0.01 0.01 0.4 4.04 3.83 2.2 0.37 0.06 6.79 0.72 1.22 0.89 3.29 0.36 0 0.26 0.99 0.09 23 0.00 0.48 0.61 1.78 0.01 0.01 0.4 3.53 3.83 1.32 0.37 0.06 6.9 1.21 1.22 1.07 3.28 0.36 0 0.26 0.99 0.09 24 0.00 0.48 0.61 1.78 0.01 0.01 0.42 2.21 3.63 1.32 0.37 0.06 6.91 1.25 1.22 0.25 3.28 0.36 0 0.26 0.99 0.09 25 0.00 0.73 0.61 1.78 0.01 0.01 0.42 2.21 3.83 1.32 0.39 0.06 6.91 1.52 1.22 0.25 3.28 0.36 0 0.26 0.99 0,09 26 0.00 1.91 0.61 1.52 0.01 0.01 0.42 1.811 3.83 1.32 0.411 0.06 6.89 2.78 1.22 0.25 3.28 0.36 0 0.26 0.99 0.27 27 0.001 1.911 0,61 1.18 0.01 0.01 0.42 1.811 3.63 1.32 1.06 0.06 6.63 2.96 1.22 0.25 3.28 0.36 0 0.96 0.99 0.27 28 0.00 1.91 0.09 1.18 0.01 0.01 1.14 1.811 3.83 1.32 tD6 0,06 6.63 3.14 1.22 0.25 3.28 0.31 0 1.14J 0.99 0.27 29 0.00 1.91 0.09 1.18 0.01 0.01 1.34 1.81 3.83 1.23 1.06 0.06 6.63 3.81 1.22 0.25 3.8 0.21 0 1.34 0.99 0.27 30 0.00 1.91 0.09 1.18 0.01 0.01 1.39 2.03 3.83 1.14 1,06 0.06 4.61 3.971 1.22 0.25 4.08 0.09 0 2.39 0.99 0.27 31 0.00 1.91 0.09 1.18 0.01 0.01 1.39 2.72 3.83_ 1.14 1.06 0.06 3.88 3.97 1.22 0.25 4.08 0.09 0 2.39 0.99 0.27 Jan 1 0.00 1.91 0.09 1.18 0.01 0.61 1.41 2.93 3.83 0.89 1.11 0.06 3.88 3.97 1.22 0.25 4.08 0.09 0.27 2.39 0.99 0.27 2 0.00 _1.91 0 0.35 0.01 0.01 1.41 2.93 3.83 0.89 1,11 0.04 3.88 3.97 1.22 0.27 4.08 0.09 0.36 2.39 0.99 0.27 Jan 3 0.00 1.91 0 0.231 0.01 0.01 1.41 2.93 2.45 0.91 1.11 0.04 4.38 3.79 1.22 0.27 4.08 0.09 6.36 2.39 0.99 0.27 4 0.00 1.91 0 0.23 0.01 0.01 1.41 2.93 2.2 0.91 1.11 0.04 4.38 3.52 1.16 0.27 0.81 0.09 0.98 2.39 0.99 0.27 5 0.00 1.91 0 0.23 0.01 0.01 1.41 2.93 0.63 0.91 1.11 0.04 4.38 3.52 0.57 0.52 0.8 0.09 0.98 2.95 0.99 0.27 6 0.00 1.91 0 0.23 0.01 0.01 1.41 2.93 0.14 0.91 1.11 0.04 4.36 3.52 0.57 1.74 0.8 0.09 0.98 4.08 1.57 0.27 7 0.71 1.91 0 0.23 0.01 0.01 1.41 2.93 0 0.91 1.11 0.04 4.38 3.52 0.37 1.74 0.8 0.09 1.55 4.24 2.41 0.27 8 0.71 1.88 0 0.23 0.01 0.01 1.58 2.93 0 0.85 1.11 0.04 4.38 3.52 0.07 2.8 0.8 0.09 2.35 4.46 2.41 0.4 9 0.71 1.79 0 0.23 0.01 0 1.61 2.65 0 0.85 1.11 0 4.15 3.52 0 4.17 0.8 0.09 2.35 4.46 2.41 0.76 10 0.71 1.79 0 0.23 0.01 0 1.61 2.02 0 0.85 1.1 0 4.15 3.52 0.43 4.33 0.8 0.09 2,35 4.46 2.41 1.93 11 0.71 2 0 0.23 0.01 0 1.61 2.02 0 0.85 0.08 0.86 4.15 3.52 0.54. 4.34 0.8 0.09 2.35 5.71 2.67 2.47 12 0.71 2.1.1 0 0.23 0.01 0 1.61 1.83 0 0.95 0.88 0.86 4.15 3.52 0.54 4.34 0.8 0.09 2.35 6.051 2.67 4.03 13 0.71 2.71 0 0.23 0.01 0 1.61 1.79 0 0.95 0.88 1.27 4.15 3,25 0.54 4.34 0.8 0.05 2.35 6.051 2.67 4.36 14 0.71 2.71 0 0.34 0.01 0 1.61 1.69 0 0.95 0.88 1.27 4.18 3.251 0.54 4.34 0.8 0.05 2.35 6.05 2.67 4.38 15 0.71 2.71 0 0.25 0.01 0 1.61 1.57 0 0.95 2.16 1.27 4.29 3.25 0.54 4.34 0.8 0.05 2.35 6.05 2.67 4.44 16 0.71 3.7 0 0.25 0.01 0 1.61 1.12 0 0.95 2.14 1.27 4.29 3.25 0.54 4.34 0.8 0.05 2.35 7.27 3.05 4.44 17 0.71 3.7 0 0.25 0 0 1.61 1.12 0.02 0.95 2.14 1.38 4.24 3.25 0.54 4.34 0.8 0.05 2.35 7.27 3.36 4.44 18 0.71 3.7 0 0.251 01 0 1.61 1.12 0.02 0.95 2.14 2.01 4.17 3.25 1.66 4.5 0.8 0.05 2.35 7.74 2.96 4.44 19 0.71 3.7 0 0.25 01 0 1.5 1.12 0.02 0.3 2.14 2.01 2.53 3.25 1.66 4.5 0.8 0.05 2.35 7.74 2.64 4.5 20 0.71 3.7 0 0.25 0 0.17 1.37 1.12 0.02 0.12 3.11 2.01 1.61 3.25 2.09 4.5 0.8 0.05 2.35 8.27 2.79 4.5 21 0.71 3.34 0 0.41 ±010.66 1.21 1.12 0.02 0.12 5.29 2.01 0.96 3.25 2.09 4.5 0.8 0 2.35 8.38 2.79 4.41 22 0.71 3.34 0 1.28 1.21 1.12 0.02 0.12 6.67 2.01 0.85 2.76 2.09 4.43 O.B 0 2.62 8.38 2.79 4.41 23 0.71 3.34 0 1.56 1.19 1.12 0.14 0.12 6.86 2.01 0.84 2.72 2.09 4.43 0.8 0 2.62 8.38 2.79 4.41 24 0.71 3.09 0 1.84 1.19 1.12 1.65 0.12 6.84 2.01 0.84 2.45 2.09 4.43 0.8 0 2.62 8.38 2.79 4.41 5/20/02(P:1SH09311ftnfaA Data130daycum.x1s) Page 3 LSAMSOCIATES''NC. Los Alamitos Station No. 170 Rainfall Data: 30-day Cumulative Median Totals Date I 30-day Cumulative Rainfall(in Inches)from 1980 to 2000 Median 80-81 81-82 82-83 83-84 84.85 85-86 86-87 87-88 88-89 89-90 90-91 91-92 92-93 93-94 94-95 95-96 96.07 97-98 98-99 99-00 141 1.86 2.42 1.09 1.37 2.14 2.64 0.96 0.49 0.69 0.11 0.32 0.55 4.45 0.47 0,31 0.66 4.38 4.01 0.85 0.04 0.82 151 1.86 2.42 1.09 1.37 2.14 2.64 0.96 0.37 0.38 0.11 0.32 0.55 4.45 0.47 0.31 0.69 4.38 3.18 0.85 0.04 0.71 161 1.86 2.42 1.09 1.37 2.14 2.64 0.96 0.37 0.38 0.11 0.32 0.55 4.45 0.59 0,31 0.69 4.38 3.18 0.85 0.04 0.71 171 1.86 2.42 1.09 1.37 2.48 2.64 0.96 0.37 0.74 0.11 0.32 0.55 4.45 0.59 0.28 0.69 4.38 3.18 0.85 0.04 0.73 18 1.86 2.42 1.09 1.37 2.41 2.64 0.96 0.96 0.74 0.11 0.32 0.55 4.45 0.59 0.28 0.69 4.38 3.18 0.85 0 0.80 19 1.86 2.421 1.091 1.37 2.53 2.64 0.32 0.96 0.81 0.11 0.32 0.53 4.56 0.59 0.28 0.69 4.38 3.18 0.85 0 0.77 20 ' 1.66 2.42 0.96 1.37 3.84 2.641 0.32 0.96 0.61 0.11 0.32 0.53 