Loading...
HomeMy WebLinkAboutCity of Huntington Beach Water System Master Plan Page 6 = Council /Agency Minutes - 9/6/88 (City Council) .1988 WATER SYSTEM MASTER PLAN - APPROVED - Adopted the 1988 Water System Master Plan completed by Boyle Engineering Corporation and. (-- directed staff to solicit proposals from qualified consulting firms for the { r; preparation of a financial plan to implement the recommended improvements. (City Council ) OF CALIFORNIA HIGHWAY PATROL TRAINING AGREEMENT - APPROVED - Approved and authorized execution of an agreement between the City and the Department of California Highway Patrol to provide in-service training for one Huntington Beach Police Officer at their Commercial Enforce- ment Training Class - September 26, 1988 through October 7, 1988. (City Council) NON-ASSOCIATED EMPLOYEE BENEFITS - 1988/89 RESOLUTION' NO 5918 - APPROVED - "A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF HUNTINGTON BEACH MODIFYING BENEFITS FOR THE FISCAL YEAR 1988/89 NON ASSOCIATED EMPLOYEES." (Redevelopment Agency) LEASE AGREEMENT BETWEEN REDEVELOPMENT AGENCY & ROBERT KOURY - APPROVED - SECOND BLOCK OF MAIN STREET - MAIN-PIER REDEVELOPMENT PROJECT AREA The City Clerk/Clerk presented a communication from the Deputy City Adminis- trator/Director Economic Development regarding a proposed agreement to lease properties owned by Robert Koury. Following discussion, a motion was made by Green, seconded by Kelly to approve and authorize execution of a Lease Agreement between the Redevelopment Agency and Robert Koury for lease by the Agency of certain properties owned by Robert Koury in the second block of Main Street which is the site of a proposed parking structure and retail stores. The motion carried by the following roll call vote: AYES: Kelly, Green, Erskine, Mays , Bannister NOES: Winchell ABSENT: Finley (City Council) RESOLUTION NO 5917 - ADOPTED - OPPOSES ANY INCREASE IN OIL OPERATIONS - OFFSHORE ORANGE COUNTY The City Clerk presented Resolution No. 5917 for Council consideration - "A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF HUNTINGTON BEACH OPPOSING ANY INCREASE IN OIL OPERATION OR NUMBER OF OIL PLATFORMS OFFSHORE ORANGE COUNTY BETWEEN COASTLINE AND CATALINA ISLAND." Mayor Erskine read into the record a letter from Joyce Riddell , Executive Vice President, dated September 9, 1988, opposing Federal or State efforts to im- pose moratoriums on offshore drilling. The Mayor read the Chamber of Commerce Resolution as follows: "RESOLUTION OF THE HUNTINGTON BEACH CHAMBER OF COMMERCE IN SUPPORT OF THE EXPLORATION AND DEVELOPMENT OF OFFSHORE ENERGY SOURCES, AND IN OPPOSITION OF FEDERAL OR STATE EFFORTS TO IMPOSE MORATORIUMS ON OFFSHORE DRILLING. ' CITY OF HUNTINGTON BEACH Won�eL- csvgceL mL mm COMO Oe LT [-Hnfl i t ,t I i consultinci enclineers i arcr'litects M June 19�8 I i . i Sogie Engineerinq Corporation 1501 Quail Street consulting englneers architects P.O.Box 3030 Telephone: 7141476-3300 Newport Beach,CA 92658-9020 Telecopier: 714/253-2222 Telex: 685561 CITY OF HUNTINGTON BEACH June 24, 1988 Department of Public Works - Water Division Attention Mr. Jeff Renna, Superintendent Post Office Box 190 Huntington Beach, CA 92648 City of Huntington Beach Water System Master Plan We are pleased to submit our final report on the City of Huntington Beach Water System Master Plan. The report presents a description of the study area and land use, determination of existing and ultimate water requirements, review of the existing water system, development of the water network computer model, discussion of water supply issues, analysis of the water system conditions, delineation of current and projected system improvements, and several recommendations for City action in order to continue provision.of adequate water service and keep pace with growth and redevelopment. A brief summary of the study results is contained in Chapter 1. The recommended improvements consist of six major pprograms plus several other programs,with a total estimated project cost of$50,000,000,based on current cost levels, to be constructed over the next five years. We wish to express our appreciation to the City staff for cooperation and assistance during the preparation of this study, particularly Jeff Renna, Ed Barckley, Bob Taylor and Linda Daily. We look forward to continuing to assist the City during the implementation of the Master Plan program. BOYLE ENGINEERING CORPORATION ' �apFESSlO�� William R. Everest, PE ��� A• E icy Principal Engineer QC Expires 06/30/89 k0berthlund, J� CIVILivil Engineer OF CA``� bjt enclosures r CITY OF HUNTINGTON BEACH WATER SYSTEM MASTER PLAN TABLE OF CONTENTS PAGE NO. CHAPTER 1 - INTRODUCTION AND SUMMARY 1-1 AUTHORIZATION 1-1 1-2 OBJECTIVES 1-1 1-3 SUMMARY OF STUDY RESULTS 1-1 1-4 RECOMMENDATIONS 1-3 CHAPTER 2 - STUDY AREA AND LAND USE 2-1 DESCRIPTION OF STUDY AREA 2-1 2-2 EXISTING LAND USE 2-2 2-3 ULTIMATE LAND USE 2-4 2-4 POPULATION 2-7 CHAPTER 3 -WATER REQUIREMENTS 3-1 HISTORIC WATER PRODUCTION/CONSUMPTION 3-1 32 UNACCOUNTED-FOR WATER 3-3 3-3 DEMAND COEFFICIENTS 3-7 3 4 EXISTING DEMANDS 3-10 3-5 ULTIMATE DEMANDS 3-11 3-6 PEAKING FACTORS 3-12 3-7 FIRE FLOW REQUIREMENTS 3-14 CHAPTER 4 - EXISTING WATER SYSTEM ' 4-1 WATER SYSTEM OPERATION 4-1 4-2 IMPORTED WATER SOURCES 4-2 4-3 WELLS 4-3 4-4 STORAGE 4-4 4-5 BOOSTER FACILITIES 4-5 4-6 DISTRIBUTION SYSTEM 4-5 4-7 PRESSURE ZONES 4-7 Soule Englneerinq Corporation r CHAPTER 5 - COMPUTER MODEL DEVELOPMENT 5-1 WATER SOURCES 5-1 5-2 STORAGE FACILITIES 5-4 5-3 DISTRIBUTION SYSTEM 5-4 5-4 MODEL CALIBRATION 5-4 CHAPTER 6 -WATER SUPPLY 6-1 REGIONAL WATER SUPPLIES 6-1 6-2 ALTERNATIVE SUPPLY SOURCES 6-8 rCHAPTER 7 -WATER SYSTEM ANALYSIS 7-1 EXISTING SYSTEMS 7-2 7-2 ULTIMATE SYSTEM 7-4 7-3 SOURCE ANALYSIS 7-4 7-4 STORAGE ANALYSIS 7-6 7-5 BOOSTER ANALYSIS 7-9 7 6 DISTRIBUTION ANALYSIS 7-11' 7-7 RESERVOIR HILL ZONE 7-14 7-8 WATER DIVISION OPERATIONS 7-15 CHAPTER 8 - SYSTEM IMPROVEMENTS 8-1 SUMMARY OF REQUIRED IMPROVEMENTS 8-1 8-2 COST ESTIMATES 8-3 1 r r r Boyle Enq/neerinq COfAolaClon CITY OF HUNTINGTON BEACH WATER SYSTEM MASTER PLAN LIST OF TABLES TABLE PAGE NO. 2-1 LAND USE CLASSIFICATIONS 2-2 2-2 EXISTING LAND USE 2-4 2-3 VACANT LAND DEVELOPMENT 2-5 2-4 ULTIMATE LAND USE 2-6 2-5 ULTIMATE BOLSA CHICA DEVELOPMENT 2-6 2-6 CITY OF HUNTINGTON BEACH POPULATION 2-7 �. 3-1 TOTAL 6 YEAR PRODUCTION DATA 3-2 3-2 TOTAL WATER CONSUMPTION DATA 3-3 3-3 ESTIMATED UNMETERED MUNICIPAL IRRIGATION 3-4 3-4 WEIGHTING FACTORS FOR FLOW RATES RELATED TO VOLUME PERCENTAGES 3-6• 3-5 CALCULATION OF WATER METER ERROR 3-6 3-6 SUMMARY OF UNACCOUNTED-FOR WATER - CALENDAR YEAR 1986 3-7 3-7 SPECIAL WATER CONSUMERS 3-9 3-8 EXISTING DEMAND COEFFICIENTS 3-10 3-9 EXISTING SYSTEM DEMANDS 3-11 3-10 ULTIMATE ANNUAL WATER DEMAND 3-12 3-11 PEAKING FACTORS 3-14 3-12 FIRE PROTECTION REQUIREMENTS 3-15 4-1 IMPORTED WATER CONNECTIONS 4-2 4-2 IMPORTED WATER USE 1981-1987 4-3 4-3 WELL 5 YEAR PRODUCTION 4-4 4-4 WELL FACILITIES SUMMARY FOLLOWS PAGE 4-4 4-5 GROUNDWATER QUALITY ANALYSIS FOLLOWS PAGE 4-4 4-6 STORAGE FACILITIES/CAPACITIES 4-5 4-7 PRESENT BOOSTER OPERATION FOLLOWS PAGE 4-5 4-8 BOOSTER FACILITIES FOLLOWS PAGE 4-5 4-9 PIPE INVENTORY 4-6 4-10 HAZEN-WILLIAMS ROUGHNESS COEFFICIENTS 4-7 ' 5-1 WELLS - MODEL CONTROLS 5-2 5-2 • BOOSTERS - MODEL CONTROLS 5-3 5-3 IMPORTED CONNECTIONS ALLOCATED CAPACITY 5-3 soute Enq/neer/nq Corporation ol TABLE PAGE NO. 6-1 WATER SUPPLY ALLOCATION 6-1 6-2 COMPARISON OF DEPENDABLE WATER SUPPLIES WITH PROJECTED DEMANDS FOR MWD 6-3 6-3 SUMMARY OF ESTIMATED ADDITIONAL YIELD FROM POTENTIAL WATER RESOURCES DEVELOPMENT PROJECTS 6-7 6-4 SWRO SYSTEMS COSTS 6-13 6-5 SWRO SYSTEM COMPONENT COSTS 6-13 7-1 SUMMARY OF WATER DEMANDS AND SYSTEM CAPACITY 7-2 7-2 EXISTING FIRE FLOW ANALYSIS 7-3 7-3 EMERGENCY SOURCE ANALYSIS 7-5 7-4 SUPPLEMENTAL WELL REQUIREMENTS 7-6 7-5 COMPARATIVE WATER STORAGE 7-8 7-6 STORAGE CAPACITY ANALYSIS 7-9 7-7 BOOSTER IMPROVEMENTS 7-11 7-8 ULTIMATE FIRE FLOW ANALYSIS 7-12 7-9 PROPOSED DISTRIBUTION SYSTEM IMPROVEMENTS 7-13 7-10 RESERVOIR HILL PRESSURE ZONE AVAILABLE FIRE FLOW 7-14 7�11 RESERVOIR HILL PRESSURE ZONE BACK-UP SOURCE AT OVERMYER NOS. 1 & 2 7-15 7 12 ALTERNATIVE WATER SUPPLY ALLOCATION 7-16' 8-1 SUMMARY COST- MASTER PLAN IMPROVEMENTS 8-4 Boyle Enoineer/na Corporation 000 CITY OF HUNTINGTON BEACH WATER SYSTEM MASTER PLAN LIST OF FIGURES AND PLATES FIGURE FOLLOWS PAGE 2-1 CITY WATER SERVICE AREA AND MAJOR FACILITIES 2-1 4-1 SAN JOAQUIN RESERVOIR TRANSMISSION MAIN ROUTE 4-3 4-2 WELL LOG SUMMARY 4-4 5-1 EXAMPLE VARIABLE SPEED PUMP CHARACTERISTIC CURVE 5-2 6-1 REVERSE OSMOSIS MEMBRANE CONFIGURATIONS 6-12 6-2 POTENTIAL WEST ORANGE COUNTY WELLFIELD 6-16. 7-1 EXISTING DEMAND/STORAGE HYDROGRAPH 7-7 7-2 ULTIMATE DEMAND/STORAGE HYDROGRAPH 7-7 7-3 ULTIMATE W/BOLSA CHICA DEMAND/ STORAGE HYDROGRAPH 7-7 7-4 STORAGE/BOOSTER FACILITY - ALTERNATIVE SITES 7-10 PLATE i1 RECOMMENDED SYSTEM IMPROVEMENTS Back Pocket 2 PROPOSED RESERVOIR HILL SERVICE BOUNDARY Back Pocket AND NETWORK Bowle Englneer/nq Corporation __j CHAPTER I INTRODUCTION AND SUMMARY 1-1 AUTHORIZATION Boyle Engineering Corporation (Boyle) was retained by the City of Huntington Beach (City) on March 2, 1987 to provide Engineering Services to prepare a comprehensive Master Water Plan. Services to be provided under this agreement were originally described in the City's Request For Proposal (RFP) dated November 6, 1986, and were finalized in the scope of work contained in Boyle's contract with the City dated March 2, 1987. 1-2 OBJECTIVES The Master. Plan has been prepared to assist the City's staff to plan for adequate water service to keep pace with growth and redevelopment. Combined with the technical appendix, the plan provides data to additionally serve as a data base for on-going use of the computer water model by the City's staff. The computer model can be used as the City's planning tool for the water system by utilizing it to evaluate operating schemes„ proposed system improvements and related cost impacts to provide alternatives for selection before the need for implementation. Briefly summarized, the major tasks undertaken involve study of the following: - Orange County regional water supply as related to Huntington Beach; - Water supply requirements within the City's service area for estimated present and projected ultimate water demands; - An analysis of the City's water distribution system, (by use of a computer model) for identification of necessary improvements; - An evaluation of the proposed Bolsa Chica development impact on the City's ultimate water system; - An evaluation of the "Reservoir Hill Assessment District"water system. 1-3 SUMMARY OF STUDY RESULTS Analysis of the current water system as it exists and with proposed improvements indicates that the existing system cannot serve ultimate development unless some improvements are made. A summary of these improvement needs is as follows: 1-1 soave Enoineerinq Corporation Su1� lX: Current supply sources, consisting of Metropolitan Water District of Southern California (MWD) imported water from three connections and groundwater from nine wells, is not sufficient to meet existing or projected ultimate demands. Additional supply sources recommended are: reactivation or construction of a total of four supplemental wells, and participation in the West Orange County Well Field project. System Deficiencies: Although the existing water system is generally adequate to meet fire flows, the required fire flow at the Peter's Landing area can only be partially met. In addition, the present system is significantly deficient in being able to meet demands for water under current peak hour conditions. Even during previous demand periods of less than a peak hour condition, reservoir levels were dropping drastically. The City should take immediate action to remedy existing fire flow and peak hour deficiencies. Also, the City faces increasing risk by adding new services to the presently deficient system. Booster: To alleviate peak hour demands for both existing and ultimate conditions, additional storage and booster facilities are necessary. It is recommended that a' booster/storage site be constructed in the Southeast area with a Phase I capacity of 54 cfs and a maximum booster capacity of 85 cfs to sufficiently distribute required flows at adequate pressures, for existing and ultimate requirements respectively. Additionally, a separate 9 cfs pumping station is recommended for the Sunset Heights area. Storage: Additional storage is required to augment water sources to distribute maximum day and peak hour demands throughout the system. An estimated 61 million gallons (mg) of storage capacity is proposed to meet ultimate peak demands. The storage should be phased as follows: 24 mg in Phase I to meet existing deficiencies and a 28 mg expansion in Phase H for the Southeast area, together with a Phase I reservoir of 9 mg capacity in the Sunset Heights area. Distribution System: To meet transmission requirements for peak hour demands and required fire flows throughout the system approximately 34,000 L.F. of waterline is proposed to alleviate the deficiencies, approximately 16,000 L.F. of which is required for construction of the recommended Southeast area booster/storage facility for adequate distribution of flow into the system. 1-2 sole Englneerino Corporation Operations. Maintenance and Management: Several improvements and investigations are required to improve system operations, maintenance and management, as outlined ,'. below. � System Improvements: The project cost of all required system improvements is estimated at $50,000,000, based on Spring 1988 cost levels. 1-4 RECOMMENDATIONS It is recommended that the City undertake several action items over the next five years in order to continue provision of adequate water service and keep pace with growth and redevelopment. The recommendations are categorized below according to categories of facilities, operations and maintenance, and management. Master Plan Facilities 1) Supplement City water supply by reactivating or constructing a total of four additional wells. 2) Design and construct storage and pumping plant facilities in the Sunset Heights' area to increase pressures in the area and supply fire flow to Peter's Landing. 3) Conduct a siting and predesign investigation for the southeast booster/storage complex. 4) Design and construct a new storage reservoir and booster pumping plant in the southeast portion of the service area to alleviate peak hour demand deficiencies and operational and emergency storage deficiencies. 5) Design and construct distribution system improvements in several areas to better meet fire flow and peak hour demands. 6) Initiate treatability studies for groundwater supplies. 7) Conduct a feasibility study of the West Orange County Wellfield project. 8) Study the feasibility of a seawater reverse osmosis desalination project for long- term supply augmentation. �. 9) Determine the feasibility of modifying and incorporating the Orange County Water District seawater intake pipeline to Water Factory 21 as part of the City distribution system. 10) Provide dual drive systems for all existing and new pumping station. 1-3 BoUle Enoineerino Corporation __J Operations and Maintenance 1) Adopt the Boyle computer program model of the City water system as a guide for future operations and system modifications. 2) Investigate the structural adequacy of major system components, especially Peck and Overmyer Reservoirs, and compliance with earthquake codes. 3) Provide propane facility backup at all active wells and booster pumps served only by natural gas. 4) Conduct a cathodic protection survey and institute a program for major facility protection. 5) Conduct a focused leak detection survey of the City distribution system. 6) Institute a formal facilities replacement program for the large transmission mains over the next five years. 7) Continue groundwater quality monitoring of City wells, especially near areas of potential contamination. 1 8) Conduct a flowtest of the San Joaquin Reservoir transmission main during next winter with only City utilization. 9) Incorporate security intrusion detection systems into major water system facilities; provide interface with existing telemetry system and City Police Department facilities. 10) Expand the ongoing meter repair and replacement program, including the addition of production meter testing. 11) Institute a program to meter water use for construction, including fire hydrant and service connections. 1-4 Boyle Enwneerina Corporation Management 1) Adopt the Boyle Engineering Master Plan as a formal guide to system upgrading and expansion over the next five years. 2) Adopt the recommended financing strategy, a revenue bond issue, and appropriate Water Division budgets to implement the Master Plan recommendations. 3 Initiate discussions with Municipal Water District of Orange Coun and PCounty Metropolitan Water District of Southern California regarding the potential of additional imported water connections for the City. 4) Initiate discussions with the Orange County Water District and West Orange County Water Board regarding the potential West Orange County Wellfield IProject. 5) Adopt a policy of providing a minimum of one-day emergency storage in the City water system. ' 6) Participate in San Joaquin Reservoir improvements at a level related to benefits received by the City. 7) Adopt and implement the Emergency Preparedness Guidelines outlined in Chapter 7. 8) Determine additional Master Plan improvements required to serve the Bolsa Chica area, and relate to specific cost of service for that area. 9) Strive to limit annual groundwater pumping rates to the Basin Production Percentage established by OCWD, unless the benefits of additional pumping exceed the economic advantages. �+ 10) Continue to monitor the progress of Phase I of the OCWD Green Acres Project, and evaluate the potential for City participation in Phase II. 1-5 Boyle Enoineerinq Corporation __J CHAPTER 2 STUDY AREA AND LAND USE The master plan study area boundary is defined as the present water service area and the area within the City's sphere of influence. The present service area includes all land within the City 's limits, plus the Surfside and Sunset Beach areas. The City 's sphere of influence includes the present service area plus proposed development in the Bolsa Chica �I area. Figure 2-1 shows the water service area and major facilities. b'u J 2-1 DESCRIPTION OF STUDY AREA The old Seashore lands owned by investor landowners and previously known as "Pacific City ," were purchased around 1904 by the Huntington Beach Company and renamed "Huntington Beach." The Huntington Beach Company proceeded to make improvements ` in the City including construction of the initial water system. This initial water system consisted primarily of a storage reservoir located on the highest hill of the City, subsequently named 'Reservoir Hill." A single transmission line transported water from Reservoir Hill to the downtown area where the majority of the area's population resided.' In 1915, the State of California Railroad Commission issued rules and regulations for the operation of the Huntington Beach Water Company. The Huntington Beach Water Company was purchased by investors in 1925, and in 1929 the American States Public Services Company of California was formed to manage the water system. During the early Depression years, the courts ordered a distribution of common stock due to the �. diminishing financial status of the company and the Southern California Water Company was later formed to operate and maintain the system. To more efficiently serve the Orange County area, the Municipal Water District of Orange County (MWDOC) was formed in 1951, and the West Orange Countyy Water Board (WOCWB) in 1953, to control distribution of water purchased from the Metropolitan Water District of Southern California (MWD). The City is a member agency of MWDOC, Orange County Water District (OCWD) and WOCWB. This is primarily coincident with the boundaries of the City of Huntington Beach, which �. occupies 26 square miles in northwest Orange County. The City also provides water to the Surfside area in the City of Seal Beach, and in an unincorporated part of Orange County known as Sunset Beach. As of 1986, the City's system served to a total of 45,223 �( private service connections,381 city service connections, and 124 un-metered connections. 