4.56 0.79 0.28 0.69 4.38 4.32 0.85 0 0.83 21 1.86 2.42 0.96 1.25 4.27 2.64 0.32 0,96 0.81 0.11 0.41 0.531 4.56 0.79 0.28 0.69 4.38 4.32 0.93 0 0.80 22 1.86 2.49 0.96 1.07 4.27 2.64 0.32 0.96 1.21 0.11 0.16 0.531 4.56 0.79 0.28 0,69 4.11 4.6 0.97 0 0.84 23 1.86 2.49 1.22 1.07 4.27 2.64 0.32 0.96 1.21 0.11 0,16 0.53 4.56 0.79 0.28 0.69 2.38 4.6 0.97 0 0.97 24 1.86 2.49 1.74 1.07 4.27 2.64 0.32 0.96 1.35 0.11 0.16 0.53 4.56 0.75 0.28 1.18 2.54 4.6 0.97 0 0.97 251 1.06 2.49 1.74 1.07 4.27 2.64 0.45 0.96 1.26 0.11 0.16 0.53 4.56 0.75 0.26 1.28 2.544.6 0.97 0 0.97 26 1.86 2.49 1.74 1.32 3.65 1.81 0.45 0.96 2.17 0.11 0.16 0.53 4,56 0.75 0.85 1.28 2.54 4.6 0.97 0 0.98 27 1.86 2.461 1.741 1.38 3.65 1.81 0.45 0.96 2.17 0.00 0.06 0.53 4.56 0.75 0.85 1.28 2.54 4.6 0.97 0 1.03 28 1.86 2.19 1.74 1.47 4.551 1.811 0.45 0.96 2.17 0.00 0.08 0.53 4.56 0.75 0.85 1.28 2.54 3.98 0.97 0 1.14 29 1.86 0.07 1.74 1.48 4.91 1.81 0.45 0.96 2.17 0.00 0.08 1.14 4.97 0.75 0.85 1.28 2,96 3.98 0.78 0 1.16 30 1.86 0.07 1.69 1.48 4.91 0.59 0.45 0.96 2.17 0.00 0.08 1.141 5.16 0.75 0.85 1.28 2,96 3.98 0.78 0 1.10 31 1.86 0.64 0.84 1.48 4.91 0.34 0.45 1.16 2.17 0.00 0.08 1.59 5.48 0.67 0.85 1.28 2,96 3.98 0.78 0 1.10 Jan 1 1.86 0.69 0.78 1.48 4.91 0.34 0.45 1.16 2.17 0.00 0.08 1.59 5.48 0.67 0.85 1.28 2.96 3.61 0.78 0 1.05 21 1.86 1.07 0.78 1.42 4.91 0.32 0.45 1.16 2.4 0.00 0.08 1.59 5.48 0.67 0.85 1.28 2.96 3.61 0.35 0.07 1.03 Jan 3 1.86 1.21 0.78 1.42 4.82 0.01 0.45 1.18 2.4 0.35 0.08 1.59 6.77 0.67 0.85 1.28 3.16 3.61 0.35 0.07 1.05 4 1.1 1.21 0.78 1.18 4.82 0.03 0.45 1.46 2.4 0.44 0.12 1.63 5.82 0.67 1.111 1.28 3.391 3.611 0.35 0.07 1.05 5 0 1.21 0.78 1.18 4.82 0.03 1.7 1.09 2.4 0.44 1.08 1.69 5.82 0.67 1.59 1.28 3.39 3.611 0.12 0.07 0.99 6 0 1.6 0.78 1.18 4.82 0.03 1.54 1.09 2.4 0.44 1.12 1.82 6.82 0.67 6.14 1.28 3.23 1.841 0.12 0.07 1.10 7 0 1.67 0.78 1.18 4.82 0.08 1.38 1.09 2.58 0.44 1.12 2.73 3.53 0.67 6.14 1.28 3.35 1.611 0.12 0.07 1 1.12 8 0 1.67 0.78 1.18 4.32 0.44 1.7 1.09 2.58 0.44 1.12 2.54 4.26 0.67 6.44 1.28 3.35 1.61 0.12 0.07 1 1.12 9 0 1.67 0.78 1.18 4.88 0.44 1.7 1.09 2.58 0.44 1.12 2.77 4.79 0.67 8.3 1.28 3.35 1.63 0.12 0.07 1 1.12 101 0 1.67 0.78 1.04 4.88 0.43 1.7 1.09 2.58 0.44 1.12 2.77 4.79 0.67 8.52 1.28 2.48 1,59 0.12 0.07 1,11 11 0 1.67 0.78 1.04 4.17 0.43 1.7 1.09 2.58 0.44 1.47 2.77 4.85 0.67 8.58 1.28 1.44 2.31 0.12 0.07 1.19 12 0.16 1.67 0.78 1.05 4.17 0.43 1.7 1.09 2.58 0.44 1.47 2.62 4.9 0.32 9.7 1.28 1.13 2.38 0.12 0.07 1.11 13 0.21 1.67 0.78 1.05 4.17 0.43 1.7 1.09 2.58 0.44 1.47 2.62 4.92 0.32 9.9 0.62 1.13 2.38 0.12 0.07 1.11 14 0.21 1.67 0.78 1.05 4.17 0.43 1.7 1.09 2.58 0.51 1.47 2.62 5.64 0.32 9.9 0.59 2.78 2.47 0.12 0.07 1.18 15 0.21 1.67 0.78 1.05 4.17 0.43 1.7 1.09 2.58 0.77 1.47 2.62 6.12 0.2 9.9 0.59 2.78 2.471 0.12 0.07 1.37 16 0.21 1.67 0.78 1.05 3.83 0.43 1.7 1.09 2.22 1.51 1.47 2.62 6.34 0.2 9.9 0.59 2.78 2.47 0.121 0.07 1.37 17 0,21 1.67 0.78 1.05 3.83 0.43 1.7 0,5 2.22 1.51 1.47 2.62 7.13 0.2 10.01 0.59 3.63 2.47 0.12 0.07 1.43 18 0,21 1.67 0.78 1.28 3.71 0.43 1.7 1.07 2.15 1.51 1.47 2.58 7.47 0.2 10.01 0.89 3.63 2.47 0.12 0.07 1 1.56 19 0.21 1.67 0.76 1.28 2.4 0.43 1.7 1.77 2.15 1.51 1.47 2.58 8.1 0 10.01 0.89 3.63 1.33 0.12 0.07 1.51 20 0.21 1.67 0.81 1.28 1.97 0.43 1.7 1.77 2.15 1.51 1.39 2.58 8.62 0 10.01 0.95 3.63 1.47 0.04 0.07 1.49 21 0.21 1.69 0.81 1.28 1.97 0.43 1.7 1.77 1.75 1,51 1.39 2.58 8.62 0 10.01 0.95 3.63 1.19 0.09 0.07 1.34 22 0.21 2.07 0.55 1.26 1.97 0.43 1.7 1.77 1.75 1,51 1.39 2.58 8.62 0 10.31 0.95 3.631 1.19 0.18 0.07 1.34 23 0,21 2.09 0.07 1.28 1.97 0.43 1.7 1.771 1.61 1.51 1.39 2,58 8.62 0 10.31 0,921 3.981 1.191 0.18 0.07 1 1.45 24 0.37 2.09 0.79 1.28 1.97 0.43 1.571 1.771 1.611 1.51 1.39 2.58 8.62 0 10.31 0.821 4.361 1.191 0.18 0.07 1 1.54 5/20/02(PASH0931\Rainfall Data\30daycum.xls) Page 4 Y}' I-SAASSOCIATES.INC. Los Alamitos Station No. 170 Rainfall Data: 30-day Cumulative Median Totals Date 30-day Cumulative Rainfall(in Inches)from 1958 to 1980 58-59 59-60 60-61 61-62 62-63 63-64 64-65 65.66 66.67 67.68 68.69 69-70 70-71 71-72 72.73 73-74 74-75 75-76 76-77 77-78 78-79 79.80 25 0.71 1.91 01 1.84 0 0,68 1.431 1.121 2.17 0.12 7.45 2.03 0.84 1.19 2.09 4.43 0.8 0 2.62 8.38 2.79 4.23 26 0.71 1,91 0.07 1.84 0 0.68 1.43 1.12 2.92 0.12 8.38 2.03 .0.84 1.01 2.09 4.43 0.8 0 2.62 7.68 2.79 4.23 27 0.71 2.04 0.58 1.84 0 0.68 0.71 1.12 2.92 0.12 9.46 2.03 0.84 0.83 2.09 4.43 0.8 0 2.62 7.5 2.79 4.23 28 0.71 2.04 0.64 1.84 0 0.68 0.51 1.12 2.92 0.15 9.65 2.03 0.84 0.17 2.09 4.43 0.28 0 2.71 7.3 2.79 4.23 29 0.71 2.04 0.64 1.84 0 0.68 0.46 0.9 2.92 0.35 9.89 2.03 0.84 0 2.09 4.43 0 0 2.71 6.25 2.79 