2-1 BOUIe Enolneerino corporation LEGEND F- :,r OC-9 _ WELLS �� ��'L�� ' EE UPPER LEFT) � �,�g ��•;;-,;`� as ❑ STORAGE/ BOOSTER MWD CONNECTION OC-35 (SEE ABOVE) SERVICE AREA BOUNDARY s� I ♦ HB-9� '�%�s ♦ ♦I �, I HB- ♦ HB-10 % c � pF �O ♦ �q 9 • O HB-7 P �E F'` � _ • � s� �vRE HB-4 PECK HB-1 HB-6 cow `o`er• OC-44 5 DYKE ♦O P SANRES JOOR HB-11 UIN p� H B_8 ,/- Gs, .. . q �' WELL 00 • 9p � PJ�'• PJ Ohs �r 9yq Ali ,�• �sr �Q` p�� , ♦ c� 00 r r= rj . ♦ S�P� s� z OJ ��Q��o P,� s� ♦ 3 y C O q O ♦♦ �}�0 �`��. 9F �PQ s� s� � s � � HUNTINGTON RESERVOIR HARBOR ♦ BOLSA CHICA HILL i 0 P - ♦ � i P� OIL PACIFIC • SURFSIOE SUNSET BEACH ��� �- _ N _'r sInk, COAST CITY OF HUNTINGTON BEACH PACIFIC OCEAN WATER SERVICE . AREA FIGURE 2-1 The terrain of Huntington Beach is generally flat lying on a gradual slope from northeast � g Y � Ylg g P to southwest. Elevations range from sea level to a height of 127 feet in the Reservoir Hill area. The community is almost fully developed in that there are few large-contiguous blocks of land remaining vacant except for the Reservoir Hill area. However, redevelopment efforts are now in progress, and the possible annexation of the Bolsa Chica area will affect the City's ability to provide water to its service area. As land is recycled to more intensive land use, demands on the water system will also shift in location and intensity. 2-2 EXISTING LAND USE The City's current service area encompasses approximately 17,200 acres, over 1600 acres of which are currently vacant. To represent the existing land use, the City's zoning designations were consolidated into general classifications as a basis to represent water use throughout the City. Table 2-1 lists the land use classifications established and the corresponding zoning designations. TABLE 2-1 LAND USE CLASSIFICATIONS Low Density Residential: Zones R1, RA (0-7 DU/Acre) Medium Density Residential: Zones R2 MH (8-15 DU/Acre High Density Residential: Zones R3, R4 (> 15 DU/Acre) Commercial (COMM): Zones Cl, C2, C4, R5, M1, CFC Manufacturing (MAN): Zone M2 Open Space (OS): Zones ROS, CFR, CFE closed School: Zone CFE (open) The majority of the service area is zoned for residential use, mostly in the form of single family detached dwellings, with scattered higher density residential areas. Commercial areas are located mostly along Beach Boulevard (State Highway 39) north from Adams 2-2 Soule Engineerinq Corporation ' Avenue to the City limits and in the Huntington Center Area located adjacent to the g J San Diego Freeway (Interstate 405). Additional commercial areas are spotted along the arterial roads throughout Huntington Beach . �. Light industrial and commercial users are concentrated in the northwest section of Huntington Beach, where McDonnell-Douglas Astronautics Company and Weiser Lock are large water consumers. The City Planning Department reported in the June 1986 Vacant Lands Survey that there were 1,633 acres of vacant land as of June 1986, mostly scattered throughout the City. The Reservoir Hill area, currently being established as an assessment district, is the largest continuous block of undeveloped land with in the water service area. The majority of vacant land is currently zoned for medium to high density residential and commercial uses. For this study, 1,419 acres of vacant land were identified as additional development for ultimate conditions, with the remaining 214 acres consisting of individual lots scattered throughout the City and parcels within the current specific plans. Table 2-2 summarizes the existing land use. ' i f i 2-3 Boyle Encvneerjrm Corporation TABLE 2-2 EXISTING LAND USE NET AREA PERCENT CATEGORY (ACRES)!- OF TOTAL S' Low Density Residential 7893 47 Medium Density Residential 1373 8 High Density Residential 1613""" 10 Commercial 1928 11 Manufacturing 48 < 1 1 School 936 6 Open Space 820 5 ISpecial Consumers" 753 4 Vacant 1419 8 TOTAL 16,783 100 ' Includin public right of way. .g Y "* Special consumers are identified in Chapter 3 as water users above or below the typical demand per acre. Includes 75.2 acres for service to Sunset Beach and 36.4 acres to Surfside. 2-3 ULTIMATE LAND USE The ultimate land use of the City 's service area is divided into three parts for discussion in this report: 1) New development of vacant land, 2) Redevelopment of land with tintensified water demands and, 3) Development and possible annexation of lands currently outside the City's limits. In this master plan, it is assumed that all undeveloped land in the City will be ultimately developed. A majority of these parcels are within current medium to high density residential zoning. In addition, a major concentration of future light industrial use is located alongside the Southern Pacific Railroad tracks, north of Clay to the City limits. iTable 2-3 summarizes the ultimate development of this vacant land. 1 2-4 �' Soule Englneerinq corporation TABLE 2-3 VACANT LAND DEVELOPMENT VACANT ' LAND PERCENT CATEGORY (ACRES) OF TOTAL Low Density Residential 454 32 Medium Density Residential 119 8 High Density Residential 265 19 Commercial 502 36 Manufacturing 14 1 Open Space 47 3 School 18 1 TOTAL 1,419* 100 The remaining 214 acres identified in the 1986 Vacant Land Survey are individual lots scattered throughout the City's service area and parcels within current specific' plans, and are accounted for in the overall landuse identification. ' Sunset Beach and Surfside are assumed to be 100 percent developed. Several areas of the City, all located in or near the downtown area, have been designated for redevelopment under existing Specific Plans. These areas are proposed to be redeveloped as mixed use, high density developments. Current development plans include hotels and shops near the City pier and mixed residential, commercial and industrial uses in the Reservoir Hill area. Currently, the areas included in these Specific ' Plans are approximately 50 percent vacant. Table 2-4 summarizes the total projected landuse within the City's service area. t 2-5 Boyle Englneerina Corporation TABLE 2-4 ULTIMATE LAND USE NET AREA PERCENT CATEGORY (.ACRES). OF TOTAL Low Density Residential 8288 49 ' Medium Density Residential 1506* 9 High Density Residential 1944 12 Commercial 2417 14 Manufacturing 65 <1 ' School 955 6 Open Space 855 5 Special Consumers 753 4 TOTAL 16,783 100 Includes 75.2 acres for service to Sunset Beach and 36.4 acres to Surfside. A portion of the Bolsa Chica area is currently being planned by Signal Landmark for ' residential and commercial development. The source of water for service to this area has been an issue, with the City being the most probable source. The City is considering annexing this area and supplying longterm water service. The total net acreage of the proposed Bolsa Chica development is 418 acres. Table 2-5 summarizes Signal ' Landmark's present development projections. ' TABLE 2-5 ULTIMATE BOLSA CHICA DEVELOPMENT ' PROPOSED LAND USE AREA(ACRES) Low Density Residential -- ' Medium Density Residential -- High Density Residential 343 Commercial 56 Manufacturing -- Open Space 2 TOTAL 418 1 2-6 1 BoUle Enoineerina Corporation ' 2-4 POPULATION The City 's population has been consistently growing at a rate of 1-2 percent over the past seven years, with projected growth of less than one percent per year to 220,122 persons in 2010. Table 2-6 summarizes the population over the last six years. TABLE 2-6 iCITY OF HUNTINGTON BEACH POPULATION ' PERCENT YEAR POPULATION INCREASE ' 1950 5,237 -- 1960 11,492 11.9 (10 Yr. Avg.) ' 1970 115,960 9.1 (10 Yr. Avg.) 1978 162,000 5.0 1979 167,200 3.2 1980 170,100 1.7 ' 1981 173,392 1.9 1982 175,716 1.3 1983 178,667 1.7 1984 179,734 0.6 1985 181,946 1.2 ' 1986 184,280 1.3 ' 2010 220,122x* 0.8%/Year ' Source: 1986-87 Vol. 23 "Orange County Progress Report" * Does not include Sunset Beach or Surfside population. Estimated from 1980 U. S. Census Bureau and 1985 Orange County "OCP-85" projections. 1 2-7 Boyle Engineerinq Corporation ' CHAPTER 3 ' WATER REQUIREMENTS In order to analyze the City's present water system adequately, an analysis was made of existing land use and water demands. The results of this analysis were (1) the development of demand coefficients, which are values that measure average water Idemand for each type of land use, and (2) the development of peaking factors, which are the ratios of water use during maximum use periods to average water use over the same ' time period. 3.1 HISTORIC WATER PRODUCTION/CONSUMPTION Over the last five years, the City has been supplied by an average mix of 24 percent imported water and 76 percent groundwater, with most of the imported supplies being produced in the high-use summer months, and very low importation during the winter months. The City's present operation is based on utilizing the maximum amount of groundwater possible while satisfying a majority of its peak demands from the imported connections. Historic demands are most reliably established from records of water produced and delivered to the distribution system from reservoirs, wells, and MWD connections. Table 3-1 lists the historic water production for the fiscal years of 1981-82 through 1986- 87. For the past six years, water demands have sporadically increased at an average rate ' of 3.1 percent per year. Annual water delivery to the system during this period averaged- 34,851 acre-feet,which is equivalent to an annual average flow rate of 21,605 gpm. 3-1 ' amjle Enoineer/nq COMOratlOn ' TABLE 3-1 TOTAL 6 YEAR PRODUCTION DATA 1 (ACRE-FEET) MONTH 81-82 82-83 83-84 84-85 85-86 86-87 AVG JUL 3443 3482 3590 3781 3918 3729 3657 AUG 3447 3432 3584 3616 3786 3850 3619 SEP 3019 2915 3221 3478 3333 3223 3198 1 OCT 2621 2939 2729 3137 3291 3029 2958 NOV 2407 2359 2262 2262 2449 2829 2478 DEC 2141 2198 2191 2287 2556 2599 2329 1 JAN 2105 2357 2392 2365 2673 2577 2412 FEB 1906 1890 2570 2196 2098 2393 2176 MAR 2154 2105 3003 2617 2460 2735 2512 APR 2394 2369 3009 3039 2856 3265 2822 MAY 2891 2884 3548 3369 3512 3560 3294 JUN 22973 331 8 3488 55777 a1Q 5900 3396 ' TOTAL 31501 32070 35587 35910 36655 37379 34851 %Increase 1.8% 11.0% 0.9% 2.1% 2.0% 6 year Average Annual Production = 21,605 gpm ' Maximum Month = 126% of Average Annual (July 1985) " Includes groundwater and imported water 1 Five years of data is preferred to properly evaluate water system consumption trends. However, the City has only recently begun to retain water billing data for each year. Therefore only partial records are available for the years of 1985 through 1987. Available bi-monthly water billing records are summarized in Table 3-2. i 1 1 3-2 ' Boyle Englneerinq Corporation _j ' TABLE 3-2 TOTAL WATER CONSUMPTION DATA (ACRE-FEET) PERIOD YEAR 1985 1986 ' JAN-FEB 3901 4752 MAR-APR 4800 4564 MAY-JUN 5141 5727 JUL-AUG N/A 6221 ' SEP-OCT N/A 5760 NOV-DEC TOTAL N/A 32,001 3-2 UNACCOUNTED-FOR WATER Unaccounted-for water is the difference of the amount of water produced and the amount' billed to customers. An expected rate for a system of this size and .location is approximately five percent. In 1986, the only year of complete water consumption data, ' unaccounted-for water in the City's system is calculated to be 12 percent of the water produced. ' Within the water system, the following are expected sources of unaccounted-for water and an estimate of the usage for the 1986 sample year: Cijy Facilities The City's standard billing records do not include the amount of water used by municipal facilities, which are billed on a bi-annual frequency and are included under separate ' record. These municipal facilities include City Hall, all operations offices, parks, schools and fire departments. The 1986 metered usage for these facilities is 783 acre-feet. ' ArterialJMedian Irri ation Irrigation of municipal landscape medians and landscape areas along the arterial roads throughout the City is not metered. Table 3-3 summarizes the number of unmetered services by size and the estimated usage of each in 1986. Since City municipal irrigation 3-3 Boyle Englneer/nq COMOratlOn unit rates for roadways are not available, the estimated usage is based on the average ' 1986 consumption per service size for the entire City. TABLE 3-3 Estimated Unmetered Municipal Irrigation Avg. 1986 Estimated Usage/Service Usage Service Size (AF/Service) No. of Services (AF) 5/8" 0.071 24 1.7 1.0" 0.168 47 7.9 1.5" 0.335 3 1.0 ' 2.0" 0.758 5_01 37.9 TOTAL 124 48.5 Hydrant Testing./Flushing Hydrant testing is performed by both the Water Operations Department and the Fire Department. Only minimal hydrant flushing was performed by the City in the 1986 sample year; however, a main flushing schedule was established in 1987. The City staff ' estimates that the water operation's'hydrant testing and flushing at 2.4 acre-feet in 1986. The Fire Department performs a comprehensive hydrant testing program to monitor the level of fire protection available throughout the City. In 1986 the fire department performed 1468 hydrant tests, with flows measuring an average of 1985 gpm. Assuming the hydrant is opened for a duration of three minutes to perform the test (as estimated by the fire department), the average amount of water use for this purpose in 1986 was ' 27 acre-feet. Fire Hydrant Usage/Operations In 1986, the Fire Department reported 664 "fire starts," or responses, to fire related emergencies. However, the Fire Department notes that not all of these "fire starts" require the usage of water. For this study, it is assumed that a "fire start" requires water usage of 500 gpm for 20 minutes. This relates to a total hydrant usage in 1986 of 20 acre- 3-4 BoUle Englneer/nq Corporation feet. Fire trainingin City streets is also performed; however, the water usage related to tY P g this activity is assumed to be negligible. Construction Water In 1986, the City charged contractors a flat rate for water used in construction and did not meter the actual usage. In 1986, the City reports that 833 single family units and 645 multi-units were constructed for a total of 1478 units. For this study, it is conservatively approximated that 50 acre-feet of water was used for construction purposes. It is ' recommended for water accounting purposes that all construction connections be metered. Points of connection for construction water usage consist of both hydrants and ' jumper service connections. Customer Meter Ad-ustment A major source of unaccounted-for water is generally found to be the inaccuracy of the individual customer meters. At best, a meter will accurately register the amount of flow through a certain flow range, and any flow rate above or below this range will typically be registered at a lower rate. In addition, as the meter becomes worn from usage, its' registration of flow is generally less than the actual flow. Detail studies and replacement/repair programs have shown that the additional cost required to account for ' this lost water is easily recovered by the additional revenue generated. The following analysis, Tables 3-4 and 3-5, is structured after the California Department of Water Resources August 1986 "Water Audit and Leak Detection Guidebook" procedures, and estimates the City's 1986 meter error to be 1853 acre-feet. 3-5 Boyle Enolneerinp corporation _J TABLE 3-4 ' WEIGHTING FACTORS FOR FLOW RATES RELATED TO VOLUME PERCENTAGES' Percent of Time Range in GPM Average GPM Percent Volume 15 Low 0.5 - 1.0 0.75 2.0 70 Med 1 - 10 5.00 63.8 15 High 10 - 15 12.50 34.2 From article by Penchin Tao written for Journal of the American Water Works Association, "Statistical Sampling Technique for Controlling the Accuracy of Small Water Meters,"June 1982. TABLE 3-5 CALCULATION OF WATER METER ERROR 1 Total1986 Volume (2) Sales At Flow Meter *, Volume Rate Registrations Meter Error % Volume �) _ (AF) 2.0 32001 640 89 79 63.8 32001 20417 95 1075 ' 34.2 32001 10944 94 699 100.0 1853 Source: August 1986 "Water Audit and Leak Detection Guidebook" - DWR Meter error = (1)/(2) - (1) Conclusion Table 3-6 summarizes the above analysis of unaccounted-for water showing a decrease from 12.2 percent to 4.3 percent. This remaining unaccounted-for water could be due to leaks, minor operational usage and/or accounting errors. The preceding analysis identifies the major source of lost water to be inaccurate customer meters, approximately 50 percent of the unmetered water consumption. 3-6 Boyle Englneer/nq Corporation The City presently has a basic customer meter replacement/repair program; however, it is recommended that a more extensive program be established. To further accurately account for water usage in the system, a production meter testing program is recommended for meters at all wells. ' Leak detection, discussed in Chapter 7, is another procedure to identify amounts of unaccounted-for water not estimated in the above analysis. TABLE 3-6 SUMMARY OF UNACCOUNTED-FOR WATER - CALENDAR YEAR 1986 Quantity Percent of (AF) Production Production 36468 100 Customer-Metered (excluding City Facilities) 32001 87.8 ' Unaccounted-for Water 4467 12.2 Sources of Unaccounted-for Water City facilities - metered 783 2.1 Arterial/Median irrigation-unmetered 49 0.1 Hydrant testing& flushing - Water Dept. 2 minimal Hydrant testing - Fire Department' 27 0.1 Hydrant usage - 664 fire starts 20 0.1 Construction water-unmetered 50 0.1 Customer meter adjustment 1�35 5_1 Subtotal 2784 7.6 Total (metered &unmetered usage) 34785 99.4 Remaining unaccounted-for water 1683 4.6 * Includes minor operational water use. 3-3 DEMAND COEFFICIENTS Demand coefficients are values developed to estimate the average water demand per acre of land for each type of land use, measured in gallons per minute per acre (GPM/ACRE) in this report. 3-7 Boyle Enoineerino Corporation The first step in the development of the demand coefficients is to gather data for several sample areas of each type of land use category. Billing records are used to determine the actual water consumed by a sample area in a particular year. For this study, three to six sample areas of each land use classification and five "special water consumers" were analyzed to develop the unit demand coefficients. Currently, a approximately one third of the schools located within the City limit are closed. pp y ty s d ' However, the various school districts that have jurisdiction within the City are leasing some of these closed schools on a part-time basis to day care centers and local Community Colleges. A factor of 1.0 gpm/acre has been applied to all closed schools to account for irrigation and minimal facility usage. "Special water consumers" have historic consumption significantly above or below the average usage for its particular land use classification. Table 3-7 summarizes special water consumers identified for separate evaluation of water demand. 3-8 Bowle Englneerinq Corpor VOn _J TABLE 3-7 ' SPECIAL WATER CONSUMERS Annual Demand Demand Area 1986 Coefficient Name Acres PM (GPM/Acre) County Sanitation Districts Plant 2 125 163 1.30 Southern California Edison Power Plant 100 420 4.20 Shell Oil Production 96 182 1.90 McDonnell-Douglas ' Astronautics Co. 210 378 1.80 Weiser Lock Co. 54 177 3.30 Huntington Center Area 90 36 0.40 (Mall and Vicinity) Meadowlark Golf Course* 78 0 TOTAL 753 1356 * All irrigation supplied from an on site well. fUnit demand coefficients determined for each land use classification and special users, were applied to the total acreage attributed to each land use category. The validity of the demand coefficients was then confirmed by comparing the total demands calculated with the total production for the year. The calculated demand was less than five percent below the total production in 1986, which compares favorably with the remaining unaccounted- for rate of 4.6 percent. 