4.51 30 0.71 2.04 0.64 1.84 0 0.68 0.46 0.21 2.92 0.35 9.89 2.03 0,84 0 2.09 4.43 0 0 2.71 6.25 2.79 6.34 31 0,71 2.04 0.64 1.84 0 0.68 0.44 0.77 2.92 0.35 9.84 2.03 0.84 0 2.09 4.43 0 0 2.44 6.25 2.79 6.4 Feb 1 0.71 2.04 0.64 1.84 0 0.68 0.44 0.94 2.97 0.46 9.84 2.03 0.84 0 2.66 4.35 0.14 0 2.35 6.29 5.05 6.4 2 0.71 2.04 0.64 1.84 0.2 0.68 0.44 0.94 2.97 0.44 9.84 2.03 0.17 0 2.66 4.35 0.14 0 2.35 6.29 5.46 6.4 3 0.71 3.13 0.64 1.84 0.23 0.68 0.44 1.17 2.97 0.44 9.84 2.03 0.17 0 2.66 4.35 0.14 0 1.73 6.29 5.69 6.4 4 0.71 3.13 0.64 1.84 0.23 0.68 0.44 1.17 2.97 0.44 9.84 2.03 0.17 0 2.66 4.1 0.77 0 1.73 5.73 6 6.4 - 5 0.71 3.13 0.64 1.84 0.23 0.68 0.44 1.17 2.97 0.44 9.84 2.03 0.17 0 3.07 2.88 1.09 0.07 1.73 4.6 5.42 6.4 6 0.00 3.13 0.64 1.84 0.23 0.68 0.44 1.17 2.97 0.44 9.98 2.03 0.17 0.03 3.2 2.88 1.13 0.15 1.16 4.69 4.58 6A Feb 7 0.00 3.13 0.64 1.84 0.23 0.68 0.44 1.52 2.97 0.44 10.45 2.03 0.17 0.03 3.7 1.82 1.13 0.74 0.36 5.92 4.58 6.27 8 0.03 3.13 0.64 1.841 0.231 0.68 0.41 2.1 2.97 0.44 10.5 2.03 0.17 0.03 3.96 0.45 1.13 1.05 0.36 6.02 4.58 5.91 9 0.09 3.17 0.64 2.841 0.231 0.68 0.46 2.1 2.97 0.44 10.5 2.03 0.17 0.03 3.77 0.291 1.13 1.26 0.36 6.42 4.58 4.74 10 0.18 3.37 0.64 4.091 0.281 0.68 0.46 2.1 2.97 0.44 10.5 1.17 0.17 0.03 3.66 0.281 1.41 1.26 0.36 6.39 4.32 4.2 11 0.21 3.26 0.64 4.14 2,751 0.68 0.46 2.1 2.97 0.39 10.5 1.33 0.17 0.03 3.66 0.281 1.76 1.89 0.36 6.99 4.32 2.64 12 0.56 2.66 0.64 4.79 4.011 0.68 0.46 2.1 2.97 0.39 10.5 1.69 0.17 0.03 4.78 0.28 1.76 1.91 0.36 6.99 4.32 2.31 13 0.61 2.66 0.64 5.35 4.011 0.68 0.461 2.1 2.97 0.39 f 0.5 1.69 0.11 0.03 5 0.28 1.761 1.91 0.36 6.991 4.32 2.29 14 0.61 2.66 0.64 5.35 4.01 0.68 0.46 2,1 2.97 0.55 9.22 1.69 0 0.03 5.51 0.28 1.76 1.91 0.361 8.231 4.32 2.23 15 0.61 1.67 0.64 5.4 4.15 0.68 0.46 2.1 2.97 0.61 9.2 1.69 0 0.03 5.51 0.28 1.76 1.91 0.36 7.14 4.66 5.47 16 0.61 1.67 0.64 5.4 4.15 0.68 0.46 2.1 2.95 0.61 9.2 1.58 0 0.03 6.51 0.28 1.76 1.91 0.36 7.14 4.08 5.68 17 1.56 1.67 0,64 6,67 4,150.68 0,46 2.1 2.95 0.61 9.37 0.95 0 .0.03 4.39 0.12 1,76 1.91 0.36 6.41 4.08 5.79 18 1.75 1.67 0.64 6.67 4.151 0.68 0.46 2.1 2.95 0.62 9.37 0.95 0.6 0.03 4.39 0.12 1.76 1.91 0.36 6.41 4.08 6.82 19 1.75 1.67 0.64 6.67 4.15 0.51 0.46 2.1 2.95 0.62 8.65 0.95 0.6 0.03 3.96 0.12 1.76 1.91 0.36 5.88 3.93 8 20 1.81 1.67 0.64 7.19 4.15 0.51 0.46 2.1 2.95 0.62 6.6 0.95 0.6 0.03 3.96 0.12 1.76 1.91 0.36 5.77 3.93 8.06 21 1.81 1.67 0.64 6.64 4.15 0.11 0.46 2.1 2.95 0.62 5.4 0.95 0.61 0.03 3.96 0.02 1.761 1.91 0.09 5.77 3.93 8.06 22 2.24 1.67 0.64 6.83 4.15 0 0.46 2.1 2.83 0.62 5.21 0.95 0.61 0.03 3.96 0.02 1.76 1.91 0.09 5.771 4.22 8.82 23 2.81 1.67 0.64 6.92 4.15 0 0.46 2.1 1.32 0.62 5.86 0.95 0.61 0.03 3.96 0.02 1.76 1.91 0.09 6.77 4.24 8.91 24 2.81 1.67 0.64 6.92 4.15 0 0.22 2.1 0.8 0.62 5.26 0.93 0.61 0.03 3.96 0.02 1.76 1.91 0.09 5.77 4.5 8.91 25 2.81 1.67 0.57 6.92 4.15 0 0.22 2.1 0.05 0.62 5.15 0.93 0.61 0.03 3.96 0.02 1.76 1.91 0.2 5.77 4.5 8.91 26 2.81 1.54 0.06 6.92 4.15 0 0.22 2.1 0.05 0.62 5.09 0.93 0.61 0.03 3.96 0.02 1.76 1.91 0.46 5.77 4.5 8.9f 27 2.81 1.54 0 6.92 4.15 0 0.22 2.1 0.05 0.59 5.28 0.93 0.61 0.03 3.96 0.02 1.76 1.91 0.37 5.77 4.5 8.91 28 2.81 1.54 0 6.92 4.15 0 0.221 2.1 0.05 0.39 5.04 0.93 0.61 0.03 3.96 0.02 1.76 1.91 0.37 5.8 4.5 8.63 29 2.81 1.54 0 6.92 4.15 0 0.22 2.1 0.05 0.39 5.04 0.93 0.61 0.03 4.44 0.02 1.76 1.91 0.37 5.95 4.5 6.8 Mar 1 2.81 2.35 0 6.92 4.15 0 0.22 1.33 0.05 0.39 5.04 0.93 0.61 0.04 4.44 0.02 1.76 1.91 0.37 5.95 4.5 6.74 2 2.81 2.35 0 6.92 4.15 0 0.22 1.16 0 0.28 5.35 1.47 0.61 0.05 3.87 0.01 1.62 2 0.37 7.08 2.3 6.74 3 2.61 2.37 0 6.92 3.95 0.09 0.22 1,22 0 0.28 5.35 1.8 0.61 0.05 3.87 0.15 1.62 2.3 0.37 7.33 1.91 6.74 4 2.61 1.28 0 6.92 3.92 0.09 0.22 0.99 0 0.28 5.35 1.8 0.61 0.05 3.87 0.81 1.62 2.49 0.37 7.94 1.68 6.74 5 2.81 1.28 0 6.92 3.92 0.09 0.22 0.99 0.05 0.28 5,35 1.8 0.61 0.05 3.87 0.92 0.99 2.49 0.37 8.44 1.37 7.2 Mar 6 2.81 1.28 0 6.92 3.92 0.09 0.22 0.99 0.16 0.28 5.35 2.54 0.61 0.05 3.46 0.93 0.66 2.42 0.37 9.641 1.37 7.2 5120/02(PASH0931\Rainfall Data\30daycum.x1s) Page 5 LSA ASSOCIATES,INC. Los Alamitos Station No. 170 Rainfall Data: 30-day Cumulative Median Totals Date I 30-day Cumulative Rainfall fin Inches)from 1980 to 2000 Median 80.81 81-82 82-83 83-84 84-85 85.86 86-87 87.88 88-89 89-90 90-91 91-92 92-93 93-94 94-95 95-96 96-97 97-98 98-99 99-00 25 0.37 2.09 0.79 0.4 1.97 0.43 1.57 1.77 0.45 1.51 1.39 2.58 8.62 0 10.48 0.82 4.36 1.19 0.18 0.07 1,41 26 0.37 2.09 0.93 0.34 1.97 0.43 1.57 1.77 0.45 1.51 1.39 2.58 8.62 0.28 11.56 0.82 4.36 1.19 0.55 0.28 1.41 27 0.37 2.09 0.93 0.25 1.07 0.43 1.57 1.77 0.45 1.51 1.39 2.58 8.62 0.28 11.73 0.82 5.17 1.19 0.65 0.58 1.16 28 0.37 2.09 1.46 0.24 0.71 0.43 1.57 1.77 0.45 1.51 1.39 1.97 8.21 0.28 11.73 0.82 4.75 1.19 1.09 0.58 1.29 29 1.05 2.09 1.71 0.24 0.71 0.43 1.61 1.77 0.45 1.51 1.39 1.97 8.02 0.28 11.73 1.01 4.75 1.19 1.09 0.58 1.29 30 1.08 1.58 2.06 0.24 1.25 0.43 1.61 1.57 0.45 1.51 1.39 1.52 7.7 0.28 11.73 1.01 4.75 1.19 1.09 0.58 1.32 31 1.73 1.53 2.06 0.24 1.25 1.01 1.61 1.57 0.45 1.51 1.39 1.52 7.7 0.28 11.73 1.01 4.75 1.68 1.09 0.58 1.52 Feb 1 1.73 1.15 2.06 0.24 1.25 1.13 1.61 1,57 0.22 1.51 1.39 1.52 8,09 0.28 11.73 1.3 4.75 1.7 1.09 0.62 1.45 2 1.73 1.01 2.06 0.24 1.25 1.66 1.61 1.55 0.22 1.16 1.39 1.52 7.8 0.28 11.73 1.58 4.55 1.91 1.42 0.62 1.54 3 1.73 1.01 2.06 0.24 1.65 1.64 1.61 1.86 0.22 1.07 1.35 1.48 7.75 0.28 11.47 1.58 4.32 1.95 1.42 0.62 1.60 4 1.73 1.01 2.63 0.24 1.65 1.64 0.36 1.9 0.22 1.07 0.39 1.42 7.75 0.28 10.96 1.58 4.32 2.35 1.42 0.62 1.50 5 1.73 0.62 2.63 0.24 1.65 1.64 0.36 1.9 0.33 1.07 0.35 1.29 7.75 0.79 6.41 1.84 4.32 3.27 1.42 0.62 1.63 6 1.73 0.55 2.63 0.24 1.65 1.59 0.36 1.9 0.19 1.40 0.35 0.38 6.96 0.84 6.41 1.84 4.2 3.27 1.76 0.62 1.50 Feb 7 1.73 0.55 2.83 0.24 1.61 1.23 0.04 1.9 0.19 1.40 0.35 0.38 4.98 0.84 6.11 1.84 4.2 3.27 1.76 0.62 1,46 8 1.73 0.58 2.97 0.24 0.94 1.23 0.04 1.9 0.19 1.40 0.35 1.03 4.45 1.44 4.25 1.84 4.2 3.67 1.76 0.62 1.32 9 1.73 0.64 3.1 0.24 0.94 1.64 0.04 1.9 0.28 1.40 0.35 1.03 5.48 1.98 4.08 1.84 4.2 4.52 1.76 0.62 1.52 10 2.5 0.64 3.1 0.24 1.82 1.64 0.04 1.9 0.41 1.40 0 1.03 5.6 1.98 4.09 1.84 4.2 4.15 1.76 0.62 1.53 11 2.34 0.67 3.1 0.23 1.82 1.64 0.24 1.9 0.48 1.40 0 1.34 5.43 1.98 2.97 1.84 4.2 4.08 1.88 0.62 1.83 12 2.29 0.93 3.1 0.23 1.82 1,64 0.24 1.9 0.48 1.40 0 1.68 5.41 1.98 2.52 1.84 4.32 4.08 1.88 1.02 1.83 13 2.29 '0.93 3.1 0.23 1.82 1.64 0.24 1.9 0.48 1.33 0 1.83 4.69 1.98 2.52 1.84 2,67 3.99 1.88 1.37 1.84 14 2.29 0.93 3.16 0.23 1.82 2.68 0.24 1.9 0.48 1.07 0 3.77 4.21 1.98 2.52 1.84 2.67 3.99 1.88 1.37 1.89 15 2.29 0.93 3.16 0.23 1.82 3.04 0.24 1.9 0.8 0.33 0 3.81 3.99 1.98 2.66 1.84 2.67 3,99 1.88 1.53 1.86 16 2.29 0.93 3.16 0.23 1.82 4.54 0.57 1.9 0.8 0.33 0 3.83 3.2 1.98 2.74 1.84 1.82 5.32 1.88 1.53 1.83 17 2.29 0.93 3.16 0 1.82 4.65 0.57 1.33 0.8 0.33 0 4.46 2.75 1.98 2.74 1.54 1.82 5.32 1.88 1.59 1.79 18 2.29 0.93 3.16 0 1.82 4.65 0.57 0.63 0.8 0.96 0 4.46 2.12 2.45 2.74 1.54 1.82 6.49 1.88 1.87 1.82 19 2.29 0.93 3.13 0 1.82 4.65 0.57 0.63 0.8. 1.72 0 4.46 1.6 3.46 2.74 1.48 1.82 6.35 1.88 1.87 1.79 20 2.29 0.84 3.14 0 1.82 4.68 0.57 0.63 0.8 1.72 0 4.46 2.19 3.56 2.74 1.48 1.82 6.35 1.79 1.87 1.62 21 2.29 0.46 3.14 0 1.82 4.72 0.57 0.63 0.8 1.72 0 4.46 3.27 4.53 2.44 2.16 1.82 7.07 1.7 2.02 1.82 22 2.29 0.44 3.1 0 1.83 4.72 0.57 0.63 0.8 1.72 0 4.46 3.27 4.81 2.44 2.91 1.31 7.07 1.7 2.81 1.87 23 2.13 0.44 2.38 0 1.83 4.72 0.57 0.63 0.8 1.72 0 4.46 3.27 4.81 2.44 3.11 0.93 7.6 1.7 3.27 1.80 24 2.13 0.44 2.38 0 1.83 4.72 0.67 0.63 0.76 1.72 0 4.46 3.29 4.81 1.7 3.11 0.93 7.88 1.7 3.39 1.74 25 2.13 0.44 2.26 0 1.83 4.72 0.83 0.63 0.76 1.72 0 4.46 3.46 4.53 0.62 3.11 0.93 9.07 1.33 3.61 1.74 28 2.13 0.44 2.3 0 1.83 4.72 0.83 0.63 0.76 1.72 0 4.46 3.46 4.53 0.45 3.28 0.12 9.07 1.23 3.31 1.74 27 2.36 0.44 2.33 0 1.83 4.72 0.83 0.63 0.76 1.72 0 4.46 3.46 4.53 0.45 3.34 0.12 9.07 0.79 3.31 1.74 28 1.68 0.44 2.26 0 1.83 4.72 0.79 0.63 0.76 1.72 0 4.46 3.53 4.53 0.45 3.15 0.12 9.07 0.79 3.31 1.70 29 1.65 0.38 2.72 0 1.29 4.72 0.79 0.63 0.76 1.72 1.38 4.46 3.53 4.53 0.45 3.53 0.12 9.071 0.79 3.37 1.60 Mar 1 1 0.38 2.72 0 1.29 4.14 0.79 0.67 0.76 1.72 1.38 4.46 3.53 4.53 0.45 3.53 0.12 8.581 0.79 3.37 1.36 2 1.4 0.38 2.72 0 1.29 4.02 0.79 0.89 0.76 1.72 2.8 4.46 3.14 4.53 0.45 3.24 0.12 8.66 0.79 3.26 1.55 3 2.62 0.48 2.72 0 1.29 3.49 0.79 0.94 0.767 11.72 2.86 4.65 3,14 4.53 0.45 2.96 0.12 8.35 0.46 3.26 1.76 4 2.62 0.54 2.72 0 0.89 3.49 0.79 0.35 0.921 1.72 2.86 4.97 3.14 4.53 0.45 2.96 0.12 6.31 0.461 3,261 1 1.65 5 2.62 0.54 2.15 0 0.89 3.54 0.79 0.31 0.921 1.72 2.86 4.97 3.14 4.53 0.45 2.96 0.12 7.91 OA61 3.651 1 1.33 Mar 6 3.82 0.54 2.15 0 0,89 3.54 0.79 0.31 0.811 1.761 2.951 4.971 3.14 4.02 0.45 3.41 0.12 6.88 0.461 3.991 1 1.33 11 5/20/02(PASH0931\Rainfall Data\30daycum.xls) Page 6 ISAASSOCIATES,INC. Los Alamitos Station No. 170 Rainfall Data: 30-day Cumulative Median Totals Date 30-day Cumulative Rainfall(in Inches)from 1958 to 1980 58-59 59-60 60-61 61-62 62-63 63.64 64-65 65-66 66-67 67-68 68-69 69-70 70-71 71-72 72-73 73-74 74.75 75-76 76-77 77-78 78-79 79.80 7 2.81 1.28 0 7.21 3.92 0.09 0.22 0.99 0.16 0.28 5.21 2.54 0.61 0.02 3.33 0.93 1.26 2.34 0.37 9.51 1.37 7.92 8 2.81 1.28 0 7.21 3.92 0.09 0.5 