3-9 Route Enoineer/no corporation Demand coefficients were then confirme d and revised upwards slightly to reflect total water production, rather than consumption. Demand coefficients used for the water system analysis are summarized in Table 3-8. TABLE 3-8 EXISTING DEMAND COEFFICIENTS ANNUAL DEMAND COEFFICIENT TYPE OF LAND USE (GPM/ACRE) Low Density Residential (0-7 DU/Acre) 1.2 Medium Density Residential (8-15 DU/Acre) 2.2 High Density Residential (> 15 DU/Acre) 2.7 Commercial 1.3 ' Manufacturing 3.7 Irrigated Open Space 1.1 Schools .02 GPM/Student 3-4 EXISTING DEMANDS For the water system analysis, the water demands associated with existing conditions are ' assumed to be equivalent to the 1986 recorded demand. The demand coefficients discussed previously were applied to each land use category to calculate the total demand. Table 3-9 lists each land use category and its associated demand for existing conditions. 3-10 BoUle Enq/neerinq Corporation __j t ' TABLE 3-9 EXISTING SYSTEM DEMANDS EXISTING ANNUAL AREA DEMAND LAND USE CATEGORY ACRES (GPM) Low Density Residential 7893 9472 Medium Density Residential 1373 3020 High Density Residential 1613 4356' Commercial 1928 2508 Manufacturing 48 179 School 936 902 Open space 820 817 Special Users 753 1355 Vacant Land 141 TOTAL 16783 22609 Includes 203 gpm for service to Sunset Beach and 98 gpm to Surfside. 3-5 ULTIMATE DEMANDS In addition to the development of vacant land, Specific Plans and Bolsa Chica, the Seabridge Apartments on Beach Boulevard between Indianapolis and Adams and Huntington Center have been assigned higher unit demand coefficients for the ultimate demand projections. Huntington Center, identified as a special water consumer due to its low water use per acre, is projected to increase development with more intensive commercial uses, such as high rise office buildings. Table 3-10 summarizes the coefficients used for each land use category and special users, and the projected demand for ultimate conditions. 3-11 Boyle Enoineerino corporation TABLE 3-10 ULTIMATE ANNUAL WATER DEMAND City Service Area Bolsa Chica Area Demand Area Demand Total Acres (gpm) Ares 2m Demand Low Density Res. 8288 9945 -- -- 9945 Medium Density Res. 1506 3314 -- -- 3314 High Density Res. 1944 5248"' 343 926 6174 Commercial 2417 3143 56 73 3216 Manufacturing 65 240 == == 240 School 955 796 796 Open Space 855 940 1� 21 961 Subtotal 16030 23626 418 1020 24646 Special Water Consumers CSDOC Plant #2 125 163 -- -- 163• SCE Power Plant 100 420 -- -- 420 Shell Oil Production 96 182 -- -- 182 McDonnell-Douglas 210 377 == == 377 Weiser Lock Co. 54 177 177 Huntington Center Area 90 117 -- -- 117 iMeadowlark Golf Course 78 __Q* _ — 0 * Subtotal 753 1436 0 0 1436 TOTAL 16783 25062 418 1020 26082 Irrigation demand assumed to be met by onsite well; domestic service from City supply Includes 203 gpm for service to Sunset Beach and 98 gpm to Surfside. 3-6 PEAKING FACTORS Peaking factors represent the increase above average annual demand experienced during a specific time period, and are expressed as a multiplier of the average demand. The following peaking conditions are significant in the water system analysis: 3-12 soute Englneerinq Corporation - Maximum Month - The highest water use during a calendar month of the year. This factor is used primarily in the evaluation of supply capabilities. Peak Week - Peak week is the maximum water use within a calendar week. This factor has recently begun to be used in the evaluation of regional water Idemands. Maximum Day - This is the highest water demand in a 24 hour period. The water system is normally tested under "maximum day plus fire" conditions. Peak Hour - This is the highest water demand in a one-hour period. The adequacy of the system to meet peak hour demands is normally tested under maximum day conditions. ! The various peaking conditions are statistical concepts, and numeric values are normally obtained from a review of historical data and adjusted by engineering judgment and experience. For the Huntington Beach water system, there is an adequate data base for monthly, weekly and daily demand conditions; however, data is limited for peak hour conditions. The maximum month factor can be calculated from monthly production data shown in Table 3-1. There is an extensive data base available for the determination of maximum day demand. Daily well and MWD connection meter readings for the past 5 years have been maintained by City Water system personnel. An analysis of this data for the months of May through October of these years illustrated that the maximum day demand occurred on June 1, 1982, with a peaking factor of 2.43. This is slightly higher than maximum day factor in similar systems. As a point of interest, it should also be noted that the previous day, May 31, 1982, the system demand was 98 percent of this maximum day demand. Typical City peak hour data was unavailable. Peak hourly usage for systems within this area will generally be double that of the maximum day, up to approximately four times the average annual demand. A peaking factor of 4.0 was assumed to evaluate the City's water system for peak hour conditions. City Water personnel also requested that a "peak week" factor be established. 'Peak week" factors are being utilized by agencies such as MWDOC and OCWD for their water ! usage projection calculations on a County-wide basis. Grouping the daily water use in seven day units from Sunday to Saturday for the months of June through October, 1981 3-13 Boyle Engineering Corporation through 1986 yielded a"peak week" factor of 1.62, during the week of August 7 to August 13, 1983. A summary of peaking factors is presented in Table 3-11. TABLE 3-11 PEAKING FACTORS PERCENT OF AVERAGE PEAKING FACTOR DATE ANNUAL DEMAND rMAXIMUM MONTH July 1985 128 PEAK WEEK August 7-13, 1983 162 MAXIMUM DAY June 1, 1982 243 PEAK HOUR N/A . 400 3-7 FIRE FLOW REQUIREMENTS �. In the development of a water system master plan, it is essential that system flows and pressures are sufficient for adequate fire protection. Fire protection requirements vary according to land use and density in accordance with Table 3-12. Information shown in the table was developed by the Huntington Beach Fire Department and is based on criteria of the Insurance Services Office (ISO), a national organization independent of the City. ISO criteria is the basis for the rating of water systems for the establishment of insurance coverage. The flows shown in Table 3-12 must be provided under maximum day conditions with a 20 psi residual water pressure in the water main adjacent to the fire hydrant per ISO criteria. The City Fire Department also requires all buildings over 5,000 S.F. to have a fire sprinkler system. r� 3-14 Boyle Englneering Corporation --i TABLE 3-12 FIRE PROTECTION REQUIREMENTS FIRE FLOW DURATION FIRE ZONING CLASSIFICATION REQUIRED REQUIRED STORAGE LOT SIZE PM (HOURS) MG A. Low Density Res. each 160,000 SF net land area 2000-3500 2 .18 B. Medium& High Density Res., Commercial & Industrial Lot Size ILess than 10,000 S.F. 3000 3 .54 10,000 to 19,999 S.F. 3500 3 .63 20,000 to 29,999 S.F. 4000 4 .96 30,000 to 39,999 S.F. 4500 4 1.08 ' 40,000 to 49,999 S.F. 5000 5 1.50 50,000 to 59,999 S.F. 5500 5 1.65 60,000 S.F. or more 6000 6 2.16 Source: Huntington Beach Fire Department; based on Insurance Service Office (ISO) criteria. 3-15 /3mile Engineering corporation CHAPTER 4 EXISTING WATER SYSTEM As of 1986, the Huntington Beach's water system served a City population of nearly 190,000 people from over 45,000 service connections ranging in size from 5/8" to 10". The total average daily service water production is nearly 33 million gallons per day (mgd), and the unit average daily production is approximately 174 gallons per person per day. The system consists of two pressure zones that can be divided into the five readily distinguishable components listed below: - MWD Sources - Wells - Storage - Boosters - Distribution System The locations of the source, storage and booster facilities are illustrated in Figure 2-1. 4-1 WATER SYSTEM OPERATION Water is currently produced from nine wells which vary in depth from 250 feet to 900 feet, with production varying from 450 gallons per minute (gpm) to 4000 gpm. Total maximum operating capacity from all nine wells is 25,700 gpm. All wells pump directly into the system except Wells No. 2 and No.4,which pump into Peck Reservoir. The Cityh three connections with MWD as t ect ons , each designed to operate at a fixed flow as specified by the city. The total allocated capacity of these three imported water connections is 20,300 gpm (45.25 cfs). Peck Reservoir, and Overmyer Reservoirs Nos. 1 and 2, and storage capacity in the regional San Joaquin Reservoir comprises the City's storage capacity. Booster facilities pump water from the reservoirs into the system to meet peak demands. While Peck and Overmyer facilities are operating reservoirs, the San Joaquin Reservoir is a regional supply reservoir. The operating capacity into the system, from both Peck and Overmyer reservoirs, is 35,600 gpm. 4-1 Boyle Enolneerinq Corporation ' Another booster station at Reservoir Hill boosts water from the main zone into a small closed pressure zone. A new booster station is planned to serve the proposed Reservoir Hill assessment district, as well as the existing area, and the entire area will be served by a closed pressure zone. The water distribution system has approximately 480 miles of pipeline ranging in size from 2 inches to 42 inches, including over 45,000 service connections, as of August 1986. The City also maintains emergency connections with the water agencies serving the cities of Fountain Valley, Seal Beach, and Westminster. In the case of source outages, these facilities may allow the City to maintain a minimum water supply. Huntington Beach and Mesa Consolidated Water District are both connected to the joint transmission main from San Joaquin Reservoir. 4-2 IMPORTED WATER SOURCES Three MWD water transmission pipelines supply imported water from the Colorado River and State Water Project. The MWD service connection designations are OC 9,• OC 35, and OC 44. Table 4-1 summarizes data on these three imported water connections. TABLE 4-1 IMPORTED WATER CONNECTIONS ALLOCATED CAPACITY MWD CONNECTION (CFS) (GPM) OC 9 10.25 4,600 OC 35 20 9,000 OC 44 ji 6.700 TOTAL 45 20,300 OC 9 is located at the intersection of Dale and Katella Streets in the City of Garden Grove. Water from this connection enters Huntington Beach at the intersection of Newland and Edinger Streets with a capacity to deliver 4,600 gpm to the system. A second connection OC 35 is located at the same intersection and enters Huntington Beach at the intersection of Springdale and Glenwood Streets with a capacity of 4-2 SOUIe Enoineerino corporation ' 9000 gpm. OC 9 and OC 35 are under the jurisdiction of the WOCWB. These turnouts are operated on a fixed flow basis. The meter (owned by MWD) for the third connection, OC 44, is located at the San Joaquin Reservoir. Flow to the San Joaquin Reservoir is delivered by the East Orange County Feeder No. 2 (EOCF No. 2). From the OC 44 meter water is delivered to the City's service area through a 24- to 42-inch transmission main jointly owned by the City and Mesa Consolidated Water District (MCWD) as shown on Figure 4-1. A secondary metering station, owned by the City is located on Adams Avenue at the Santa Ana River. r A summary of imported water use from 1982-1986 is given in Table 4-2. TABLE 4-2 IMPORTED WATER USE 1981-1987 (ACRE-FEET) 81-82 82-83 83-84 84-85 8 -86 86-87 6 Yr. Ave. % of Total OC 9 3165 1781 0 0 4158 5411 1821 22 OC 35 3470 2548 4777 6715 4879 5100 4478 54 OC 44 1703 2344 2229 1430 2141 '1185 1969 24 TOTAL 8338 6672 7006 8145 11178 11696 8268 100 %o of Total 26 21 20 23 31 31 23 Demand (incl. Groundwater) 4-3 WELLS A total of nine wells are active and in service as of the date of this report. Figure 4-2 is the Well Log Summary showing well and pump depths as well as location of screen ' perforation. A summary of the annual production of each well is given in Table 4-3. The City presently operates each well by adjusting the pump speed to obtain its desired toperation. Table 4-4 is a summary of the well facilities. 1 4-3 BoUle EnQineerinq Corporation __J ■ I ■ W Q. Q O N W 240 : ■ ■ ■ ■ • ' SWAN )R - A FAIRVIEW STATE O3S - •• HOSPITAL ' J d �y /.I./� `n C. iYR6ROU«Of `• ` �c� HU"-�./i.V TON AC ■ N Mr 3fr • - •• � 00P GTY HAIL ? P+ .. ��'QP�yS 'ate '4• EG,O G�EEK. N VI TORIA + NEWT gpY o � PPER Q 0 E '. •! NEWPORT BEACH 0+iT 4 f C4NyoV �Q. ^. FORA gyp. 1 42' ®;® ■ ■ OWNED BY CRY OF HUNTNGTON BEACH I • ■ ® JOINTLY OWNED— OC-44 SAN rowouin HUNTNGTON BEACH AND MESA CONSOLIDATED WATER DISTRICT c ` RE SERvaA �c l � ■ San Joaquin Reservoir Transmission Main Route Figure 4-1 1 ' Although the design capacity of all presently operating wells is 27,500 gpm, equipment t and operating conditions have restricted the recent operating capacity to approximately 21,200 gpm. TABLE 4-3 WELL 5 YEAR PRODUCTION t (Acre-Feet) WELL 1-82 82-83 83-84 84-85 85-86 86-87 Avg Total DYKE 799 809 663 796 642 437 691 3 HBI 841 1290 1007 890 784 776 931 3 HB2 2585 2480 1846 1977 2252 1387 2088 8 HB3 (ABANDONED) HB4 4920 4706 5000 4727 4958 4869 4863 18 HB5 4722 4658 4344 3731 3436 4600 4249 16 HB6 4662 4582 2333 2136 2273 2458 3074 11 HB7 4635 5569 4004 4189 3655 3193 4208 15 HB8 0 0 119 0 0 0 20 < 1 HB9 - 1007 4267 4577 3746 4085 3531 13 HB10 296 4999 4744 3733 3878 3530 100, HB11 (NOT EQUIPPED) TOTAL 23,164 25,397 28,582 27,767 25,479 25,683 27,185 ' % of 74 79 80 77 69 69 77 Total Demand (Incl. Imported) Well No. 11, drilled in 1985, is not operating due to poor water quality. In addition, Well No. 8 is not used due to excessive color and odor concentrations. Past problems have also been encountered with sanding at Well No. 4 and excessive color from Well No. 2. Table 4-5 lists the results of a water quality analysis performed by the City in July 1987 for the overall quality of groundwater extracted by Huntington Beach. It is recommended that the City initiate a treatability study of color and odor removal for City groundwater. 4-4 STORAGE The two reservoirs located at Garfield and Huntington Streets are known as Overmyer I and II and have a combined capacity of 24.2 million gallons (mg). Peck'Reservoir is located at Springdale and Glenwood and has a capacity of 16 mg. Total combined capacity of all three reservoirs is 40.2 mg. The City also has storage capacity of 128 mg of water in the San Joaquin Reservoir, located on The Irvine Company property in Newport ' Beach, for a total storage capacity of 168 mg. Although the City has 128 mg of capacity 4-4 Bouie Engineerino Corporation 100 DYKE HB1 HB2 HB4 HB5 HB6 HBl HB8 HB9 HB10 HB11 0 Not 100 170 _ quip' 190 200 223 _ 265 25 __ === 2W263232291 — 256H 320359 --- —= --_ -—= ==- 34 =-- 390 --_ == =—_ = ==- === 378 400 =_ - -- --= 37 500 r 522 -=_ 551 -= 556 _ --- 510 535 --- 600 607 -- =-- == 591 581i =_= 560 Q625 _== ==- == ==- === _= == 2 672 700 705 === __ _- 699 -- 704 735 786 - —_= -= 768 -_= 730 804 --- --_ 810 =- 818 r �y� 800 U === 826 C 879 C 900 VVEI N°. PAD EL WELL PUMP DEPTH DEPTH =_ 942 C DYKE 53.86 206ft. 180ft 3 1000 3 22.2z 3o6f1. 180R. - HB 2 16.00 820n. 20011. fm* HB 4 1 23.69 80411. 200ft. 1100 HB 5 28.41 5W 8201. 1ft. HB 6 16.67 aloft. 150ft. LEGEND TI to HB 7 23.69 8911t. 150ft. E l (D HB 8 13.00 724n. 156R. PUMP PERFORATIONS% 0) 1200 HB 9 27.78 1020ft. 1561. 0) n HB 10 -23.75 96011. 156ft. N HB 11 =13.50 775ft. Not E ui . TABLE 4-4 WELL FACILITIES SUMMARY Design Well Pumping Pump Pump Speed Operating Year Depth Capacity Head Speed Set By Capacity Well Drilled Feet (GPM) (Feet) RPM City (GPM) * DYKE 1956 204 500 240 1,760 1,760 510 HB1 1962 306 750 316 1,760 1,760 790 HB2 1962 820 2,000 245 1,760 1,760 1,500 HB3 (ABANDONED) HB4 1967 804 4,000 150 1,500 1,584 2,890 HB5 1969 820 4, 000 263 1,760 1,666 2,860 HB6 1973 810 4,000 300 1,710(Max. ) 1,030 2,730 HB7 1975 891 4, 000 300 1, 180 1, 108 3,530 0 t HB8 1978 724 NOT USED - EXCESSIVE COLOR AND ODOR m m a HB9 1981 996 4, 000 280 1,760 1, 648 2,990 HB10 1981 960 4, 000 280 1,760 1, 636 3,400 n HB11 1985 775 NOT EQUIPPED - POOR QUALITY 0 0 TOTAL 27, 500 21,200 o� o * Source: Huntington Beach Water Department TABLE 4-5 GROUNDWATER QUALITY ANALYSIS* Dyke HB-1 -HB-2 HB-4 HB-5 HB-6 BH-7 HB-9 HB-10 MWD* (ppm) (ppm) (r)pm) (ppm) (ppm) (Ppm) (ppm) (Ppm) (Ppm) Water Iron (Fe) ND<0.01 ND<0.01 ND<0.01 ND<0.01 ND<0.01 ND<0.01 ND<0.01 ND<0.01 ND<0.01 ND<0.01 Calcium (Ca) 31 60 31 35 63 38 51 20 43 51 Magnesium (Mg) 5 11 4 5 11 6 9 16 7 20 Sodium (Na) 56 31 47 41 37 44 31 54 36 64 Sulfate(SO4) 37 71 31 36 72 40 46 33 40 157 Chloride (C12) _ 54 18 12 13 34 16 15 10 13 58 Carbonate (CO3) ND ND ND ND ND ND ND ND ND ND Bicarbonate (HCO3) 131 216 186 183 204 186 214 159 198 126 Manganese (Mn) ND<0.01 ND<0.01 ND<0.01 ND<0.01 ND<0.01 ND<0.01 ND<0.01 ND<0.01 ND<0.01 ND<0.01 Nitrate (NO3) 3.2 0.9 0.6 0.13 3.6 1.0 0.5 0.5 1.0 2.0 Potassium (K) 5 4 3 3 5 4 5 3 4 3.5 Total Dissolved Solids 286 324 152 242 344 268 286 220 274 429 Total Hardness t as CaCO3 98 193 96 109 200 117 165 56 135 210 m j Determinations a Spec. Conductance 485 525 400 405 570 430 470 360 430 714 (u Mhos/CM) H-ion Activity(pH) 7.79 7.77 7.98 7.98 7.89 7.93 7.86 8.09 7.89 8.03 n Flouride (F) D in PPM 0.72 0.50 0.40 0.40 0.52 0.52 0.55 0.43 0.57 0. 18 0 * - Source: City Tests - July, 1987 o < - Less than 3 ** - M.W.D. test take:: Diemer Plant N.D. - None Detected ppm - Parts pe.- - 1.1.i-nn in the San Joaquin Reservoir, it should be noted that the capacity can only be delivered at a maximum rate of 6700 gpm via the OC-44 turnout. Table 4-6 presents a summary of these facilities. TABLE 4-6 STORAGE FACILITIES/CAPACITIES Max. Bottom Overflow Water Capacity Reservoir El v F El v F Depth(Ft) (MG) Overmyer I 53.0 69.5 16.5 2.7 Overmyer II 23.3 71.8 48.5 21.5 ' Peck 7.5 33.2 25.7 16.0 Subtotal-Operating Storage 40.2 ' San Joaquin 128.0' TOTAL 168.0 ' City Allocation ' 4-5 BOOSTER FACILITIES Booster pumps deliver water from a reservoir to the distribution system. These reservoirs fill at night or during the low demand periods, then serve as a source when the boosters are activated to satisfy high demands. The booster operation is controlled by the system pressure at the complex. Each pump is activated when the pressure in the system drops to a specified level. Table 4-7 summarizes the existing operation of the booster facilities. Table 4-8 is a summary of the booster facilities design capacities. 4-6 DISTRIBUTION SYSTEM The distribution system consists of nearly 480 miles of pipeline ranging in diameter from 2- to 42-inch pipe. For computer modeling purposes, only the backbone system consisting of 12-inch pipe and larger was modeled. A few 8- and 10-inch pipes were included in the computer model to complete looping and service to critical areas. The existing network ' is shown on Plate I, showing major street names, pipe length, and diameter. 