0.64 0.16 0.28 4.74 2.54 0.61 0.02 2.83 0.93 1.26 1.75 0.37 8.06 1.37 8.11 9 2.78 1.28 0 7.21 3.92 0.09 0.33 0.06 0.16 2.25 4.69 2.54 0.61 0.02 2.57 1.14 1.77 1.44 0.37 7.96 1.37 8.11 10 2.72 1.24 0 6.21 3.92 0.09 0.28 0.06 0.16 2.25 4.69 2.54 0.61 0.02 2.33 2.31 2.01 1.23 0.37 7.56 1.37 8.11 11 2.63 0.83 0 4.96 3.87 0.09 0.28 0.06 0.16 2.25 4.86 2.54 0.61 0.02 2.33 2.42 1.76 1.23 0.37 6.54 1.37 8.11 12 2.60 0.83 0 4.91 1.4 0.09 0.28 0.06 0.28 2.2 4.86 2.38 0.61 0.02 2.33 2.42 1.6 0.6 0.37 5.6 1.37 8.15 13 2.25 0.83 0 4.26 0.14 0.09 0.36 0.06 0.28 2.2 4.86 1.61 0.61 0.02 1.21 2.42 1.6 0.58 0.37 5.81 1.37 8.15 14 2.20 0.83 0 3.45 0.14 0.13 0.66 0.06 0.6 2.2 5.11 1.61 0.8 0.02 0.99 2.42 1.6 0.58 0.37 5.81 1.4 0.15 15 2.20 0.83 0 3.45 0.14 0.13 0.66 0.06 0.72 2.1 5.13 1.61 0.8 0.02 0.48 2.42 1.7 0.58 0.37 4.57 1.4 8.15 16 2.20 0.83 0.16 3.4 0.05 0.13 1.24 0.06 0.72 2.04 6.13 1.61 0.8 0.02 0.48 2.42 1.7 0.58 0.37 4.44 0.68 4.91 17 2.20 0.83 0.16 3.4 0.05 0.13 1.24 0.06 0.72 2.04 5.13 1.61 0.8 0.02 0.48 2.42 1.7 0.58 0.52 4.44 0.7 4.7 18 1.25 0.83 0.16 2.13 0.88 0.13 1.24 0.06 0.72 2.11 4.96 1.61 0.8 0.02 0.48 2.42 1.77 0.58 0.97 4.44 0.93 4.59 19 1.06 0.83 0.16 2.13 0.9 0.13 1.24 0.06 0.72 2.1 4.96 1.61 0.2 0.02 0.48 2.42 1.77 0.58 0.97 4.44 0.93 3.5 20 1.06 0.83 0.16 2.72 0.9 0.13 1.24 0.06 0.72 2.1 4.61 1.61 0.2 0.02 0.48 2.42 1.77 0.58 0.97 4.44 1.12 2.32 21 1.00 0.83 0.16 2.D4 0.9 0.13 1.24 0.06 0.72 2.1 4.48 1.61 0.2 0.02 0.48 2.42 1.77 0.58 0.97 4.44 1.25 2.26 22 1.00 0.83 0.16 1.79 0.9 0.13 1.24 0.06 0.72 2.1 4.42 1.61 0.19 0.02 0.48 2.41 1.77 0.58 0.97 4.44 1.53 2.26 23 0.57 0.83 0.16 1.32 0.9 0.13 1.24 0.06 0.72 2.1 4.53 1.61 0.19 0.02 0.48 2.41 2.09 0.58 0.97 4.44 1.24 1.5 24 0.00 0.83 0.16 1.01 1.38 0.59 1.24 0.06 0.72 2.1 3.88 1.61 0.19 0.02 0.48 2.41 2.09 0.68 0.97 4.67 1.22 1.41 25 0.00 0.83 0.16 1.01 1.38 0.92 1.24 0.06 0.72 2.1 3.e5 1.61 0.19 0.02 0.48 2.41 2.09 0.58 0.97 4.67 0.96 1.41 26 0.00 0.83 0.34 1.01 1.38 0.92 1.24 0.31 0.72 2.1 2.38 1.61 0.19 0.02 0.48 2.41 2.09 0.58 1.3 4.67 0.96 1.41 27 0.00 0.83 0.34 1.01 1.38 0.92 1.24 0.31 0.72 2.1 1.36 1.61 0.19 0.02 0.48 2.41 2.09 0.58 1.06 4.67 0.96 1.41 28 0.D0 0.83 0.34 1.01 1.38 0.92 1.24 0.31 0.72 2.1 0.98 1.61 0.19 0.02 0.48 2.65 2.09 0.58 1.06 4.67 1.82 1.87 29 0.00 0.83 0.37 1.01 2.27 0.92 1.24 0.31 0.72 2.1 0.98 1.61 0.19 0.02 0.48 2.65 2.09 0.58 1.06 4.64 2.58 1.87 30 0.00 1.01 0.37 1.01 2.28 0.92 1.24 0.31 0.72 2.1 0.98 1.61 0.19 0.02 0 2.65 2.09 0.58 1.06 4.49 2.71 1.87 31 0.00 0.2 0.37 1.01 2.28 0.92 1.24 0.31 0.72 2.1 0.98 1.61 0.19 0.01 0 2.65 2.09 0.58 1.06 4.49 2.71 1.87 Apr 1 0.00 0.2 0.37 1.01 2.28 0.92 1.28 0.31 1.03 2.1 0.67 1.07 0.19 0 0 2.65 2.09 0.49 1.06 3.72 2.651 1.87 2 0.00 0.18 0.37 1.01 2.28 1.38 2.57 0.25 1.2 2.1 0.67 0.74 0.19 0 0 2.51 2.11 0.19J1.061.01 3.52 2.63 1.87 Apr 3 0.00 0.18 0.37 1.01 2.28 1.38 2.71 0.25 1.57 2.69 0.67 0.74 0.19 0 0 2.07 2.11 0 3.1 2.63 1.87 4 0.00 0.18 0.37 1.01 2.28 1.38 3.79 0.25 1.52 2.69 0.87 0.74 0.19 0 0 1.96 2.11 0 2.6 2.63 1.41 5 0.00 0.18 0.37 1.01 2.28 1.38 4.46 0.25 1.41 2.69 0.87 0 0.19 0 0 1.95 2.1 0.21 1.4 2.63 1.41 6 0.00 0.18 0.37 0.72 2.28 1.38 4.46 0.25 1.68 2.69 0.87 0 0.19 0 0 1.95 1.48 0.686 1.42 2.63 0.69 7 0.00 0.18 0.37 0.72 2.28 1.38 4.18 0.25 1.68 2.69 1.01 0 0.19 0 0.1 1.95 1.59 0.68 1.42 2.63 0.5 8 0.00 0.18 0.37 0.72 2.28 1.38 4.18 0.26 1.68 0.72 1.01 0 0.19 0 0.22 1.74 1.15 0.68 1.42 2.63 0.5 9 0.00 0.18 0.37 0.72 2.29 1.38 4.4 0.25 1.68 0.72 1.01 0 0.19 0 0.27 0.57 1.51 0.68 1.42 2.63 0.5 10 0.00 0.18 0.37 0.72 2.29 1.38 5.46 0.25 1.68 0.72 0.84 0 0.19 0 0.82 0.46 1.48 0.68 1.22 2.63 0.5 11 0.00 0.18 0.37 0.72 2.29 1.38 5.65 0.25 1.56 0.72 0.84 0 0.19 0 0.82 0.46 1.29 0.68 1.22 2.63 0.46 12 0.00 0.18 0.37 0.72 2.29 1.38 5.57 0.25 1.94 0.72 0.84 0 0.19 0 0.92 0.46 1.29 0.68 1.01 2.63 0.46 13 0.00 0.18 0.37 0.72 2.29 1.34 5.27 0.25 1.64 0.72 0.59 0 0 0 1.06 0.46 1.29 0.7 1.01 2.6 0.46 14 0.00 0.18 0.37 0.72 2.29 1.34 5.38 0.25 1.52 0.66 0.57 0 0 0 1.06 0.46 1.19 1.02 1.01 2.6 0.46 15 0.00 0.18 0.21 0.72 2.24 1.34 4.8 0.25 1.52 0.66 0.57 0 0.26 0 1.06 0.46 1.191 1.02 1.06 1.011 2.61 0.46 16 0.00 0.18 0.21 0.72 2.321 1.341 4.81 0.25 1.52 0.1 0.57 0 0.52 0 1.06 0.46 1.23 1.02 0.91 1.01 2.58 0.46 17 0.00 0.18 0.21 0.72 1.49 1.34 4.8 0.25 1.52 0.59 0.57 0 0.52 0 1.06 0.46 1.24 1.02 0.46 1.621 2.36 0.46 5/20/02(PASH0931\Rainfall Data\30daycum.xls) Page 7 LSA ASSOCIATES,INC. Los Alamitos Station No. 170 Rainfall Data: 30-day Cumulative Median Totals Date 30-day Cumulative Rainfall(in Inches)from 1980 to 2000 Median 80-81 81-82 82-83 83-84 84.85 85-86 86.87 87-88 88-89 89-90 90.91 91-92 92-93 93-94 94-95 95-96 196-97 97-98 98-99 99 00 7 3.89 0.54 2.151 0 0.89 3.54 1.01 0.31 0.77 1.43 2.95 5.15 3.14 4.15 1.85 3.41 0.12 7.17 0.12 4.43 1.40 8 3.69 0.54 6.03 0 0.89 3.54 1.01 0.31 0.77 1.43 2.95 5.15 3.14 4.15 1.65 3.41 0.12 7.17 0.12 4.43 1.40 9 3.89 0.51 5.89 0 1 3.54 1.01 0.31 0.77 1.43 2.95 4.12 3.14 3.55 1.85 3.41 0.12 6.77 0.12 4.54 1.61 10 3.89 0.45 5.76 0 1 3.6 1.01 0.31 0.68 1.43 2.95 4.12 2.11 3.01 1.8 3.41 0.12 5.86 0.12 4.59 1.91 11 3.12 0.45 5.76 0 0.12 4.24 1.01 0.31 0.55 1.43 2.95 4.12 1.93 3.01 1.73 3.41 0.12 5.51 0.12 4.59 1.75 12 3.12 0.42 5.76 0 0.12 4.43 0.81 0.31 0.48 1.43 3.04- 3.81 1.93 3.01 3.06 3.41 0.12 5.51 0 4.59 1.52 131 3.12 0.35 5.76 0 0.12 4.531 0.81 0.31 0.48 1.51 3.04 3.47 1.93 3.011 3.45 3.41 0 5.51 0.09 4.19 1.44 14 3.12 0.35 5.761 0 0.12 4.671 0.81 0.31 0.48 1.51 3.04 3.32 1.93 3.01 3.45 3.68 0 5.51 0,09 3.84 1.46 15 3.12 0.41 5.881 0.06 0.12 3.83 0.81 0.31 0.48 1.51 3.36 1.38 1.93 3.01 3.45 3.68 0 6.45 0.09 3.84 1.39 16 3.12 0.51 5.88 0.06 0.12 3.47 0.81 0.31 0.16 1.51 3.36 1.34 1.93 3.01 3.31 3.68 0 6.45 0.44 3.68 1.29 17 3.12 0.51 5.88 0.06 0.12 2.54 0.58 0.31 0.16 1.51 3.36 1.32 1.93 3.01 3.12 3.68 0 5A2 0.76 3.68 1.28 18 3.12 1.45 7.14 0.06 0.12 2.72 0.58 0.31 0.16 1.51 3.36 0.69 1.93 3.01 3.12 3.68 0 5.12 0.76 3.62 1.25 19 3.12 2.32 7.47 0.06 0.12 2.72 0.58 0.31 0.16 0.88 3.36 0.69 1.93 2.54 3.12 3.68 0 3.95 0.76 3.34 1.02 20 3.12 2.32 8.16 0.06 0.29 2.72 0.58 0.31 0.16 0.12 4.06 0.69 1.93 2.03 3.12 3.68 0 3.95 0.76 3.34 1.09 21 3.39 2.32 8.15 0.06 0.29 2.69 0.58 0.31 0.16 0.12 4.41 0.81 1.34 1.93 3.12 3.68 0 3.95 0.85 3.34 1.12 22 3.39 2.32 8.39 0.06 0.29 2.65 0.58 0.31 0.16 0.12 4.71 1.79 0.26 0.96 3.84 3 0 3.23 0.87 3.19 0.99 23 3.39 2.32 8.39 0.06 0.28 2.65 0,76 0.31 0.16 0.12 4.71 1.84 0.26 0.68 3.9 1.79 0 3.23 0.87 2.4 0.94 24 3.39 2.32 8.52 0.06 0.28 2.65 0.76 0.31 0.16 0.12 4.71 2.34 0.26 0.68 3.9 1.59 0 2.7 0.87 1.94 0.99 25 3.39 2.32 8.85 0.06 0.28 2.65 0.66 0.31 0.16 0.12 4.71 2.34 0.24 0.68 3.9 1.59 0 2.42 0.87 1.82 0.97 26 3.39 2.32 8.83 0.06 0.28 2.65 0.5 0.31 0.29 0.12 5.03 2.34 0.07 1.67 3.9 1.59 0 1.23 0.87 1.39 1.12 27 3.39 2.55 8.79 0.06 0.28 2.65 0.5 0.31 0.461 0.12 5.5 2.34 1.08 1.67 3.9 1.42 0 2.36 1.37 1.391 j 1.16 28 3.16 2.62 8.23 0.06 0.4 2.65 0.5 0.311 0.461 0.12 6.4 3.35 1.34 1.67 3.9 1.36 0 2.36 1.37 1.39 1.29 29 3.16 2.62 8.15 0.06 0.4 2.651 0.5 0.31 0.461 0.12 6.42 3.35 1.61 1.67 3.9 1.36 0 2.51 1.37 1.39 1.30 30 3.16 2.66 7.34 0.06 0.4 2.651 0.5 0.31 0.461 0.12 5.04 3.35 1.61 1.67 3.9 0.98 0 2.51 1.37 1.33 1.15 31 3.16 3.09 7.34 0.06 0.4 2,651 0.5 0.27 0.461 0.12 5.04 3.35 1.61 1.67 3.9 0.98 0 2.51 1.37 1.33 1.15 Apr 1 2.76 3.09 7.34 0.06 0.4 2.65 0.5 0.05 0.46 0.12 3.62 3.35 1.61 1.67 3.9 0.98 0 2.51 1.37 1.33 1.07 2 1.54 3.5 7.34 0.06 0.4 2.65 0.5 0 0.46 0.12 3.6 3.2 1.61 1.67 3.9 0.98 0 3.05 1.37 1.33 1.27 Apr 3 1.54 3.5 7.34 0.06 0.4 2.65 0.5 0 0.3 0.12 3.6 3.09 1.61 1.67 3.9 1.06 0 3.12 1.37 1.33 1.35 4 1.54 3.5 7.34 0.06 0.4 2.6 0.66 0 0.3 0.12 3.6 3.09 1.61 1.67 3.9 1.06 0 3.12 1.37 1.041 1 1.22 5 0.34 3.5 7.34 0.06 0.4 2.6 0.66 0 0.3 0.40 3.51 3.09 1.61 1.671 3.91 0.35 0 3.12 1.37 0.6 1 1.04 6 0.27 3.5 7.34 0.06 0.4 2.6 0.441 0 0.3 0.40 3.51 2.91 1.61 1.49 2.61 0.35 0 2.88 1.37 0.16 1 0.80 7 0.27 3.5 3.26 0.73 0.4 2.83 0.44 0 0.3 0.40 3.51 2.91 1.61 1.49 2.5 0.35 0 2.88 1.37 0.16 1 0.87 8 0.27 3.5 3.26 0.73 0.29 2.831 0.44 0 0.3 0.40 3.51 2.91 1.61 1.49 2.5 0.35 0 2.88 1.98 0.05 1 0.73 9 0.27 3.6 3.26 0.73 0.29 2,36 0.44 0 0.3 0.40 3.51 2.91 1.61 1.49 2.5 0.35 0 2.88 2.09 0 0.72 10 0.27 3.5 3.26 0.73 0.29 1.72 0.44 0 0.3 0.40 3.51 2.91 1.61 1.73 2.5 0.35 0 2.88 2.09 0 0.73 11 0.27 3.5 3.26 0.73 0.29 1.53 0.44 0 0.3 0.40 3.42 2.91 1.61 1.73 1.17 0.35 0 2.88 2.09 0 0.73 12 0.27 3.31 3.27 0.73 0.29 1.43 0.44 0 0.3 0.32 3.42 2.91 1.61 1.73 0.78 0.35 0 2.88 2 0 0.73 13 0.27 3.38 3.27 0.73 0.29 1.29 0,44 0 0.3 0.32 3.42 2.91 1.61 1.73 0.78 0.08 0 3.38 3.43 0 0.72 141 0.271 3.32 3.091 0.67 0.29 1.09 0.44 0 0.3 0.32 3.1 2.91 1.61 1.73 0.78 0.08 0 2.44 3.43 01 0.70 15 0.27 3.22 3.09 0.67 0.29 1.09 0.44 0 0.3 0.32 3.1 2.91 1.61 1.73 0.78 0.08 0 2.44 3.08 0 0.70 16 0,27 3.22 3.09 0.67 0.29 0.52 0.34 0.81 0.3 0.32 3.1 2.91 1.61 1.73 0.78 0.08 0 2.44 2.76 0 0.70 17 0.27 2.28 1.83 0.67 0.28 0.23 0.34 0.81 0.3 0.32 3.1 2.911 1.61 1.731 1.181 0.081 01 2.441 2.761 01 1 0.63 5/20/02(PASH093 I\Rainfall Data\30daycum.x1s) Page 8 0 0 0 ISAMSOOIATES,INC. Los Alamitos Station No. 170 Rainfall Data: 30-day Cumulative Median Totals Date 30-day Cumulative Rainfall(in Inches)from 1958 to 1980 58-59 59-60 60b1 61-62 62-63 63-64 64-65 65.66 66-67 67-68 68-69 69-70 