4-5 Boyle Engineerinq corporation � rr r rr rr rr . r rr rr rr rr rr s rr rr �r rr rr rr TABLE 4-7 PRESENT BOOSTER OPERATION Operation Order Pressure On Pressure Maintained Booster Unit Activated (PSI) (PSI) Peck 1 First 68-72 70 2 Second 68-72 70 3 Third 68-72 70 Overmyer I 1 Fourth 43 50 2 First 43 50 Overmyer II 3 Second 44-45 50 4 Third 44-45 50 Reservoir Hill* 1 Third 51-53 56-58 2 Fourth 50 60 Fire Pump 3 (Not in Operation) 4 Second 54 56 5 First 56 Pump Curve W 0 t 1p * Existing Operation - New pumping facilities are currently under design. m a 5 m m a 0 D 0 0� 0 TABLE 4-8 BOOSTER FACILITIES Power Pump Design Location Unit Manufacture Type Manufacture O(gpm) ** TDH(ft) RPM Horsepower Reservoir Hill 1 G. E. Elect. Peerless 2150 75 1,600 50 2 Waukesha Ntrl.Gas DeLaval (Not used) 3 Waukesha Ntrl.Gas Johnston 3,250 70 1,250 - 4 Baldor Elect Kirst 50 162 3,450 5 5 U.S. Elect Aurora 400 70 1,760 10 Peck 1 & 2 Waukesha Ntrl.Gas Johnston 4,635 193 1,200 - 3 Waukesha Ntrl.Gas Johnston 4,635 203 1, 180 - Overmyer I 1 Fairbanks- Fairbanks- Morse Elect. Morse 1,300 140 1,750 60 to to 1,050 185 0 t 2 Waukesha Ntrl.Gas Johnston 3,400 115 1,760 175 m to to m 2,700 160 5 Overmyer II 3 Roline Ntrl.Gas Peerless 6,500 165 1,200 377 M 4 Roline Ntrl.Gas Peerless 6,500 165 1,200 377 a _ o * Existing Operation - New pumping facilities are currently under design. D ** Operating capacities are greater than design capacities. 0 The vast majority of the system consists of asbestos cement pipe installed since 1959, which is in generally good condition. Older areas of the City are mostly served by smaller diameter cast iron or steel mains with varying degrees of serviceability. Table 4-9 is an ' inventory of the asbestos cement, cast iron and steel pipe presently in the City's system. Hazen-Williams roughness coefficients were determined, dependent upon pipe age and material. TABLE 4-9 PIPE INVENTORY Length Percent Type of Pipe (Ft.)) of Total Asbestos Pipe 2,376,128 94 ' Cast Iron Pipe 47,900 2 Steel CN4LC 102,476 4 ' 2,526,504 100 Due to the nonuniformity of pipe materials, a Hazen-Williams "C" factor was developed ' for each type and age of pipe. A roughness coefficient that is a "system" coefficient (taking into account bends, valves, services, etc., along with roughness) was developed. Water system analysis reports for the cities of Santa Ana and Santa Barbara, prepared by Boyle Engineering Corporation in January 1980 and April 1984, respectively, investigated these coefficients. In both cities, actual field tests were performed and coefficients derived to best represent the varying degrees of roughness due to the type and age of ' pipe. Using data from these two reports and other references, Hazen-Williams coefficients for the City's water system were developed. Table 4-10 summarizes these coefficients. 4-6 Boyle Englneerinq Corporation TABLE 4-10 HAZEN-WILLIAMS ROUGHNESS COEFFICIENTS "C" VALUES YEAR OF INSTALLATION TYPE OF PIPE PRE-1936 1936-1950 POST-1950 Cast Iron 60 70 120 Steel 60 70 120 Asbestos-Cement - - 130 ' 4-7 PRESSURE ZONES Within the City's water service area, the ground surface elevations are relatively flat ' throughout, with the exception of the Reservoir Hill area. This 750-acre area shown in Figure 2-1 is located east of the Bolsa Chica area and rises to an elevation of approximately 127 feet. The adequate service of this area requires a separate, higher pressure zone to meet peak demands and fire flow requirements. Presently this pressure zone serves a tract of homes and a commercial development at the comer of Goldenwest and Yorktown. Currently, water is pumped from the city's main system into the higher pressure zone of the Reservoir Hill area. An assessment district is being established in this area to finance infrastructure improvements. A new pump station now under design will replace the existing station to serve this proposed area. 4-7 Boyle Engineerinq Conoorat/on CHAPTER 5 COMPUTER MODEL DEVELOPMENT A computer model of the Huntington Beach distribution system was developed to assist in evaluation of the adequacy of existing facilities, for present conditions and under anticipated future demands. Steps in developing a computer model begin with establishing a network of pipes and nodes. A computer model is a representation of the actual water system and requires verification that the computed results approximate actual field conditions. Considerable data is required to prepare a computer model of a water system. Once the model is assembled, further refining, or calibrating, is required so that the model will accurately reflect the actual water system. 5-1 WATER SOURCES The sources of water to a system can be modeled in three different manners: .as a fixed hydraulic grade line (HGL), a fixed flow input or as a pump operating off of a pump. characteristic curve. By simulating the source, or unknown, as a fixed HGL, the computer model will calculate the flow delivered to the system under a specified condition. Elevated tanks or reservoirs "floating" on the system are generally modeled as a fixed HGL. The City's system does not presently contain any facilities to be modeled by this method. The sources of water for the City's system consist of wells, MWD connections and reservoirs with booster stations. Wells The wells are modeled by inputting the pump's characteristic curve and the suction HGL, or groundwater pumping level. As the model performs the necessary iterations to balance the system, flows are taken from the characteristic curves at the pumping head calculated by the model. This process continues through each iteration until all flows and headlosses are balanced throughout the system. As discussed in Chapter 4, the City operates the well pumps by setting the pump speed to achieve the desired performance. The pump speeds currently set by the City are assumed for the well operation in this study. Table 5-1 lists the wells modeled, the assumed 5-1 ' Boyle Enq/neerino Corporation 1 pumping levels as HGL elevations, and pump speeds. Due to the limited data on well pumping levels, the levels used for this study are assumed to be in the lower range of annual pumping levels. TABLE 5-1 WELLS - MODEL CONTROLS ASSUMED SUCTION HGL PUMP SPEED ' NODE WELL ELEVATION(FT) RPM 290 DYKE -34 1760 276 HB 1 -98 1770 ' _ HB2 Not in Model 1670 HB4 Not in Model 1584 270 HB5 -62 1666 274 HB6 -59 1030 264 HB7 -89 1108 284 HB9 -64 1648 286 HB 10 -55 1636 Boosters The boosters at Peck and Overmyer Reservoirs are also simulated by their respective ' pump characteristic curves. These two booster stations operate to hold a constant discharge pressure. The characteristic curves modeled simulate these set pressures up to the limits of the pump capacity. Figure 5-1 illustrates a typical composite characteristic curve use for the modeling of Peck and Overmyer boosters. As the flow increases beyond the capacity of the pump at its maximum speed, the discharge pressure decreases according to the characteristic curve. Peck Reservoir and Overmyer No. 2 Reservoir are assumed to be half fuil.for the subject study. Although the booster facilities at Overmyer are actually two separate pump stations with individual discharge lines to the system, due to their close proximity, they will hydraulically operate as one unit. Therefore, both systems are modeled as one with a composite pump characteristic curve reflecting the designated order of operation. The discharge line is sized as an equivalent pipe of the two existing mains. Table 5-2 lists the assumed suction HGL elevations. r 5-2 6oUle Englneerinq Corporation __J Example - Composite Characteristic Curve of Variable Speed Pump Characteristic Curve at Maximum Pump Speed U a y = O y Composite V Curve Simulating 2 Pump Operatipn Point of Set Pressure I 1 I Q Capacity FLOW i Figure 5-1 SOUIe Englneerinq Corporation __j TABLE 5-2 BOOSTERS - MODEL CONTROLS Suction HGL. Discharge Node* Booster Elevation(Ft)** Pressure 262 Peck 20 70 301 Overmyer 50 50 95 Reservoir Hill - Fixed demand out of system See Plate 1 '* Peck& Overmyer Reservoirs assumed to be half full. MWD Connections The City operates the three imported water connections on a fixed flow basis. As opposed to maintaining a constant downstream pressure, all three connections maintain a constant set flow into the system and, because the feeder is at a higher HGL than that of the City's system, the flow is assumed to be supplied at any pressure required by the' system. All of these connections are simulated in the computer model by inputting a fixed flow into the water system. The imported water connections are modeled as a positive fixed flow, and demands are modeled as "negative" flows. For the existing and ultimate peak hour conditions, these flows are assumed to be the allocated capacity, as shown in Table 5-3: TABLE 5-3 IMPORTED CONNECTIONS ALLOCATED CAPACITY Allocated Ca acity Connection (GP OC-9 4600 OC-35 9000 OC-44 6700 TOTAL 20300 5-3 BoLve Engineerinq corooratlon 5-2 STORAGE FACILITIES Because the City does not have a reservoir "floating" on the system, or at an elevation iequivalent to the static HGL of the water system, Peck and Overmyer reservoirs are not directly simulated in a demand mode in the computer model. In the following chapter, a storage analysis is presented which evaluates the storage capacity of these facilities. 5-3 DISTRIBUTION SYSTEM For this study, only the 12-inch and larger pipes were modeled, with a few 8- and 10-inch pipes included to complete looping. The primary steps in developing the computer water model are establishing a network of pipes and nodes. Nodes represent points of intersection, changes in diameter, or locations where supply or demands are applied to the system. iData for each node includes the ground elevation, associated average demand and coordinates utilized in plotting the system. Each pipe is described by the two connection 1 nodes, a length, diameter, and roughness coefficient. This computer model consists of approximately 250 pipes and 150 nodes. 5-4 MODEL CALIBRATION ' Once the City's water distribution system computer model was developed according the parameters discussed in the previous sections, it was necessary to test it against a known operational condition to calibrate the system to actual field observations. To confirm the system's operation, roughness coefficients and demand allocation, actual flow tests were performed in the field. Three separate tests were made by monitoring all water source inflow to the system by the City's telemetry system, and flow from an open ' fire hydrant. The fire hydrant flow was used in selected outlaying areas to increase the demand on the system. At the hydrant location, the flows and residual pressures were recorded. I. By using this field data, the computer model was actuated to simulate the conditions at the time of the tests. The model was run and the calculated system pressure at the hydrant was compared to the actual recorded pressure. The followingare the fire hydrant locations where the tests were performed: Y 5-4 Boyle Engineerinq Corporation __j Test No. 1: Banning and Brookhurst iTest No. 2: Alabama and Atlanta Test No. 3: Edinger and Bravata Once the actual system operation was established and the datum from which all recorded data was confirmed, the computer model calculated the pressures within three pounds per square inch. These results are within the acceptable limits of the model calibration. Details of the three analyses are contained in the Technical Appendix. 1 I 5.5 Boyle En4lneellnq Corporation --J iCHAPTER 6 WATER SUPPLY This chapter includes a discussion of the regional water supplies available to the City, from MWD, OCWD and MWDOC; and alternative water supply sources. 6-1 REGIONAL WATER SUPPLIES The City receives MWD imported water from the Colorado River and the State Water Project (SWP) through the MWDOC facilities, and extracts groundwater from the basin managed by OCWD. Production rates from these sources during the period 1982-86 are tabulated in Table 6-1. TABLE 6-1 WATER SUPPLY ALLOCATION Year Su 1 (acre-feet) % of Total Imported Ground Total Imported Ground Water Water Water Water 81-82 8,338 23,164 31,502 26 74 82-83 6,672 25,397 32,069 21 79 83-84 7,006 28,582 35,588 20 80 84-85 8,145 27,767 35,912 23 77 85-86 11,178 25,479 36,657 31 69 86-87 11.696 25.683 37.379 31 69 Average 81-87 8,839 26,012 34,851 25 75 Southern California Water Supply Scenario Like most other areas of California, Orange County's population and economic growth is projected to continue well into the next century. By 2010, the six-county Southern California population is expected to grow from its current 15.3 million persons to 21.3 million persons, nearly a 40 percent increase in slightly more than two decades, according to the draft 1987 Southern California Association of Governments (SCAG) ' baseline projections. 6-1 Boute Englneerinq Corporation 01 Similarly, Orange County's population is projected to grow by nearly 800,000 persons, a 36 percent gain over the next 23 years, reaching about 3.0 million by 2010. Demand for imported water will also increase substantially. The State Water Contractors of Southern California estimate that their demand for supplemental water will increase significantly, with shortages expected to reach 1.4 million acre-feet per year by 2010. By 2010, Orange County demand for imported water is projected to increase to 571,000 acre-feet per year under average climatic or normal conditions. During warm, dry years, this demand will increase by about 10 percent to 665,000 acre-feet per year. Southern California's dependency on the State Water Project (SWP) will sharply increase in future years with reduction on the Colorado River supply and increasing population. MWD has made an estimate of the potential level of water shortages that would occur with continued population growth and no new water supplies. This estimate assumes a dependable local supply available in local dry years and normal demands and projects shortages to begin in about 1990, reaching about 980,000 acre-feet per year in 2010, or 22 percent of demand (see Table 6-2). Orange County would be shorted probably in direct proportion to demands on the MWD system, or possibly under MWD's preferential rights formula based on agency taxes paid to MWD. , 6-2 BoUle Engineering Corporation _J TABLE 6-2 COMPARISON OF DEPENDABLE WATER SUPPLIES WITH PROJECTED DEMANDS FOR MWD (MILLION ACRE-FEET) Year Existing Water Supplies 1980 1990 2000 2010 Local Surface and Groundwater 1.19 1.19 1.19 1.19 Wastewater Reuse (Existing Projects) 0.14 0.15 0.15 0.15 Imported Los Angeles Aqueducts 0.42 0.42 0.42 0.42 Colorado River (Firm Supply) 1.18 0.47 0.47 0.47 State Water Project 1.09 1.18 1.16 1.14 Total Water Supplies 4.00 3.41 3.39 3.37 Historical and Projected Water Demands 2.95 3.53 3.95 4.35 Surplus (or shortages) in Supplies 1.05 (0.12) (0.58) (0.98) Source: MWD Although a number of new water supply projects are being pursued, none of these has yet been realized. Alternatives under consideration include construction and permitting of use of additional SWP Delta pumps, development of the Kem Water Bank, freeing up carriage water releases in the Delta that would be made possible by eliminating reverse flows by certain Delta improvements (Costa-Ayala Authorization Bills), interim leasing of Federal Central Valley Project water under the terms of the Coordinated Operation Agreement Legislation HR3113, construction of Los Banos Grandes reservoir, and water salvage in the Imperial Valley. The yield for all, except the water salvage programs in the Imperial Valley, will depend upon the terms and conditions on water right permits to be established by the State Water Resources Control Board (SWRCB) in the ongoing Bay/Delta Hearings. 6-3 Smile Englneerino Corporation In addition to average climatic, or normal conditions, efforts are being made to increase supplies available during droughts through a combination of carryover storage projects �. and temporary agricultural demand reduction programs. Under drought conditions, the supply from the SWP can be reduced by over 1.0 million acre-feet per year, a major portion of the project capacity. Under a repeat of the critical drought hydrologic conditions that occurred between 1928-34 in the Sacramento River Basin, this shortage would persist for nearly seven years. The Bay/Delta water quality plan and water right decision will also set conditions for dry or critical dry years on both the amount of export from the Delta and salinity standards. It is anticipated that in addition to salinity increases, the concentration of organic precursors, which affect the formulation of disinfection by-products, would also increase due to less flows available for dilution tduring critical dry years. iOrange County Water District's efficient management of its local water supply has reduced water demands on the SWP. The Lower Santa Ana River Groundwater Basin is one of the most thoroughly managed basins in the State through its planned maximum utilization of storage and the availability of flexible um a e control features. However g ri P Pg substantially all Orange County local water supplies have been developed. Feasibility investigations are underway by local agencies for development of the small remaining increments of local supply, particularly,wellhead treatment projects. Imported Water Supply In addition to actively supporting the needed SWP expansion discussed above, MWD is pursuing several innovative regional programs that would indirectly have a positive effect on the City. These programs include Chino Basin groundwater storage and conjunctive use, Diemer Filtration Plant expansion and retrofit and support for development of a xP � PP P new major South Orange County Supply currently being investigated by MWDOC. The South County Supply would result in a better balance of water delivery throughout Orange County, and would reduce South County demands on North County feeders. A survey of ten other major cities in North Orange County indicates that MWD connection capacity averages 180 percent annual water demand, whereas the City's capacity is only 90 percent. An additional connection capacity of 45 cfs would be required for the City to attain the higher rate,which is not currently available. 6-4 BOUIe Engineerinq Corporation __J MWD has been considering the implementation of a seasonal pricing strategy designed to reduce large agencies' dependency on the imported water supply to meet peaking tdemands, and reduce their need to expand water treatment facilities for Orange County. Local agencies would then be forced to .utilize more groundwater. However, it is uncertain whether or not it will be physically possible for OCWD to replenish the groundwater reserve at substantially higher rates. MWD is now considering a policy of underwriting the cost of developing additional local wells for seasonal peaking purposes. Groundwater Supply Within the boundaries of OCWD, it has been estimated that, by the year 2005, the total demands for water from the agencies overlying the groundwater basin will increase to over 550,000 acre-feet per year. If OCWD is to maintain its present level of groundwater availability, the groundwater production in the year 2005 will need to increase by 330,000 acre-feet. It is uncertain whether or not it will be physically possible to replenish the subsurface reserve at a rate that could offset this level of annual requirements. OCWD has suggested that water planners in the District should anticipate that ultimately only 50 percent of their supply will be furnished from the groundwater reserve. The ultimate long-range effective yield of the basin, therefore, would be 275,000 acre-feet annually, presuming that MWD will continue to support conjunctive use of surface and groundwater supplies by furnishing replenishment water. It is possible that OCWD will be able to expand the utility of the basin to keep pace, at least partially, with the anticipated growth of its member agencies. OCWD is expanding its replenishment facilities to include newly acquired property in the Santiago Creek area which should accommodate an additional 30,000 acre-feet per year, and a new 40-acre site in Anaheim, designed to accept another 25 000 acre-feet per year. g P � P Y When completed, it is estimated that OCWD will have the capacity to percolate 180,000 acre-feet per year of local water runoff, plus an additional 65,000 acre-feet of imported waters. If MWD is unable to acquire sufficient water resources to sustain either its present level of service or its future anticipated requirements and OCWD has to rely on the safe yield of the Santa Ana River system below Prado Dam for its groundwater replenishment source, the current production of groundwater would have to be drastically curtailed, possibly to as little as 100,000 acre-feet per year or slightly less than half of present pumping volumes. 