70-71 72-73 73-74 74-75 75-76 76-77 77-78 78-79 79-80 18 0.00 0.18 0.21 0.72 1.58 1.34 4.8 0.25 1.52 0.59 0.57 0 0.52 1.06 0.46 1.36 1.02 0.46 1.62 2.35 0.46 19 0.00 0.18 0.21 0.13 1.58 1.34 4.8 0.25 1.52 0.59 0.57 0 0.52 1.06 0.46 1.36 1.02 0.46 1.62 2.16 0.46 20 0.00 0,18 0,21 0,13 1.58 1.36 4.8 0.25 2.06 0.59 0.57 0 0.52 1.06 0.46 1.36 1.02 0.46 1.62 2.03 0.46 21 0.00 0.18 0.21 0.06 1.58 1.36 4.8 0.25 2.34 0.59 0.45 0 0.52 1.77 0.46 1.36 1.02 0.46 1.62 1.75 0.46 22 0.00 0.18 0.21 0.06 1.71 1.36 4.8 0.25 2.37 0.59 0.34 0 0.525 1.77 0.46 1.04 1.06 0.48 1.62 1.75 0.46 23 0.00 0.18 0.21 0 1.23 0.9 4.8 0.25 2.73 0.59 0.34 0 0.52 0.08 1.98 0.46 1.04 1,06 0.46 1.39 1.75 0.46 24 0.00 0.18 0.23 0 1.23 0.57 4.8 0.25 2.73 0.59 0.34 0 0.52 0.08 1.98 0.46 1.04 1.06 0.46 1.39 1.75 0.78 25 0.00 0.28 0.05 0 1.23 0.57 4.8 0 3.05 0.59 0.34 0 0.52 0.08 1.98 0.46 1.04 1.06 0.02 1.39 1.75 0.78 26 0.00 0.28 0.05 0 1.23 0.57 4.8 0 3.05 0.59 0.34 0 0.52 0.08 1.98 0.46 1.09 1.06 0 1.4 1.75 0.78 27 0.66 0.28 0.05 0 1.84 0.57 4.8 0 3.05 0.59 0.34 0 0.52 0.08 2.04 0.22 1.09 1.06 0 1.4 0.89 0.32 28 0.66 1.48 0.02 0 0.96 0.57 4.8 0 3.05 0.59 0.34 0 0.52 0.08 2.04 0.22 1.09 1.06 0 1.4 0.13 0.32 29 0.66 1.3 0.02 0 0.95 0.57 4.8 0 3.05 0.59 0.34 0 0.52 0.08 2.04 0.22 1.09 1.06 0 1.4 0 0.32 30 0.66 1.3 0.02 0 0.95 0.57 4.8 0 3.1 0.69 0.34 01 0.521 0.08 2.04 0.22 1.09 1.06 0 1.4 0 0.36 May 1 0.66 1.3 0.02 0 0.95 0.57 4.76 0 2.79 0.59 0.34 0 0.52 0.08 2.04 0.22 1.09 1.06 Ol 1 0 0.44 2 0.66 1.3 0.02 0 0.95 0.02 3.47 0 2.62 0.59 0.34 0 0.52 0.08 2.04 0.22 1.07 1.06 0 0.95 0 0.44 3 0.661 1.31 0.02 0 0.95 0.02 3.33 0 2.25 0 0.34 0 0.52 0.08 2.04 0 1.07 1.06 0 0.76 0 0.44 4 0.66 1.3 0.02 0 0.95 0.02 2.25 0 2.25 0 0.14 0 0.52 0.08 2.04 0 1.07 1.06 0 0.76 0 0.44 5 0.66 1.34 0.02 0 0.95 0.02 1.58 0 2.25 0 0.14 0 0.52 0.08 2.04 0 1.07 0.85 0 0.76 0 0.44 6 0.66 1.34 0.02 0 0.95 0.07 1.58 0 1.98 0 0.14 0 0.52 0.08 2.04 0 1.07 0.38 0 0.62 0 0.44 7 0.66 1.34 0.02 01 0.951 0.07 1.581 01 1.98 0 0 0 0.52 0.08 1.94 0 0.96 0.38 0 0.62 0 0.44 8 0.66 1.34 0.02 0 0.95 0.07 1.58 0 1.98 0 0.07 0 0.581 0.08 1.82 0 0.891 0.38 0 0.62 0 0.44 " 9 0.66 1.34 0.02 0 0.94 0.07 1.36 0 1.98 01 0.07 0 0.81 0.08 1.77 0 0.29 0.38 1 0.62 0 0.44 10 0.66 1.34 0.02 0 0.94 0.07 0.3 0.07 1.98 0 0.07 0 0,81 0.08 1.22 0 0.29 0.38 1,881 0.62 0 0,44 11 0.66 1.34 0.02 0 0.94 0.07 0.11 0.07 1.98 0 0.07 0 0.81 0.08 1.22 0 0.29 0.38 2 0.62 0 0.44 12 0.66 1.34 0.02 0 0.94 0.07 0.11 0.07 1.6 0 0.07 0 0.81 0.08 1.12 0 0.29 0.38 2 0.62 0 0.44 13 0.66 1.34 0.02 0 0.94 0.07 0.11 0.07 1.58 0.02 0.07 0 0.81 0.08 0.98 0 0.29 0.36 2.01 0.62 0 0.44 14 0.66 1.34 0.02 0 0.94 0.07 0 0.07 1.58 0.02 0.07 0 0.81 0.08 0.98 0 0.29 0.04 2.02 0.62 0 0.44 15 0.66 1.34 0.02 0 0.94 0.07 01 0.071 1.58 0.02 0.07 0 0.55 0.081 0.98 0 0.29 0.04 2.02 0.62 0 0.44 16 0.66 1.34 0.02 0.24 0.86 0.07 0 0.07 1.58 0.02 0.07 0 0.29 0.08 0.98 0 0.25 0.04 2.02 0.62 0 0.44 17 0.66 1.34 0.02 0.26 0.86 0.07 0 0.07 1.58 0.02 0.07 0 0.29 0.08 0.98 0 0.17 0.04 2.02 0.011 0 0.44 18 0.66 1.34 0.02 0.26 0.75 0.07 0 0.07 1.58 0.02 0.07 0 0.29 0.08 0.98 0 0.05 0.04 2.02 0.011 0dO44 19 0.66 1.34 0.02 0.26 0.75 0.07 0 0.07 1.58 0.02 0.07 0 0.29 0.08 0.98 0 0.05 0.04 2.02 0.01 0 20 0.66 1.34 0.02 0.26 0.75 0.05 0 0.07 1.04 0.02 0.07 0 0.29 0.08 0.98 0 0.05 0.04 2.02 0.01 0 21 0.66 1.34 0.02 0.26 0.79 0,05 0 0.07 0.76 0.02 0.07 0 0.29 0.01 0.27 0 0.05 0.04 2.02 0.01 0 22 0.66 1.34 0.02 0.26 0.66 0.05 0 0.07 0.73 0.02 0.07 0 0.29 0.01 0.27 0 0.05 0 2.02 0.01 0 23 0.66 1.34 0.02 0.26 0.66 0.05 0 0.07 0.37 0.02 0.07 0kO.39, 0.01 0.06 0 0.05 0 2.02 0.01 0 24 0.66 1.34 0 0.26 0.66 0.05 0 0.07 0.37 0.02 0.07 0 0.01 0.06 0 0.05 0 2.02 0.01 0 25 0.66 1.24 0 0.26 0.66 0.05 0 0.07 0.05 0.02 0.07 0 0.01 0.06 0 0.05 0 2.11 0.01 0 0.12 26 0.66 1.24 0 0.26 0.66 0.05 0 0.07 0.05 0.02 0.07 0 0.01 0,06 0 0 0 2.11 0 0 0.12 27 0.00 1.24 0 0.26 0.05 0.05 0 0.07 0.05 0.02 0.07 0 0.01 0 0 0 0 2.11 0 0 0.12 28 0.00 0.04 0 0.34 0.04 0.05 0 0.07 0.05 0.02 0.07 0 0.01 0 0 0 0 2.11 0 0 0.12 29 0.00 0.04 0 0.34 0.04 0.05 0 0.07 0.05 0.02 0.07 0 0.01 0 0 0 0 2.11 0 0 0.12 30 0.00 0.04 0 0.34 0.04 0.05 0 0:07 0 0.02 0.07 0 0.01 0 0 0 0 2.11 0 0 0.06 31 0.00 0.04 0 0.34 0.04 0.05 0 0.07 0 0.02 0.07 0 0.39 0.01 0 0 0 0 2.11 0 0 0 5/20/02(PASH09311Rainfall DataWdaycum.xls) Page 9 LSA ASSOCIATES'INC. Los Alamitos Station No. 170 Rainfall Data: 30-day Cumulative Median Totals Date 30-day Cumulative Rainfall(In inches)from 1980 to 2000 Median 80-81 81-82 82-83 83-84 84.85 85-86 86-87 87-88 88-89 89-90 90-91 91-92 92-93 93.94 94-95 95.96 96-97 97-98 98-99 99-00 18 0.27 1.41 1.5 0.67 0.29 0.23 0.34 