6-5 Bowe Enoineerino Corporation There have been a number of estimates of the usable capacity of the groundwater basin. The results of these somewhat speculative determinations range from 1.0 to 10.0 million acre-feet. OCWD's current estimates tend to be closer to 1.0 million acre-feet or less. It tis known that the basin historically has been overdrafted by as much as 650,000 acre-feet. Based on that and the other data available, OCWD suggests that 800,000 acre-feet of usable emergency storage capacity be used for planning purposes with the current county- wide well configuration. It may be possible to expand the usable capacity to as much as 1.5 million acre-feet by deepening wells. This increased supply might require additional treatment to remove objectionable taste and odors from peat-influenced supply drawn from those deeper zones and should not be counted on without further study. Utilization of the basin would be different under a drought than during an emergency. If MWD is experiencing difficulty in sustaining deliveries because of supply limitations, it will request its agencies to draw upon their interruptible supply. Orange County will have a 30,000 to 40,000 acre-foot increase in basin demand, assuming the same drought conditions impairing MWD are affecting the Santa Ana River Basin, this will result in a• P g g possible one-year overdraft of as much as 300,000 acre-feet, leaving the basin with approximately 500,000 acre-feet available. Presuming the drought persists, by implementing an aggressive water conservation program, it would be possible to stretch groundwater supplies for two to three years for the agencies overlying the basin, thereby allowing whatever limited Metropolitan supply is available to be used by nonbasin agencies. If Southern California were to experience a major earthquake that caused a break in either or both of the aqueducts supplying Metropolitan, there would have to be re-routing of groundwater from basin users to those areas with limited or no storage. Depending upon the time of year, there should be between 500,000 to 800,000 acre-feet in storage. This water would be allocated carefully. It appears that under most circumstances, IOrange County could get by for at least one year with the basin as its sole water source. During that time, repairs could be made to the major imported water facilities, and the County could again obtain an outside supply. Similar action would be required if an earthquake on the Newport-Inglewood fault caused damage to the local MWD feeders OCWD is pursuing the development of several potential water resources projects, as P g P P P J outlined on Table 6-3. One of these projects, the Los Angeles County Underflow Loss 6-6 Sawle Enq/neerinq COMOraC/On Mitigation Project, may be a source of supplemental supply for the City, and is further discussed in a later section of this Chapter. TABLE 6-3 SUMMARY OF ESTIMATED ADDITIONAL YIELD FROM POTENTIAL WATER RESOURCES DEVELOPMENT PROJECTS (IN AC-FT/YR) Normal Drought Projects Hydrologic Conditions Conditions Resource Development Above Prado Prado Reservoir Conservation 20,000 -0- San Bernardino Basin Storage Reduction 10,000 -0- Chino Basin Storage Program 10,000 10,000 Arlington Subbasin Desalter 2,000 (a) 2,000 Artificial Recharge Capability Improvement Recharge Enhancement Sb� Land Acquisition l Santiago Creek Recharge Facilities 2,000 (b&c) -0- Groundwater Loss Mitigation/Restoration Underflow Loss Mitigation 10,000 5,000 Wellhead Treatment (e) 10,000 10,000 Wastewater Reuse Green Acres 7,000(d) 7,000 Forebay Reclamation Plant 10,000 10,000 Total 81,000 44,000 (a) Range is 1,000 to 2,000 ac-ft/yr. (b) Additional Yield is included as part of Prado Reservoir Conservation; facilities are needed to capture new yield from projects above Prado Dam. �c) Includes 2,000 ac-ft/yr of Santiago Creek water. d) Initial Yield is 3,5000 ac-ft/yr; 7,000 ac-ft/yr is yield of expanded project. (e) Wellhead treatment requires additional replenishment water to maintain basin water levels Source: Water Supply Management Within Orange County- Exhibit 2- Bay/Delta Hearings - Phase I - Water Advisory Committee of Orange County -June 12, 1987. 6-7 Boyle Enoineerinq corporation Groundwater levels in Orange County have been significantly higher than elevations in adjacent Los Angeles County. This difference in elevation results in a gradual loss of water from the subsurface of the Orange County groundwater basin into Los Angeles County because there is no subsurface separation of the sediments that underlie Los Angeles County from the aquifer systems of Orange County. It is believed that the annual loss varies between 5,000 and 20,000 ac-ft/yr. For planning purpose, the District estimates that the current underflow loss averages about 10,000 ac-ft/yr. A variety of proposals have been advanced on how best to correct this loss. The OCWD, because of the particular sensitively of this effort, intends to carefully monitor the differences in water levels along the Orange County-Los Angeles County line by installing sufficient piezometric capacity to adequately evaluate the volume of flow. The District would then proceed in several ways to mitigate the loss, by 1) encouraging nearby water pumpers to withdraw larger amounts of groundwater each year in this area to thereby approach water table equilibrium in the area of suspected outflow, or 2) installing several* wells, adequately spaced along the west County line to intercept the subsurface outflow. OCWD has been negotiating with the Southern California Water Company (SCWC) to jointly implement this project. However, the negotiations have not proceeded successfully, and OCWD may consider another water pumper such as the City of Huntington Beach to pursue the project. Although a major transmission system would be required to convey supply from this project to the City, its supplemental yield would meet a significant portion of the City's supply deficiencies. 6-2 ALTERNATIVE SUPPLY SOURCES The following section discusses the feasibility of several potential alternative water supply sources that could be developed by the City. These sources are: o Additional Wells o Water Reuse o Seawater Desalination o West Orange County Wellfield o Water Conservation 6-8 Smile Englneerinq corporation Additional Wells Additional wells could be drilled to extract additional groundwater supply for the City. As will be discussed further in Chapter 7, the operating capacity of the presently operating City wells is less than the existing average annual water demand. A survey of ten other major cities in North Orange County indicated that well capacity averages 118 percent of average production rates. To attain this level of reliability, the City would have to construct two wells to meet current demand and a total of four wells for ultimate demands. Assuming studies verify the cost-effectiveness of groundwater treatment for color and odor removal, the City should renovate and reactivate the two presently inactive wells to help meet these needs. Analysis of additional well requirements is further discussed in Chapter 7. Water Reuse Several locations where City potable water supply is presently used for irrigation could be potentially served by future phases of the Green Acres project proposed by the Orange' County Water District (OCWD). The Green Acres project is a program to furnish reclaimed wastewater for landscaping and industrial purposes within a five mile radius of the OCWD's Water Factory 21 advanced reclamation facility. The project will consist of a new reclamation plant located adjacent to Water Factory 21 that will filter and chlorinate secondary treated effluent, produced by the County Sanitation Districts of Orange County Plant (CSDOC) No. 1 in Fountain Valley, and a distribution system to convey reclaimed water to the cities of Fountain Valley and Santa Ana, County of Orange, and the Mesa Consolidated Water District. The initial phase of this project is designed to furnish about 2,700 AF annually to about 20 locations. It is anticipated that the ultimate requirement for reclaimed water in the Green Acres service area will be 5,300 afy or more. ,. The physical facilities to be built for Phase I of the Green Acres project will include modifications at Water Factory 21. The treated water will be pumped and conveyed through the service area in an array of pipes consisting of about 68,000 feet of pipe ranging in diameter between 6- and 30-inches. The water will be used for irrigating parks, golf courses, green belts, school grounds, and for industrial applications. 6-9 Route Englneerinq Corporation _J Green Acres qualifies for assistance from MWD as a part of the Local Projects Program, whereby MWD will reimburse OCWD the avoided energy cost which in 1987 is $75 an acre-foot. The program also qualifies for construction assistance from the State of California. An application for low interest loan funds in the amount of $2,000,000 is expected to be approved which will reduce the net cost of the capital facilities required by this project. Initiation of Phase I construction of the project is contingent on receipt of this loan, and completion of user contract negotiations. Major potential customers of the Green Acres project in the City include: o Golden West College o Huntington Beach Central Park o Huntington Seacliff Golf Course The average irrigation demand for reclaimed water at the above three locations is approximately 850 afy, or about two percent of the total existing water demand in the City. In order to provide a substitute reclaimed water supply.to these customers the following' P PP Y � g action would be necessary: 1. Implementation and construction of Phase I of the Green Acres project by OCWD. 2. Phase II extension of the Green Acres project facilities to the City, to be implemented either by the City, OCWD, or a joint effort. 3. Execution of a contract with the users for reclaimed water utilization. 4. Construction of onsite facilities and replumbing. Although construction of a irrigation reclaimed waters stem in the City would slightly g g Y tY g Y decrease the average demand for potable water, it would appear that water reuse is not an effective source of peaking water, since irrigation demands are primarily during the evening and night time hours. The maximum capacity of Green Acres project, including delivery to the City, has been previously estimated at a unit cost of $318 per acre-foot, assuming capital recovery of 12 percent. Since treated, non-interruptible supply costs from MWD are not expected to exceed that rate until after 1993, further evaluation of water reuse to help meet average City water requirements is warranted at that time, assuming Phase I of the Green Acres project has been constructed. 6-10 BoUle Enq/neerinq Corporation 1 1 Seawater Desalination A potential method of providing supplemental future potable water supplies for the City is seawater desalination, either through the distillation or reverse osmosis (RO) membrane processes. Although distillation has historically been the predominant process, RO is now cost competitive. RO also removes nonelectrolytes such as organic compounds dissolved in the water, which is particularly important when potable water production is considered. I' The RO process uses hydraulic pressure to force pure water from saline feedwater through a semipermeable membrane. Current technology permits the economic application of RO to the desalting of brackish waters and seawater. Generally, the membranes used in the RO process are either cellulose acetate or polyamide materials. RO membranes can be manufactured to have a salt rejection which conforms to the feedwater salinity. To achieve potable quality product water, seawater requires salt ' rejections greater than 98 percent. Operating pressures of 800-1000 psi are required for the desalination of seawater. Membrane life for seawater operation is normally assumed' ' to be two to three years. Two types of RO membranes configuration are currently used commercially: spiral wound and hollow fiber; these are shown schematically on Figure 6-1. The energy required by the RO process is primarily for pumping; it is generally supplied as electric power. The cost of high pressure pumps for seawater desalination has a significant effect on the economics of the process. Typically, power consumption is 25- 35 kwh/1,000 gallons of production at 800 to 1,000 psi operating pressure for seawater plants utilizing energy recovery. ' The recovery ratio at which an RO plant should be operated depends upon an economic evaluation. RO applied to seawater is limited to about 30 percent hydraulic recovery ,. because of the high operating pressures needed to exceed the osmotic pressure differential across the membrane. The addition of a power recovery turbine driven by the brine discharge to provide part of the high pressure feed pumping has been considered for seawater RO plants to reduce power consumption. This generally results in an energy savings of 30 to 40 percent. 6-11 Boyle Enoineerino corporation ' Reverse osmosis is a desalting process that is in use throughout the world. It is used in highly developed countries like the United States where maintenance and operation t (O&M) resources are readily available and is used in remote locations in many third world countries where O&M resources are not available. The generally accepted advantages of RO for desalting are. o Lower energy consumption and costs L' o Lower maintenance o Simple operation o Reduced corrosion o Compact size o Short installation time o Lower capital costs O&M for RO has been demonstrated to be relatively low. Operation is relatively simple t and may be started and stopped without difficulty. In addition, RO may be contracted in modules so that the plant can be maintained or expanded without complete shutdown. ' Desalination of seawater would be highly reliable source of water supply for the City as it has very few development constraints. One constraint to desalination is that it is an ' energy-intensive process. However, energy recovery systems have been recently made available, thus energy requirements, particularly on seawater systems, have been reduced. Saline water is available on a firm basis and can be developed independent of other water resources. A desalting system can be easily incorporated into existing water distribution system. Another advantage of any reverse osmosis system is that it can be installed within a relatively short period of time; a 3 mgd capacity plant was installed in Florida seven ' months after award of the contract. The principal constraint to development of seawater reverse osmosis (S)WRO) systems is the significant cost differential with conventional water supply sources. Approximate costs for developing a SWRO system as a City water supply are shown in Table 6-4, with a component cost breakdown in Table 6-5. 6-12 ' Boyle En4lneer/nq Corporation FEEDWATER IN ' HOLLOW FIBER PRODUCT WATER BRINE OUT . »tk '� CONCENTRATE < .m�.:;:;.:; ,� OUT RESIN TUBE SHEET ' HOLLOW FIBER SYSTEM 1 ' FEEDWATER MEMBRANE CASE ON BACKING ' PRODUCT WATER CARRIER MEMBRANE CAST ON BACKING r FEEDWATER CONCENTRATED SOLUTION jj BRINE SIDE PACL�FEE THROUGH FEED SPACER PURIFIED WATER PASSES THROUGH MEMBRANE FROM BOTH SIDES OF FEEDWATER PRODUCT WATER CHANNEL �- 'BRINE SEAL PRODUCT PRODUCT WATER FLOWS SPIRALLY-IN PRODUCT WATER CARRIER. LAST LAYER CONTACTS HOLES IN BRINE CONCENTRATE PRODUCT TUBU FOR EXIT TO COLLECTION SYSTEM. SPIRAL WOUND SYSTEM 1 Reverse Osmosis Membrane Configurations Figure 6-1 ' TABLE 6-4 ' SWRO SYSTEMS COSTS* Capacity Construction O&M Cost Unit Cost ($/AF) _ MGD Cost ($M) M ear Cap.Recv. O&M Total 1 5.2 1.4 475 1250 1725 5 20.7 6.1 375 1100 1475 10 40.4 11.0 350 1000 1350 * Based on recent construction bid data. TABLE 6-5 SWRO SYSTEM COMPONENT COSTS Cost Item 1 mad 5 mgd Construction Cost ($) Pre-treatment facilities 700,000 1,800,000 Reverse osmosis system - Equipment 3,000,000 13,100,000 - Membranes 1,100,000 5,000,000 - Structures and Improvements 400,000 800,000 Subtotal $4,500,000 $18,900,000 Total $5,200,000 $20,700,000 O&M Cost ($/Year) Pre-treatment 300,000 1,500,000 ' Reverse osmosis system - Membrane replacement 300,000 1,400,000 - Energy 450,000 2,200,000 - Other 350,000 1,000,000 Subtotal $1,100,000 $4,600,000 Total $1,400,000 $6,100,000 6-13 Boyle Engineerinq Corporation It is recommended that the City investigate the feasibility of a SWRO supply in more detail, including water quality and pretreatment requirements, optimum membrane configuration, and specific cost estimates for demonstration and full scale facilities ' West Orange Coun , Wellfield The potential for the City to become involved in the OCWD program for Los Angeles County Underflow Loss Mitigation was outlined earlier. For the City to realize additional supply from this source, it would be necessary to accomplish the following: (1) participate with OCWD in joint development of a West Orange County Wellfield adjacent to the Los Angeles County line; ' (2) Participate in construction of new transmission facilities between the wellfield and the West. Orange County Water Board (WOCWB) Feeder tNo. 2; and (3) Negotiate a utilization increase in the WOCWB Feeder No.2. New construction outside the City would include: three or more wells, approximately' 21,000 linear feet of 30-inch through 18-inch pipeline, and system interconnections as shown on Figure 6-2. Estimated construction cost is approximately $5.7 million. MWD water supplied from OC-9 and OC-35 is conveyed through the WOCWB Feeder No. 1 and 2 according to the following capacity allocation: ' Feeder No. 1 Feeder No. 2 Flow (cfs) Flow(cfs) Agency_ Capacity Use Capacity Use City of Huntington Beach 10 10 20 20 ' City of Westminster 7 0 12 4 City of Seal Beach - - 10 5 City of Garden Grove 4 0 5 3 ' Total 21 10 47 32 1 1 6-14 BoUle Englneerinq Corporatton -J 1 Although the City normally utilizes the maximum allocated capacity of Feeder No. 2, the other entities do not. There is a potential for increasing the WOCWB Feeder No. 2 ' utilization and OC-35 supply to provide additional system inflow to the City. Similar opportunities may exist with the WOCWB Feeder No. 1 and OC-9 supply. Water Conservation California's water is a scarce and valuable natural resource. A major source of additional water supply is found in water conservation programs. By effectively instituting a water conservation program, the City can expect to reduce the present unaccounted-for water (as discussed in Section 3.2) and average system demand. The benefit of such programs will likely outweigh the cost of their implementation. As referred to in Boyle's August 1982 "Municipal Leak Detection Program" prepared for ' the State Department of Water Resources, each acre-foot of water conserved may be valued at $185 (escalated to present day costs) to develop, treat, transport and distribute. ' This value relates to nearly $70,000 for each percent of the City's average annual demand conserved. ' MWD is presently initiating pilot programs to study this level of benefits to be expected from water conservation programs. Five programs identified by MWD appear to be directly applicable to the City's water system. Although there is not sufficient data available to accurately estimate the expected amount of water to be conserved, the following five programs have been identified due to their greater potential for water conservation. Leak Detection ' Techniques used to identify and locate municipal water system leakage range from visual observation and isolated sector consumption studies to use of sophisticated leak detection equipment (oscilloscopes, microprocessors, accelerometers, and amplifiers). Leak detection can be accomplished with basis acoustical equipment that identifies the sound of escaping water; more sophisticated equipment is used to obtain a higher degree of accuracy in pinpointing leaks. ' In addition to conserving water by identifying and repairing leaks, the amount of water conserved also directly decreases the quantity of unaccounted-for water. 