0.81 0.3 0.32 3.1 2.91 1.61 1.73 1.21 0.08 0 2.44 2.76 0 0.63 19 0.36 1.41 1.38 0.67 0.12 0.23 0.34 0.81 0.3 0.32 2.4 2.91 1.61 1.23 1.34 0.46 0 2.44 2.76 0.81 0.63 20 0.22 1.41 1.49 0.83 0.12 0.23 0.34 0.81 0.3 0.32 2.05 2.79 1.61 1.23 1.44 0.46 0 2.44 2,67 0.81 0.70 21 0.22 1.41 1.5 0.83 0.12 0.23 0.34 1.38 0.3 0.32 1.75 1.81 1.61 1.23 0.72 0.46 0 2.44 2.65 0.81 0.66 22 0.22 1.41 1.5 0.83 0.12 0.23 0.16 1.58 0.3 0.32 1.75 1.76 1.61 1.23 0.66 0.46 0 2.44 2.65 0.81 0.63 23 0.22 1.41 1.37 0.83 0.12 0.23 0.16 1.58 0.3 0.32 1.75 1.26 1.61 1.231 0.66 0.46 0 2.44 2.65 0.81 0.63 24 0.22 1.41 1.04 0.83 0.12 0.23 0.16 1.58 0.3 0.32 1.75 1.26 1.61 1.23 0.66 0.46 0 2.441 2.65 0.81 0.63 25 0.22 1.41 1.04 0.83 0.12 0.23 0.16 1.58 0.17 0.35 1.43 1.26 1.61 0.24 0.66 0.46 0 2.44 2.65 0.81 0.58 26 0.22 1.18 1.04 0.83 0.12 0.23 6.16 1.62 0 0.35 0.96 1.26 0.6 0.32 0.661 0.46 0 1.31 2.15 0.81 0.58 27 0.22 1.11 1.04 0.83 0 0.23 0.16 1.62 0 0.35 0.06 0.25 0.34 0.44 0.66 0.46 0 1.31 2.15 0.81 0.45 28 0.22 1.11 0.94 0.83 0 0.23 0.16 1.62 0 0.35 0.04 0,25 0 0.44 0.66 0.46 0 1.16 2.15 0.81 0.45 29 0.22 1.07 0.94 0.83 0 0.23 0.16 1.62 0 0.35 0.04 0.25 0 0.44 0.66 0.46 0 1.16 2.15 0.81 0.45 30 0.22 0.641 1.771 0.83 0 0.23 0.16 1.62 01 0.35 0.04 0,25 0 0.44 0.66 0.46 0 1.16 2.15 0.81 0.45 May 11 0.22 0.64 1.8 0.83 0 0.23 0.16 1,62 01 0.35 0.04 0.25 0 0.44 0.66 0.46 0 1.16 2.15 0.81 0.45 2 0.22 0.13 2.12 0.83 0 0.23 0.16 1.62 0 0.35 0 0.211 0 0.44 0.66 0.46 0 0.621 2.15 0.81 1 0.40 3 0.22 0.07 2.12 0.83 0 0.23 0.16 1.62 0 0.35 0 0 0 0.44 0.66 0.38 0 0.55 2.15 0.81 0.35 4 0.22 0.07 2.12 0.83 0 0.23 0 1.62 0 0.35 0 0 0 0,44 0.66 0.38 0 0.55 2.15 0.81 0.29 5 0.22 0.07 2.12 0.83 0 0.23 0 1.62 0 0.03 0 0 0 0.44 0.66 0.38 0 0.55 2.15 0.81 0.23 6 0.22 0.14 2.12 0.83 0 0.23 0 1.62 0 0.03 0 0 0 0.44 0.66 0,38 0 0.5 2.15 0.81 0.23 7 0.22 0.14 2.12 0.16 0 0 0 1.62 0 0.03 0 0 0 0.64 0.66 0.38 0 0.55 2.15 0.81 0.15 8 0.22 0.14 2.12 0,16 0 0 0 1.62 0 0.03 01 0 0 0.64 0.66 0.38 0 0.55 1.54 0.81 0A5 9 0.22 0.14 2.12 0.16 0 0 0 1.62 01 0.03 0 0 0 0.64 0.66 0.38 0 0.55 1.43 0.81 0.19 10 0.22 0.14 2.12 0.16 0 0 0 1.62 01 0.03 0 0 0 0.4 0.66 0.38 0 0.55 1.43 0.81 0.19 11 0.22 0.14 2.12 0.16 0 0 0 1.62 0 0.03 0 0 0 0.4 0.66 0.38 0 0.55 1.43 0.81 0.15 12 0.22 0.14 2.11 0.16 0 0 0 1.62 0 0.03 0 0 0 0.4 0.66 0.38 0 0.55 1.43 0.81 0.15 13 0.22 0.07 2.11 0.16 0 0 0 1.62 0 0.03 0 0 0 0.4 0.66 0.38 0 0.05 0 0.81 0.08 14 0.22 0.07 2.11 6.16 0 0 0 1.62 0 0.03 0 0 0 0.4 .0.76 0.38 0 0.6 0 0.81 0.07 15 0.22 0.07 2.11 0.16 0 0 0 1.62 0 0.03 0 0 0 0.4 0.76 0,38 0 0.6 0 0.81 0.07 161 0.22 0.07 2.11 0.16 0 0 0 0.81 0 0.03 0 0 0 0.4 0.76 0,38 0 0.6 0 0.81 0.08 17 0.22 0.07 2.11 0.16 0 0 0 0.81 0 0.03 0 0 0 0.4 0.36 0.38 0 0.6 0 0.81 0.07 18 0.22 0.07 2.11 0.16 0 0 0 0.81 0 0.03 0 0 0 0.4 0.33 0.38 0 0.6 0 0.81 0.07 19 0A3 0.07 1.54 0.16 0 0 0 0.81 0 0.03 0 0 0 0.44 0.2 0 0 0.6 0 0 0.06 20 0 0.07 .1.43 0 0 0 0 0.61 0 0.03 0 0 0 0.44 0.1 0 0 0.6 0 0 0.04 21 0 0.07 1.18 0 0 01 0 0.24 0 0.03 0 0 0 0.44 0.1 0 0 0.6 0 0 0.03 22 0 0.07 1.18 0 0 0 0 0.04 0 0.03 0 0 0 0." 0.1 0 0 0.6 0 0 0.02 23 0 0.07 1.18 0 0 0 0 0.04 0 0.03 0 0 0 0.44 0.1 0 0 0.6 0 0 0.02 24 0 0.07 1.18 0 0 0 0 0.04 0 0.03 0 0 0 0.44 0.1 0 0 0.6 0 0 0.02 25 0 0.07 1.18 0 0 0 0 0.04 0 0.00 0 0 0 0.44 0.1 0 0 0.6 0.06 0 0.02 26 0 0.07 1.18 0 0 0 0 0 0 0.00 0 0 0 0.36 0.1 0 0 0.6 0.06 0.03 0.01 27 0 0.07 1.18 0 0 0 0 0 0 0.00 0 0 0 0.24 0.1 0 0 0.6 0.06 0.03 0.00 28 0.01 0.07 1.18 0 01 0 0 0 0 0.00 0 0 0 0.24 0.1 0 0 0.6 0.06 0.03 0.00 29 0.01 0.07 1.18F 0 0 01 0 0 0 0.10 0 0 0 0.24 0.1 0 0 0.6 0.06 0.03 0.01 30 0.01 0.07 0.35 01 01 01 0 0 0 0.73 0 0 0 0.24 0.1 0 0 0.6 0.06 0.03 0.00 31 0.01 0.07 0321 01 01 Of 0 0 0 0.731 0 0 0 0.24 0.1 01 0 0.6 0.06 0,03 0.00 5/20/02(PASH093 1\Rainfall Data\30daycum.xls) Page 10 \ 0 ssa�9 .0 d J 6 _ 66 Cl AOp/ ' 12.5 � C }25 � --.0— 1 � -1- ,y fEPAMETLANDS s e. ,D / Js A SUR AC PONDING / \ 1 •��s/ . ' � (/� C S l Aa(M 2 rCD d s, •3/ a=� -�J ` —/ �C 4 t7+ 0 %s ,4 0, t5+00 40 �'� _ �• PAT Y PiCKL�D PATCHY PICKLEW D € , y SURF POND G k O" l O O ✓- J�• .0,sEAw/� L J -- PO ENTIAL NA)URISDI�J� WETLAN[)5 LEGEND 0 FISH & GAME ESHA (DUNE 3, 1982) PREPARED BY: PREPARED FOR: rM EPA WETLANDS (1989) ® HUNSAKER & ASSOCIATES SheaHlomes I R V I N E 1 ING N C PUNNING ■ ENGINEERING • SURVEY F�DOX IM A gUa INy PATCHY PICKLEWEED (FRANK HOVARE 1997) Thv Hughm•1,*,, U 9161E• Ptt(9/9)5E5.1010• FX:(919)5ESN59 j6„ mq..h A 3 CA 9UUe 0 O AREA OF POTENTIAL JURISDICTIONAL WETLANDS (LSA MAY 21, 2002) ® AREA OF SURFACE PONDING (LSA MAY 21, 2002) COMPOSITE RESOURCE MAP FOR COUNTY PARCEL ME 0:\I5577\AL79\EXHIBITS\PotentioLWettanEe.E•9