6-15 ' BoUle Englneerinq Corporation Toilet Leak Repair This program would consist of an audit of residential neighborhoods to identify homes with leaky toilets. Once identified, the resident would be notified to repair the leak. ' Residential Water Audits Specific residential dwellings would be targeted by possibly a water bill analysis to identify ' large residential users. These customers would then be contacted by phone to offer advice on water conservation and to set up a site visit to audit the current water usage. ' Low Flow Showerheads The distribution of low flow showerheads can be accomplished by either mailing to ' customers or delivering and possible installing by city staff. MWD identifies that the delivery and installation produces higher results, however not necessarily exceeding the cost/benefit of those mailed to customers. Process Water Audits Under this program, the larger non-residential customers are identified to coordinate a ' ' water audit of their present usage. Process changes and water saving devices could be recommended and an analysis of potential savings be performed. 1 6-16 Soule Engineering Corporation __j w 4 1 v $ lip. 'i `_ '� ' :.;:. ;,1 -1 _ _ '1 �o -1 . Im �..`I Je_ A.. !. '�' ,jl '1-�i _ -- ... I , w+. ul. •■ 1 .. -1.: 1�II�..� • _ �r•� Is• L1 In_ r.sc f�A\tit1112tI1 _ t 1- f -a �.dC(►CII� Ii� 1��-~'1� .'�,q- ..r- ` .i ` ��. a u.,•, - • �. _ , ', - ■ --- — fill ,•I , ' 7' 4. 1 ... S. a 1 • • • • • • • • j - i— — — -r/— , — — — \ • • • `I: • • •+Kt, C'YI'kE.SA: rJ --- « �� �4 Pots _ �a -,u h We _0rat e aunty All - 11 tWellfie .. Jar .k-�1- uol,l,.fer.- _ _ .ve .I e �3 wo TI CSran a o�un c.:_ .. 14 LJW ti �,, ■ = mtenthd �r.ansmission. Route :r 1 LDCWB f f f f f—. Z r 3 •Ih — 4, • 1 - '� • i __ _•# -- FeederFlo. 2 I.I lti \I.\\tl l l l.i _ - .. _ .� _i 1..,,�. • � 1 40 .\RMLI) H .]IKCES KF11.K\1•. l I- 1'F:k Ar - I �•'r' f� Y. Figure 6-2 Potential West Orange •f�f' Id County Welifield �' t' & Transmission Facilities ' CHAPTER 7 WATER SYSTEM ANALYSIS The City's water distribution system was evaluated with the computer model under standard design criteria. This criteria analyzes the system's operation during peak hour demands, and its adequacy to meet required fire flows during maximum day demands for rexisting and ultimate development conditions. Existing and ultimate projected peak hour demands, three existing and six ultimate fire flow conditions were modeled to adequately evaluate the City's system. Using the results of the computer model, an in-depth analysis of the water system's facilities was performed. All computer runs utilized for this report are presented in the separately bound Technical Appendix. Several aspects of the Water Department management are operations addressed at the end of the chapter. Table 7-1 presents a summary of existing and ultimate water demands, together with system supply and delivery capacities. 7-1 BoUle Englneerinq Corporation __J TABLE 7-1 SUMMARY OF WATER DEMANDS AND SYSTEM CAPACITY 1 Ultimate with without Item Existin Bolsa Chica Bolsa Chica Water Demand (gpm) Average Annual 22,609 26,082 25,062 Maximum Month 128%) 28,940 33,385 32,079 Peak Week (162%) 36,627 42,253 40,600 Maximum Day (243%) 54,940 63,379 60,900 Peak Hour (400%) 90,400 104,300 100,200 System Capacity-(gVm) Wells 21,200 Imported Water 20,300 Subtotal - Supply Sources 41,500 Booster Stations* **31,200 Total - Delivery Capacity **72,700 Excludes capacity of Wells 2 and 4 pumping directly to Peck Reservoir ' (4,400 gpm). ** Based on operating capacities of booster stations. 7-1 EXISTING SYSTEM The existing water system was evaluated to test its present adequacy to deliver peak hour demands and fire flow requirements. Although recommended system improvements ' discussed in the following sections were identified to meet ultimate conditions, the computer model of the existing system was used to identify deficient areas in order to ' prioritize improvements. Three fire flow runs of the computer model illustrate that the water system is generally adequate to meet required fire flows. However, the existing system is not sufficient to meet fire flow conditions at the Peter's Landing area in Huntington Harbour due to large ' fire flows required for this intense commercial development usage. Table 7-2 lists the tested locations and the respective available fire flows: 7-2 Boyle Englneering Corporation TABLE 7-2 EXISTING FIRE FLOW ANALYSIS Required Available Fire Flow Fire Flow @ 20 PSI @ 20 PSI Node Location PM GPM 6 Brookhurst & Banning 2000 4110 190 Huntington Harbour Mall 4500 4658 220 Peter's Landing 6000 2593 The City's present inflow capacity to the system is not sufficient to meet existing peak hour demands. The present maximum operating capacity of the system is approximately ' 72,700 gpm. Compared to the existing peak hour demand of approximately 90,400 gpm, this results in a deficiency of 17,700 gpm. The existing peak hour demand analysis demonstrates the immediate need to increase flow input to the system either from additional source capacity (groundwater or imported water capacity) or storage and ' boosting facilities or both. Additionally, as demands approach the system's present capacity, low pressures are encountered in the southern portion of the City where source facilities are not located. The existing demand analysis discussed above indicates that the City presently cannot deliver sufficient water under peak hour conditions, and the existing deficiency of 17,700 gpm is critical. Although the City system has not been previously forced to supply peak hour demands, such a condition could easily occur. During previous demand periods at slightly less than peak hour conditions, the system has operated at maximum conditions, and reservoir levels were. still dropping drastically. In addition, City water system operations personnel have observed increasing trends of low system pressures and difficulty in conveying water to the southeast portion of the City. The City should take immediate action to remedy existing fire flow and peak hour deficiencies. In addition, the City faces increasing risk by adding new services to the presently deficient system. 7-3 save Englneerinq Corporation i 7-2 ULTIMATE SYSTEM The ultimate water system analysis consists of six fire flow tests, peak hour demands analysis, and service for the ultimate development of the Reservoir Hill Assessment District and the Bolsa Chica area. All improvements identified in this study are based on ultimate system conditions. The following sections describe in detail the complete system analysis. 7-3 SOURCE ANALYSIS From the Water Supply Analysis in Chapter 6, the following can be drawn: 1. Regional imported supplies may not be readily expanded in the future due to MWD delivery system restrictions and programs to reduce local agency peaking flows; 2. Regional groundwater supplies may not be readily expanded in the future due to challenges in further optimization of groundwater recharge, and the OCWD longterm goal of reducing local agencies' basin production percentage to approximately 50 percent. 3. Development of the West Orange County wellfield may result in additional City ' supply, but significant institutional implementation must be accomplished. 4. Alternative source supplies such as water reuse or seawater desalination are technically viable, but remain either very expensive, or not directly responsive to the City's principal need for supplemental peaking supply. Because of the above restrictions, emphasis should be placed on a self-sufficient program by the City to meet current and projected deficiencies. 100 Percent Wells.1100 Percent Import Analysis The water system was additionally evaluated to study its performance under conditions where either imported water is not available or all wells are incapacitated. For existing conditions, the design groundwater capacity (27,500 gpm) is greater than the existing average annual demand (AAD) 22,609 gpm. However, the operating well capacity (21,200 gpm) is only 94 percent of existing AAD, or 81 percent of the ultimate AAD with Bolsa Chica Service (26,082 gpm). Therefore, under emergency conditions in which timported water may not be available, the wells would not be able to continuously supply the average annual demand unless additional wells were constructed. 7-4 Soule Enq/neering corporation -J iA supply source of 100 percent imported water augmented by the storage capacity could also only meet the average annual demand for existing and ultimate conditions for a limited time. Table 7-3 summarizes the results of this analysis. 1 The computer model was utilized to analyze the actual system performance under these conditions of 100 percent groundwater supply or 100 percent imported water supply. For both scenarios, the system was able to deliver the average annual demand at required pressures. These computer runs are presented in the separately bound Technical Appendix. TABLE 7-3 EMERGENCY SOURCE ANALYSIS No. of Days of Emergency Supply Existing Ultimate Demand Demand (26082 gpm AAD) (22609gpm AAD) W/New Storage W/Out New Storage 100% Imported Supply 10.8 8.9 5.4 (20,300 gpm) 100% Groundwater Supply 19.9 11.5 6.9 (21,200 gpm) Additional Well Requirements Assuming a rated capacity of 3,000 gpm, one additional well would have to be drilled now, and one additional well later to meet ultimate average demands. As indicated in Chapter 6, a total of four additional well supplies are necessary to meet ultimate demands at the typical groundwater capacity rate (118 percent of average production). The analysis is shown in Table 7-4. Assuming inactive Wells 8 and 11 can be reactivated with groundwater treatment facilities, two additional wells would need to be drilled. Hypothetical locations for the new wells are near the intersections of Golden West Street and McFadden Avenue, and Gothard Street and Slater Avenue. 7-5 Smile Englneerinq corporation __j TABLE 7-4 SUPPLEMENTAL WELL REQUIREMENTS Ultimate with without Item Existing Bolsa Chica Bolsa Chica Average Annual Water 22,609 26,082 25,062 Demand (AAD) (gpm) Typical Well Capacity 26,679 30,777 29,573 (AAD x 1.18) gpm City Operating Well 21,200 21,200 21,200 Capacity (gpm) City Groundwater Supply Deficiency -Average Demand 1,409 4,882 3,862 - Typical Well Capacity 5,479 9,577 8,373 Supplemental Wells Required (3,000 gpm capacity) -Average Demand 1 2 1 -Typical Well Capacity 2 4 3 7-4 STORAGE ANALYSIS Storage requirements are normally based on the following components: 1. Operational Storage 2. Fire Storage 3. Emergency Storage These components are discussed in detail as follows: OPERATIONAL STORAGE Operational storage is required to meet the hour fluctuations in demand above the available source inflow. This amount of storage is generally assumed to be equivalent to 25 percent of a maximum day's demand when the available source capacity is equivalent to the maximum day's demand. Because the City's available source of supply is 13,440 gpm less than the existing maximum day demand and 19,400 gpm for ultimate 7-6 aowie Enqineerinq corporation conditions (21,879 gpm with Bolsa Chica), additional storage greater than the volume related to 25 percent of maximum day demand is required to account for the lack of ' source capacity. A detailed storage analysis was performed by analyzing the four maximum days of water consumption in relationship to a typical demand hydrograph. Figures 7-1, 7-2, and 7-3 summarize the storage analysis for existing, ultimate and ultimate with Bolsa Chica demands, respectively. The maximum four days of water usage was assumed to be two days of maximum day demands with daily demands before and after of 60 percent of the maximum day, as experience May 31 through June 3, 1982. The analysis performed, / presented in the Technical Appendix, demonstrated the adequate filling of the reservoirs the first and last days during off-peak hours for existing demands, but inadequate replacement of water during the two consecutive days of maximum demand. Essentially, the quantity of water utilized by the system exceeds that of supply by approximately 48 mg for existing conditions and 64 mg for ultimate conditions (70 mg with Bolsa Chica). FIRE STORAGE The required fire flows and durations discussed in Section 3-7 establish the necessary fire , storage. The maximum ultimate fire flow within the city is identified by the Huntington Beach Fire Department as two simultaneous 5000 gpm fire flows for five hours, equivalent to 3.0 million gallons of storage. EMERGENCY STORAGE Emergency storage criteria is based on many factors. The general concept is to select an emergency storage volume that will be sufficient to supply the service area in time of planned or unplanned equipment outage, such as pump failure, power failure, pipeline breakage, etc. Emergency storage is also needed as protection in case of major disasters such as earthquake, or other catastrophic events. This storage should be adequate to provide uninterrupted service during such events. In this area, it is common to adopt one to three average days demand as the criterion for emergency storage. Table 7-5 lists local agencies and their available emergency storage capacity. Although the City does own 128 mg of capacity in the San Joaquin Reservoir, this volume of water cannot be considered as an emergency supply, and can only be transported into the system at a maximum rate of 6700 gpm, roughly 25 percent of the ultimate average annual demand rate. A flow test should be conducted on the San 7-7 Smile Enqlneerinq Corporation 2W, Typical Four Da- Demand Hydrograph Day,I Day 2 Day 3 Day 4 60% Max. Day Demands Max. Day Demands Max. Day Demands 60% Max. Day Demands Figure 7-1 Existing Demand Legend + Reservoirs Draining c . 1 - Reservoir Filling c 0 c c 4 Z E o � 28.40 M E +28.40 M +2.5 MG 1 9 +2.50 MG 2 .44 MG +.44 MG Existing o supply • a 76 0 m -1.02 MG 11.19 MG 9.04 M 12.08 M -1.02 of a I . • I I I I I I I I Cumulative Storage 2.50 MG 0 MG 28.40 MG 9.36 M 147.76 MG 35.68 MG 37.61 MG Required 0f2 1 12 12 12 1 12 1 12 .■ r% ..--- as r% as--- .. .. .I.._— a n •I--- .. .. W .M W IM! M W " M ap m sw w ;m a a , - � Tvnical Four Dap Demand Hysrograph Day 1 Day 2 Day 3 Day 4 60% Max. Day Demands Max. Day Demands Max. Day Demands 60% Max. Day Demands Figure 7-2 Legend Ultimate Demand + Reservoirs Draining 1 - Reservoir Filling is 0 T L E t m cc o E 1 +6.06 MG +35.80 MG 35.80 +6.06 MG 0 0 AL a Existing Ilk Supply 68 a. -9.84 MG -7.86 MG -11.23 MG I c U. I ` z Cumulative Storage 6.06 MG _ 0 MG 35.80 MG 27.94 63.74 MG Requ�re MG 52.51 M 58.5T MG 1'2 1 1 12 1 2 1 12 M.D. Noon M.D. Noon M.D. Noon M.D. Noon M.D. 2W Twical Four Day Demand Hydrograph . Day.1 Day 2 Day 3 Day 4 60% Max. Day Demands Max. Day Demands Max. Day Demands 60% Max. Day Demands Figure 7-3 Legend Ultimate with Bolsa Chica + Reservoirs Draining 1 - Reservoir Filling c w 0 c o a Z o � � o a IOC G E 1 9 +38.88 MG 38.88M 2 +7.56 MG +7.56 MG 0 a co ca Exiding c� supply m c a. I5 0-9.33 MG -7.38 MG I I I I l I I I Ir Cumulative Storage 7.58 MG 0 MG 38.88 MG 31.50 • 70.38 MG 59.51 MG 67.34 MG Required _ - 01�2 MG 1 12 12 12 1 2 1 12 -M n_ Nnnn M.D. Nnnn M n Nnnn M n Nnnn an h Joaquin Reservoir transmission main during a winter period without MCWD use to verify flow rates available to the City. TABLE 7-5 COMPARATIVE WATER STORAGE NUMBER OF AVERAGE DAYS OF EMERGENCY STORAGE City of Huntington Beach 0 days* City of Santa Ana 0.4 days City of Hawthorne 0.7 days City of Torrance 0.7 days City of Garden Grove 1.1 days City of Inglewood 1.4 days tStorage capacity in the San Joaquin Reservoir is only included as the maximum, inflow from OC-14 (6700 gpm). Existing storage is less than operational and fire storage requirements. For this analysis, the recommended emergency storage volume was calculated by reducing the average day demand by the 6700 gpm flow capacity from the San Joaquin Reservoir. This relates to 26 mg of ultimate emergency storage for one day's average demand (28 mg r, with Bolsa Chica.) Table 7-6 summarizes the complete storage capacity analysis for the City's system. Although the additional required storage is identified in this report as one facility, multiple smaller facilities at separate locations could be adequate. 7-8 BoLlle Enqineerinq corporation __j TABLE 7-6 STORAGE CAPACITY ANALYSIS Criteria Operational = Per detailed analysis (see Technical Appendix). Fire = Two simultaneous 5,000 gpm fire flows for five hours. Emergency = Minimum of one average day's supply Ultimate Ultimate without with Capacity Analysis Exit Bolsa Chica Bolsa Chica Avg. demand (gpm 22,609 25,062 26,082 Max. day demand (gpm) 54,940 60,900 63,380 Req'd Operational 47.8mg 63.7mg 70.4mg Req'd Fire 3.Omg 3.Omg 3.Omg Req'd Emergency 22.9mg 26.3mg 27.7mg Subtotal 73.7mg 93.Omg 101.1mg Existing Storage 2 40.5mg 40.5mg 40 m Req'd Additional Storage 3 33.Omg 52.Omg 61.Omg 1 Emergency storage is one average day's demand less 6700 gpm ' from OC-44. 2 Excluding San Joaquin Reservoir allocation of 128 mg. 3 May be reduced if supplemental wells are constructed. 7-5 BOOSTER ANALYSIS As mentioned in Section 7-1, the City's combined source and boosting capacity is not adequate for either existing or ultimate peak hour demand conditions. Due to this existing inadequacy, immediate attention should be given to improvements in this area. For existingconditions the system is deficient b 17 700 m to supply peak hour � Y Y � gpm PP Y demands, and 27,500 gpm (31,600 gpm with Bolsa Chica) for ultimate conditions. Due to expected low pressures in the southern part of the City during extreme conditions, it is recommended that a booster/reservoir site be located in this area. Although three tlocations were evaluated for this site, all adequate to meet the projected deficiencies, storage/boosting facility sites at multiple locations would also adequately serve the system. The following three sites are shown on Figure 7-4: 7-9 soave EnQlneer/nq Corporation 01 Alternative 1: Atlanta and Bushard Alternative 2: Adams - East side of Santa Ana River Alternative 3: Hamilton - East side of Santa Ana River The site described as Alternative 1 was identified due to its location within the deficient area of the system. This site is approximately 6 feet of elevation and would require pipeline improvements to adequately distribute water into the system. Edison High School located at this site, and there appears to be available area for proposed facilities. �. The second site, located on the north side of Adams Avenue just east of the Santa Ana River, was identified due to its location near the OC-44 connection. A third site, located on the north side of Hamilton just east of the Santa Ana River, appears to be advantageous due to the high ground elevation and the location within the City of Costa Mesa. However, both of these sites would require pipeline improvements to transmit flow to the City system. Although the required pumping head would be reduced due to the higher ground elevation, Site 3 would require approximately 3000 l.f. of 42 inch main and bridge crossings to deliver water to the system, in addition to the pipeline improvements required for Alternative 1. The second and third sites would also require the acquisition of land from the City of Costa Mesa. Additional transmission main and land costs for Alternative 2 or 3 are estimated at approximately $1.8 million. Due to the large additional costs associated with Alternatives 2 or 3, only Alternative 1 is presented here in detail. Table 7-7 summarizes the required capacity of this storage/booster site near Atlanta and Bushard. 7-10 Boyle Enoineerino corporation __J iEllis Garfield Yorktown City of Alt. 2 . Y Huntington Beach Adams Adams Indianapolis M L A lC0 C Y m m m10 City of z 00 Costa Mesa Atlanta Alt. 1 Alt. 3 �. Victoria Hamilton c 8�yl9hN,a ' y Storage / Booster Site p Alternatives NTS Figure 7-4 TABLE 7-7 BOOSTER IMPROVEMENTS Proposed Location: Magnolia and Hamilton Req'd pumping head: 222 feet Ultimate Without With i Present Bolsa Chica Bolsa Chica Average Annual Demand 22,609gpm 25,062gpm 26,082gpm Peak Hour (PF=4.00) Demand 90,400gpm 100,200gpm 104,300gpm Sources - Wells - 16,800 gpm** MWD - 20,300 gpm Boosters - 35,600 gpm -72,700gpm -72,700gpm -72,700gpm Deficiency 17.700gpm 27.500gpm 31.6000m Standby* 6 0�5 Ogpm 6 OS 0gpm 6 500gpm Req'd Add'l Booster Capacity*** 24,000ggppm 34,000gpm 38,000ggppm/ (54cfs) (76cfs) (85cfs) " Assume largest well or booster pump is offline (Overmyer 3 or 4). *' Excludes Wells 2 and 4 pumping directly to Peck Reservoir. *** May be reduced if supplemental wells are constructed. 7-6 DISTRIBUTION SYSTEM ANALYSIS The overall distribution network appears adequate to distribute peak hour flows and fire demands throughout the system, with the exception of fire requirements at the Peter's Landing area in Huntington Harbor and peak hour service to an elevated area located at Warner and Marina View Lane, rising to approximately 50 feet above sea level. Other cross-ties are also identified in this section to increase the fire service throughout the system. Plate 1 identifies the recommended improvements for the ultimate system. Table 7-8 lists the fire flow locations evaluated under ultimate maximum day conditions and the available flow with proposed improvements. 7-11 aowie Engineering Corporation _j TABLE 7-8 ULTIMATE FIRE FLOW ANALYSIS Req'd Available Fire O0Fpplow Fire Flow Node Location (GPM) @GPPMI 28 Edison H.S. 5000 5547 46 Downtown 10,000* 12723 r95 Reservoir Hill 6000 6000 154 Beach & Slater 4500 7192 220 Peter's Landing 6000 8765 222 Huntington Center 6000 10706 Two simultaneous fires of 5,000 gpm each. The Huntington Beach Fire Department has identified a fire flow requirement of 6000 gpm for the intensive commercial development in the Huntington Harbour area. Presently, this area is served by a 12-inch main in Edinger Avenue and a 14-inch line in Warner Avenue Because of its distance from any source, the low pressures encountered due to the headloss to this area are insufficient. In Beach Boulevard, from Edinger Avenue to Ellis Avenue, two 8-inch lines (6-inch between Ellis and Talbert) serve either side of this highway. However, in some places the east side is arbitrarily served from deadend lines originating from adjacent developments. To increase the flow capacity and the fire protection in Beach Boulevard, improvements shown on Plate 1 are recommended to develop continuous parallel 8-inch lines along the Boulevard with 12-inch cross-ties at every arterial intersection. The elevated area located in the vicinity of Warner and Marina View Lane referred to as Sunset Heights ranging in elevation from 50 to 66 feet, encompasses approximately 86 acres, with 90 percent of this area within the planned Bolsa Chica development. The 40 psi minimum pressure criteria established for this_study during peak hour conditions could not be achieved for this area. Pipeline improvements (16-inch main from Springdale to Marina View Lane in Warner Avenue) increases the ultimate peak hour pressure to approximately 30 psi, still below the criteria established for this study. A 7-12 OaL/le Engineer/nq Corporatlon smaller reservoir booster site in this area to serve the existing gPressure zone would also achieve the minimum 40 psi criteria. This option is discussed further in Chapter 8. Table 7-9 summarizes the improvements identified for the ultimate distribution system, including distribution mains required for the storage/booster site identified in Section 7- 5. TABLE -79 PROPOSED DISTRIBUTION SYSTEM IMPROVEMENTS Diameter Length Location (inches) (feet 1. Sunset Heights Storage/Booster Facility -Bolsa St. -Booster to Warner 20 1,400 - Warner-Bolsa to Pacific Coast Hwy. 20 7,300 - Pacific Coast Hwy. (or alternative) - Warner to s/o Edinger 20 5.300 Subtotal 20 14,000 - Pacific Coast Hwy. �or alternative) - Edinger to s/o Edinger 14 1,250 r 2. Beach Blvd. - East side - OCFCD C-6 to Warner, then to "A' St. 8 640 - Spear to Liberty 8 270 - Ronald to Talbert 8 820 Subtotal 8 1,730 3. Beach Blvd. cross-ties - at Slater 12 100 - at Graziadio 12 100 - at Indianapolis 12 100 - at Atlanta 12 100 Subtotal 12 400 4. Orange/Lake - from Downtown Loop to Alabama 12 700 5. Southeast Storage/Booster Facility - Hamilton-Brookhurst to Magnolia 20 5,210 - Magnolia-Hamilton to Banning 20 2.640 20 7,850 - Hamilton-Magnolia to Newland 30 2,510 - Newland-Hamilton to Atlanta 30 2,570 - Atlanta-Newland to Lake LO 2.800 30 7,880 7-13 BOUIe Enq/neerinq Corporation I r r 7-7 RESERVOIR HILL The Reservoir Hill system, a closed pressure zone, was analyzed independently of the main system. A new booster station to be located at the corner of Goldenwest and Clay will boost from the main zone into this pressure zone. Plate 2 illustrates the proposed service boundary and backbone computer network of the distribution mains identified for this zone. A minimum pipe size of 12-inches and a maximum velocity of 10 feet per second is the assumed overall criteria. Computer runs of this system are included in the j, Technical Appendix. Table 7-10 summarizes the results of the water model computer runs for main sizing due to fire flow requirements. TABLE 7-10 RESERVOIR HILL PRESSURE ZONE AVAILABLE FIRE FLOW , Available Required Fire Flow Fire Flow @ 20psi Node Location (Qnm1 r1 Ext. of Edwards 3500 8945 5 Clay& Huntington 3500-4000 5046 13 Gothard; south of Ellis 3500-6000 6701 15 Ellis & Edwards 1500-2000 6221 Additional sensitivity runs were performed to illustrate the system operation in the event the Reservoir Hill boosters are inoperable and the back-up source is Overmyer Booster Nos. 1 and 2. The new 100 horsepower motor is assumed to be in operation at Unit No. 1. Table 7-11 identifies the estimated available fire flow at several critical points in the system under these conditions. 7-14 Boyle Engineerinq Corporation --J TABLE 7-11 RESERVOIR HILL PRESSURE ZONE rBACK-UP SOURCE AT OVERMYER NO'S. 1 & 2 Available Required Fire Flow -Fire Flow @ 20psi Node Location ��nm�_ (gpm,) 9 Extension of Clair& Edwards 3000 3334 10 Edwards & Garfield 3500-4000 3114 13 Gothard, south of Ellis 3500-6000 3712 Peak Hour-AdequateY System Pressures Additional booster capacity at Overmyer booster Nos. 1 and 2 would sufficiently meet minimum required fire flows, except at Node No. 10. Without more specific information on land use, requirements for higher fireflows cannot be determined. An additional computer run assumes the Reservoir Hill Booster (source Node No. 8) is in operation, however, pipe No. 13 is not included in the pipe network. With this condition ,. modeled, the available fire flow at Node No. 13 was calculated to monitor the effect of the loss of this critical pipe. The available fire flow at Node 13, the most critical location under this condition, is as follows: Available Required Fire Flow Fire Flow @ 20psi Node (gpm) Upm) 13 3500-6000 4942 7-8 WATER DIVISION OPERATIONS This section addresses several aspects of the water supply management and operations of the City Water Division. tWater Sup121y Allocation In order to minimize operating costs, the City Water Division should strive to limit annual groundwater pumping to the Basin Production Percentage (BPP) established by the OCWD. This has historically been 70 percent of total annual production. With increasing demands being placed on the groundwater basin by other agencies, the BPP 7-15 BOUIe Enq/neerinq Corporation could be expected to decrease in the future. Annual demands for various BPP are presented in Table 7-12. With a recent (1986-87) imported water use of about 11,700 AF, and an expected decrease in the BPP, the City would be faced with a growing dependence on imported water, up to an 80 percent increase in the future if the BPP becomes 50 percent. Existingwells have the demonstrated capability of providing in excess of 70 percent of the - P ty P g annual water supply. With proper maintenance of the mechanical equipment, these wells could be expected to last beyond 2000. Periodic water quality testing and well casing inspection will reveal problems with contamination or casing failure. rTABLE 7-12 ALTERNATIVE WATER SUPPLY ALLOCATION Annual Water Supply-AF , Source Present Projected' Total 36,500 42,100 Groundwater BPP=70% 25,600 29,500 ' Groundwater BPP=60% 21,900 25,300 Groundwater BPP=50% 18,300 21,000 Imported Water (BPP=70% 10,900 12,600 Imported Water BPP=60% 14,600 16,800 Imported Water BPP-50%) 18,200 21,100 With capacity for Bolsa Chica Service San Joaquin Reservoir Utilization '. San Joaquin Reservoir (SJR) is an open terminal storage facility for MWD's East Orange County Feeder #2. The City has a 13.11 percent ownership in SJR; at its present capacity ' of 3,000 AF, this represents 393 AF (128 mg). The State Health Department is suggesting that the reservoir be covered. Recent studies by MWD include the recommended modifications for making the reservoirs a more regular shape, buttressing portions of the embankment and installing a floating cover. Total construction cost for these improvements has been estimated by MWD at $41.8 million. With a projected decrease 7-16 ' Soule Englneerinq Corporation in capacity to 2,400 AF, the City's proportionate share would be 315 AF (103 mg). The City's share of construction cost would be about 5.4 cents per gallon of reduced capacity. Continued utilization of SJR by the City is cost-effective if upgrading costs are allocated according to actual benefit received. Emergency Communications ' The Municipal Water District of Orange County (MWDOC) is the proponent agency for VEPO, the Voluntary Emergency Preparedness Organization. The purpose of this organization is to provide a communications link between the various water agencies of Orange County under the direction of MWDOC that will facilitate the optimum use of ' resources for the purpose of recovering from the effects of a major disaster or emergency. The City of Huntington Beach, as a member agency of MWDOC, is actively participating in activities related to getting the VEPO system on line. Personnel at both MWDOC and the City are confident that the system will be on line by December 1987. MWDOC ' envisions quarterly radio exercises and annual mock disaster training"in the field." We recommend that the City continue its close working relationship with MWDOC in this area and that it continue its enthusiastic support of MWDOC's emergency preparedness program. We understand that all public works departments use the same radio frequency. During intra-City emergencies, with each department trying to communicate their individual needs, the frequency becomes jammed and is ineffective. The City should investigate the possibility of obtaining other radio frequencies for water operations personnel. Emerged Preparedness Plan Guidelines presented here should be followed in times of major disaster when cooperation and assistance are vital to protecting life and property. The purpose of these guidelines is to encourage a regional response to a major disaster ' within the Orange County water community. Follow these guidelines when major disaster occurs and: 7-17 BoUle Enqlneerinq Corporation 1. Water service has been restored in your service area and resources are available to help others. or 2. Additional help is needed to restore water service in your area. ' The responsibilities of the Water Department in times of major disaster are: P P ] ' o Protect the health and safety of the pubic. ' o Assess damage and make repairs within service area to the extent possible. o Report damage assessments to VEPO. Update as needed. o Resume normal operations as soon as possible. ' o Request help through the VEPO when outside resources are needed. o Make resources available to others when no longer needed in service area. The City should adopt the following guidelines regarding resources: ' ' o Outside resources may be requested when needed. o Coordinate with State Office of Emergency Services for use of trailer- mounted pipeline segments. o Equipment, such as backhoes, graders, portable generators, pumps, etc., will be made available to requesting party when not needed within the City. o Supplies, such as valves, couplings, pipe segments, etc.,will be made ' available to others when not needed. o Personnel may go to the aid of others when not fully engaged in a state of ' emergency within the City. The requesting party should fully indemnify and hold harmless the responding party from any liability resulting from any injury occurring in the course of supplying emergency aid. The City should establish guidelines regarding water conservation during a major temergency: ' o Conserve water until normal operations are resumed when such efforts may increase supply to another. 7-18 BoUle Enolneerinq Corporation ' o Imported water will be used according to the provisions established by MWDOC. ' o Groundwater will be distributed according to the provisions established by OCWD. Earthquake Effects An earthquake could have a major effect on the various components of the water system. In 1971, the San Fernando earthquake (6.6 Richter scale) caused the following damage: ' 1. Contamination of wells by damaged sewers. 2. A 78-inch diameter water pipeline was ruptured and out of service for two months. Other large-diameter pipelines were damaged. Distribution ' piping was shattered. ' 3. A buried concrete reservoir was severely damaged. ' These same types of facilities are a part of the City's system, and could expect to sustain some damage from a major earthquake. A structural adequacy investigation should be ' made of Peck and Overmyer Reservoirs in order to verify earthquake code compliance. On October 1, 1987 the Whittier Narrows Earthquake (5.9 Richter scale) caused the following damage to the City of Whittier water system: 1. 26 main breaks. 2. Structural damage to an abandoned reservoir, and a City yard office. 3. Loss of power at the main pumping plant. ' The City of Whittier has documented the following key lessons learned from that experience: 1. Continuation of an active,written disaster recovery program. 2. Maximum 12-hour shifts for work crews. ' 3. Prepare for self-sufficiency. 4. Utilization of portable hand-held radios for reliable communications. 7-19 Boyle Enolneerino Corpora[lon ' Security Measures ' With today's acts of terrorism and vandalism, all means necessary to protect the water system should be taken. The new telemetry system has the capability of providing an intruder alarm at well and booster station buildings; this feature should be added as soon ' as possible, together with a system interface with the City Police Department system. Fenced reservoir sites are more difficult to secure; some means should be provided to indicate the presence of unauthorized personnel. ' Cathodic Protection There are three major steel lines in the system with varying degrees of cathodic ' protection: 1. 42-inch (installed in 1965-73) - May have originally had sacrificial anodes, ' but never replaced; recent problem shows possible corrosion. 2. 36-inch (installed in 1964-65) - Originally had an impressed current system; the system failed after about 10 years and has since been removed. ' 3. 30-inch (installed in 1965-73) - Originally had anodes, which have never been replaced. 4. 21-inch (installed 1952-56) - No cathodic protection; possible corrosion. Water division personnel have indicated that some reaches of the above pipelines are in good condition, while others have developed leaks due to corrosion. To prevent additional deterioration, we recommend that some form of corrosion protection be provided for these critical pipelines. Since they are more than 20-years old and have experienced areas of corrosion failure, a schedule for replacement of these lines should ' be established, with the intent of replacing perhaps a half-mile or more per year, beginning with the most leak-prone reaches. These new lines should also be provided with corrosion protection. A corrosion protection survey should be conducted to ' determine the cost-effectiveness of a corrosion protection program as opposed to no action. 7-20 BOyle Engineering Corporation __J ' Leak Detection ' The City has no ongoing leak detection program. With the relatively high unaccounted for water, some part of this may be attributed to undetected leakage. The City should identify reaches of likely leakage (prior leak repairs, unexplained surface water) and schedule a focused leak detection survey. In many instances, the value of the lost water more than covers the costs of the survey and pipe repair. ' Facili1y Replacement p t ' Replacement of water mains and items of mechanical equipment is presently scheduled on an as-needed basis. Projects are identified and replacement costs are included in the ' City's annual budget. Costs of emergency replacement or repair are covered by reserve funds. This approach is designed to respond to replacement of failing facilities, which makes the most efficient use of limited funds. Significant financial outlays are required to upgrade and expand the City water system (as described in Chapter 8). It would.be appropriate at this time to also budget for and adopt a formal replacement program, particularly for the older, major facilities such as the' ' original large steel transmission lines. A recent AWAA Journal article, "Replacement Rules for Water Mains,"by T. M. Walski, November 1987, presents a rational approach for determining when water mains should be scheduled for replacement. The analysis considers costs of pipe replacement, valve ' replacement, water leakage, and leak detection. It requires several years of record of pipeline repair frequency and cost disaggregated by pipe diameter. It is recommended ' that the Water Division begin to keep such records of pipeline maintenance, in order to eventually develop a particular pipeline replacement strategy. 7-21 Boyle Encvneer►nq Corporation _J ' CHAPTER 8 ' SYSTEM IMPROVEMENTS Based on analysis of existing and ultimate demands on the capacity and operations of the present City water system, several needed improvements have been identified. These ' improvements have been defined, cost estimates prepared, implementation priorities outlined, and recommendations made. 8-1 SUMMARY OF REQUIRED IMPROVEMENTS The following improvements are required for the City water system to be able to meet existing and projected ultimate demands: o Supplemental water supply facilities - Four renovated or newly constructed wells, and backup propane supplies for existing wells. o Additional Southeast area booster station facility - 54 cfs capacity to meet existing deficiencies, ultimate capacity of 85 cfs. , o Additional Southeast area storage facilities - 24 MG in Phase I to meet existing ' deficiencies and 28 MG expansion to meet ultimate demands. o A storage/booster facility in the Sunset Heights area, consisting of a 9 cfs pumping ' station and a 9 MG reservoir. o Distribution system improvements in the following areas: Huntington Harbour ' (Peter's Landing), Beach Boulevard, downtown, Sunset Heights, and the southeast area near the proposed booster/storage facilities. o Implementation of the West Orange County Wellfield project. o Other improvements including: structural adequacy investigations, cathodic protection, leak detection, main replacement, security systems, and pumping ' station dual drives. ' Supply Well Improvements Supply from four additional wells is required to meet existing and ultimate demands at a reliable level. Assuming treatability studies verify the cost-effectiveness of groundwater treatment and reactivation of inactive Wells 8 and 11, two additional wells would be ' drilled. Since treatment costs will be determined in separate studies, costs are assumed herein for four new wells. 8-1 Boyle Englneering Corporation Booster Capacity An additional booster pumping station is required to meet pressure and flow requirements in the southeast portion of the City. Planned capacity to meet existing needs is 54 cfs (24,000 gpm), with ultimate capacity of 85 cfs (38,000 gpm.) Facility construction is assumed to include: six pump/drive sets, architecturally treated building, valving, piping, electrical and telemetry equipment, and standby power and sitework. An additional 9 cfs (4,000 gpm) booster station is planned in the Sunset Heights area. In order to provide a better overall system energy source balance, alternative electric drives could be easily coupled with the gas-engine drives. Electric motors are used widely by water agencies for pump drives. We normally recommend the installation of some natural gas or diesel driven pumps or engine/generator sets to provide a secondary energy source. With the exception of two wells, Huntington Beach relies totally on natural gas ' engines for their pump drives. We therefore recommend that all existing and new pumping stations be retrofitted or installed with dual drive (gas/electric) systems. Storage Ca12aci1y ' Supplemental storage capacity is required to meet regulatory, fire and emergency needs. The facility would be located adjacent to the booster station. Initial capacity would be 24 mg, with expansion to an ultimate volume of 52 mg. It is assumed that the reservoir ' would be a buried reinforced concrete facility, because of aesthetic and space utilization requirements. However, other alternatives such as pre-stressed concrete tanks should be ' investigated in the preliminary design report to determine the most economical alternative. An additional 9 MG facility is recommended in the Sunset Heights area to spread storage across the system, supply design fire flows to Peter's Landing and eliminate low pressures in the Sunset Heights area. Pipeline Improvements Distribution pipeline improvements are required in several areas of the City to provide ' required fireflow, residual pressures, or for improved reliability. Required replacement pipelines have been delineated in Chapter 7 and are summarized in Table 8-1. Future consideration could be given to studying the feasibility of sliplining a portion of the abandoned OCWD seawater intake pipeline to Water Factory 21, as a component of the southeast area pipeline improvements, thereby reducing future costs. 8-2 BoUle Englneerinq corporation West Orange County Wellfield Should the City be successful in the institutional implementation aspects of this project, facilities required for construction would include: 0 3 wells, each rated at 2500 gpm 0 28,000 lineal feet of 18- to 30-inch transmission pipeline 0 Interconnections with WOCWB Feeder No. 2 If the wellfield were developed as an alternative peaking supply, the capacity of both the southeast booster station and reservoir could be reduced by a comparable capacity. Depending on several variables such as the cost of capacity rights in the WOCWB Feeder No. 2, and the extent of OCWD financial participation in the wellfield project, it is possible that cost savings in the southeast booster/reservoir complex would be greater than the City's cost share of the West Wellfield Project. Other Improvements Improvements in several other areas are required for increased operations and' maintenance of the City water systems. These include investigations, design and system construction in the following areas: structural adequacy, cathodic protection, leak detection, main replacement and security. Bolsa Chica Area Service The City could readily supply water service to the Bolsa Chica area if and when the area develops. Phase I development would necessitate construction of the recommended Sunset Heights storage/booster facility. This facility would also adequately serve the proposed Phase H development of Bolsa Chica. It is assumed that the 16-inch loop pipeline in the extension of Bolsa Chica Street would be constructed a part of the development. ' 8-2 COST ESTIMATES Cost estimates for construction of the required facilities are shown on Table 8-1; costs are based on an ENR Los Angeles Area CCI of 5500. 8-3 BoWe Englneerinq COM'WOVOrl TABLE 8-1 SUMMARY COST- MASTER PLAN IMPROVEMENTS Construction Item Size Cost ($1 Southeast Complex Facilities 1. Booster Station - Stage Ita) 54 CFS 1,900,000 2. Booster Station - Stage II ) 31 CFS 1,000,000 Subtotal 2,900,000 3. Storage Reservoir-Stage I(a) 24 MG 7,400,000 ' 4. Storage Reservoir-Stage II(b) 28 MG 8,500,000 Subtotal 15,900,000 Sunset Heights Facilities 5. Booster Station 9 CFS 600,000 6. Reservoir 9 MG 3,300,000 Subtotal 3,900,000 Well Improvements 7. Supplemental Well Improvements(e) 3,100,000 Pipeline Improvements 8. Sunset Heights/Peter's Landing ' Fire Flow 14"/1250 LF 150,000 20"/14000 LF 2,250,000 Subtotal 2,400,000 9. Beach Boulevard & Downtown Loop Intertie 8"/1730 LF 125,000 ' 12"/1100 LF 125,000 Subtotal . 250,000 10. Southeast Complex Facilities 20 /7850 LF 1,250,000 30"/7880 LF 1,900,000 Subtotal 3,150,000 10. West Orange County Wellfield l4 5,700,000 11. Other improvements (d) 1,200,000 Subtotal Construction Cost 38,500,000 Contingencies and technical services - 30% 11,500,000 TOTAL PROJECT COST 50,000,000 (a) g Existin deficiencies. (b) Ultimate deficiencies. (°) Implementation would reduce costs of booster/storage complex. (d) Includes other feasibility studies, structural adequacy investigations, cathodic protection survey and improvements, leak detection survey, main replacement funds, security system, pumping station dual drives. ce) Includes propane backup supply at existing active wells and proposed wells. 8-4 Smile Englneerinq corooratlon IMPLEMENTATION PRIORITIES Evaluation has been made of the required master plan facilities, and the relative need for ' each improvement, in order to develop priorities for implementation, as presented below. Priori Facility 1 Sunset Heights Booster/Reservoir and Pipeline Improvements 2 Southeast Area Complex- Stage I booster station, reservoir and pipeline improvements 3 Pipeline - Beach Boulevard and Downtown loop intertie 4 Supplemental Well Improvements 5 Other improvements 6 West Orange County Wellfield 7 Southeast Area Complex- Stage II booster station, reservoir FINANCING STRATEGY There are various options available to the City for financing the recommended program delineated in this master plan. These options include: �j o Revenue Bonds o Certificates of Participation o Privitalization o Special Assessment Bonds o Mello-Roos Community Facilities Act o Grants and Loans Revenue bonds remain as a conventional financing mechanism for water system improvements. Although, required voter approval may be affected by taxpayer concerns regarding increasing government costs, a $14 million water revenue bond issue was recently approved in the City of Anaheim. Certificates of Participation COP have become popular as a creative means for public P (COP) PP ' agencies of finance major projects. Recent COP financing for water system projects have 8-5 Boyle Englneerinq Corporation been undertaken by the Three Valleys Municipal Water District in Claremont, and East Contra Costa Irrigation District. Use of COP financing does involve a reduction in agency administration and control over the project. Another recently popular creative financing approach, privatization, partially avoids the problems of rate increases and rate payer resistance; it also involves a reduction of agency control, and is more difficult to implement for multi-project system upgrading programs such as proposed. Special assessment bond financing may be more palatable to the community, but is not readily applicable to the projects resulting in general benefit among water customers. Assessment proceedings would also be quite complicated because of numerous property owners within such a large city. Mello-Roos Community Facilities Act financing is yet another recent creative approach to public facility financing. Although Mello-Roos proceedings are readily applicable to projects or programs of general benefits, they are better suited to improvements in a' , particular zone, such as a redevelopment district, with limited participants. State and Federal grants and loans have been previously used to reduce local costs of water system projects. However, the only active program for funding of projects such as proposed in this report is sponsored by the Farmers Home Administration for municipalities under 25,000 population. The California Safe Drinking Water Act might be used for groundwater treatment projects if user health effects are in question, or an emergency condition exists. California low-interest loans may be available if a leak detection program would lead to pipeline replacement for water conservation purposes. Federal revenue sharing funds through the County Community Block Grant Program have been used for water system improvements in the past; but, program funding has been significantly curtailed. Although alternative creative financing schemes have been recently formulated for iinfrastructure projects, it is recommended that the City initially pursue a revenue bond issue for funding of the master plan facilities. Since City water bond indebtedness is at a nominal level, and since the Water Division revenues now exceed expenses, it appears that the City's financial condition should not limit the feasibility of such an issue. 8-6 Boyle Enolneerinq Corporation RECOMMENDATIONS It is recommended that the City undertake several action items over the next five years in order to continue provision of adequate water service and keep pace with growth and redevelopment. The recommendations are categorized below according to categories of facilities, operations and maintenance, and management: Master Plan Facilities 1. Supplement City water supply by reactivating or constructing a total of four additional wells. 2. Design and construct storage and pumping plant facilities in the Sunset Heights area to increase pressures in the area and supply fire flow to Peter's Landing. 3. Conduct a siting and predesign investigation for the Southeast booster/storage complex. 4. Design and construct a new storage reservoir and booster pumping plant in the Southeast portion of the service area to alleviate peak hour demand deficiencies, operational and emergency storage deficiencies. 5. Design and construct distribution system improvements in several areas to better' meet fire flow and peak hour demands. 6. Initiate treatability studies for groundwater supplies. 7. Conduct a feasibility study of the West Orange County Wellfield project. 8. Study the feasibility of a seawater reverse osmosis desalination project for long- term supply augmentation. f9. Determine the feasibility of modifying and incorporating the Orange County Water District seawater intake pipeline to Water Factory 21 as part of the City distribution system. 10. Provide dual drive systems for all existing and new pumping stations. Operations and Maintenance 1. Adopt the Boyle computer program model of the City water system as a guide for future operations and system modifications. 2. Investigate the structural adequacy of major system components, especially Peck iand Overmyer Reservoirs, and compliance with earthquake codes. 3. Provide propane facility backup at all active wells and booster pumps served only by natural gas. 4. Conduct a cathodic protection survey and institute a program for major facility protection. 8-7 Boole Englneerinq Corporation 5. Conduct a focused leak detection survey of the City distribution system. 6. Institute a formal facilities replacement program for the large transmission mains over the next five years. 7. Continue groundwater quality monitoring of City wells, especially near areas of potential contamination. 8. Conduct a flow test of the San Joaquin Reservoir transmission main during this winter with only City utilization. 9. Incorporate security Intrusion Detection Systems into major water system facilities, provide interface with existing telemetry system and City Police Department facilities. 10. Expand the ongoing meter repair and replacement program, including the addition of production meter testing. 11. Institute a program to meter water use for construction, including fire hydrant and service connections. Management 1. Adopt the Boyle Engineering Master Plan as a formal guide to system upgrading' and expansion over the next five years. 2. Adopt the recommended financing strategy and appropriate Water Division budgets to implement the Master Plan recommendations. 3. Initiate discussions with Municipal Water District of Orange County and Metropolitan Water District of Southern California regarding the potential of additional imported water connections for the City. 4. Initiate discussions with the Orange County Water Department and West Orange County Water Board regarding the potential West Orange County Wellfield Project. 5. Adopt a policy of providing a minimum of one-day emergency storage in the City water system. 6. Participate in San Joaquin Reservoir improvements at a level related to benefits received by the City. 7. Adopt and implement the Emergency Preparedness Guidelines outlined in Chapter 7. 8. Determine additional Master Plan improvements required to serve the Bolsa Chica area, and relate to specific cost of service for that area. 8-8 Boyle Engineerin4 COMDrallOn __J 9. Strive to limit annual groundwater pumping rates to the Basin Production Percentage established by Orange County Water District, unless the benefits of additional pumping exceed the economic advantages. 10. Continue to monitor the progress of Phase I of the Orange County Water District Green Acres Project, and evaluate the potential for City participation in Phase H. r 8-9 00LjIe Engineering Corporation _ F ��` � � TH`E CITY 0=F i-I<<:INTI}NGTON; BEACI-I -� ^.: x''z•W ;1 hY"' - e� 3 t � {6 W.W. NTH E CIzn OF H-.( I_NTI N_GTyON. B EACH-[L: .�`f .+i iit9���*be 1�'�4 k N:P��+".+c- •1� �� -�.�-4�j+j'�"ij y °e j y CITY OF HUNT'INGTON BEACH wader syaem mms�er man t SOWLE �f -InCY CCPiqg'CYF?kqTIC7r7 consultinq enclineers i arcriltects T'eeh.nical Appendix F Juiie 1988 CITY OF HUNTINGTON BEACH WATER SYSTEM MASTER PLAN TECHNICAL APPENDIX TABLE OF CONTENTS TAB COLOR A SUPPORTING DATA 1 Well Pumps Blue 2 Booster Pumps Green 3 Water consumption 1981/82 to 1986/87 Pink 4 storage Analysis Yellow 5 Calibration Run No. 1 Input Data White 6 Calibration Run No. -1 Orange 7 Calibration Run No. 2 Input Data Blue 8 Calibration Run No. 2 Green 9 Calibration Run No. 3 Input Data Pink 10 Calibration Run No. 3 Yellow B EXISTING CONDITION RUNS AND DATA (EXCLUDING BOLSA CHICA) 1 Existing Condition Land Use/Demands by Node White 2 Existing Peak Hour Input Data Orange 3 Existing Peak Hour Run Blue 4 Fire Flow No. 1 - Banning & Bushard Green 5 Fire Flow No. 2 - Warner & Algonquin Pink 6 Fire Flow No. 3 - PCH & Anderson Yellow C EXISTING CONDITION RUNS AND DATA (INCLUDING BOLSA CHICA PHASE I) 1 Bolsa Chica Land Use/Demands by Nodes White 2 Fire Flow No. i - Input Data Orange 3 Fire Flow No. 1 - Banning & Bushard Blue 4 Fire Flow No. 2 - PCH & Anderson Green 5 Fire Flow No. 3 - Warner & Bolsa Chica Pink TECHNICAL APPENDIX TABLE OF CONTENTS Continued 2 D ULTIMATE CONDITION RUNS AND DATA . (EXCLUDING BOLSA CHICA) 1 Ultimate Land Use/Demands by Node Yellow 2 Peak Hour Input Data White 3 Peak Hour Run Orange 4 Fire Flow No. 1 - Edison High Blue 5 Fire Flow No. 2 - Downtown Green 6 Fire Flow No. 3 - Reservoir Hill Pink 7 Fire Flow No. 4 - Beach & Slater Yellow 8 Fire Flow No. 5 - Peters Landing White 9 Fire Flow No. 6 - Huntington Center Orange E ULTIMATE CONDITION RUNS AND DATA (INCLUDING BOLSA CHICA) i Bolsa Chica Land Use/Demands by Node Blue 2 Fire Flow No. 1 Input Data Green 3 Fire Flow No. 1 - Edison High Pink 4 Fire Flow No. 2 - Peters Landing Yellow 5 Fire Flow No. 3 - Bolsa Chica Area. White F ULTIMATE CONDITION RUNS AND DATA - RESERVOIR HILL SYSTEM 1 Land Use/Demands by Node Orange 2 Fire Flow No. 1 Input Data Blue 3 Fire Flow No. 1 - Node 1, Ext of Edwards Green 4 Fire Flow No. 2 - Node 5, Clay & Huntington Pink 5 Fire Flow No. 3 - Node 130 Gothard; S. of Ellis Yellow 6 Fire Flow No. 4 - Node 15, Ellis & Edwards White 7 Reservoir Hill Ultimate Condition - Pipe 13 out of Service Orange 8 Reservoir Hill Ultimate Condition Booster Station Out, Backup Source: Overmyer I (Peak Hour and three fire flow runs) Blue G OPERATIONAL RUNS 1 Ultimate Condition 100% Groundwater Green 2 Ultimate Condition 100% Import Pink 3 100% Groundwater with Magnolia Reservoir Yellow 4 100% Import with Magnolia Reservoir White 5 Maximum Day Demands Plus Fire Flow-Edison High (100% Grouhdwater with Magnolia Reservoir and 4 new wells) Orange TECHNICAL APPENDIX TABLE OF CONTENTS Continued 3 H NETWORK PROGRAM USER MANUAL i Introduction Blue 2 NET-Water System Analysis Green 3 NETP-Network Graphics Pink 4 NETQ-Water Quality Analysis (Information only) Yellow 5 Preparation and Evaluation White HUNTINGTON BEACH WELL CURVES AND SYSTEM CURVES OCH10300001WELLCUR CURVE 1 CURVE 11 NODE 276 WELL 11 NODE 240 DYKE WELL ----------- ----------------------------------- 1760 1760 RPM SYSTEM HEAD 1770 RPM 1770 RPM SYSTEM HEAD -------------------- ----------------- ----------- ----------------- ----------------- ----------- 0 (GPM) H (FT) 0 (GPM) H (FT) H (FT) 0 (GPM) H (FT) 0 (GPM) H (FT) H (FT) -------- ------- ------- ------- ------- ------- ------- ------- ------- ------- 0 330 0 330 330 0 440 0 440 440 200 307 200 307 306 200 400 200 400 399 400 260 400 260 256 400 350 400 350 348 600 190 600 190 1BO 600 317 600 317 311 800 90 B00 90 72 800 297 B00 297 287 1000 221 1000 221 205 1200 120 1200 120 98 GROUND EL. 44 feet GROUND EL. 17 feet CURVE 5 CURVE 6 NODE 270 WELL #5 NODE 274 WELL 16 -------------------------------------------------- ------------------------------------------------- 1770 RPM 1666 RPM SYSTEM HEAD 1170 RPM 1030 RPM SYSTEM HEAD ----------------- ----------------- ------------ ----------------- ----------------- ------------- 0 (GPM) H (FT) 0 (GPM) H (FT) H (FT) 0 (GPM) H (FT) 0 (GPM) H (FT) H (FT) ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- 0 532 0 471 471 0 630 0 488 488 2000 408 1882 361 359 2000 414 1761 321 318 2400 384 2259 340 337 2500 387 2201 300 296 3200 336 3012 299 292 3000 378 2641 293 287 4000 263 3765 233 224 3500 342 3081 265 257 4B00 176 4518 156 143 4000 279 3521 216 206 5200 128 4894 113 98 4500 207 3962 160 148 GROUND EL. 26.4 feet GROUND EL. 19.2 feet CURVE 7 CURVE 9 NODE 264 WELL #7 NODE 294 WELL #9 -------------------------------------------------- ------------------------------------------------ 1180 RPM 1109 RPM SYSTEM HEAD 1760 RPM 1648 RPM SYSTEM HEAD ----------------- ----------------- ------------ ----------------- ----------------- ------------ 0 (GPM) H (FT) 0 (GPM) H (FT) H (FT) 0 (GPM) H (FT) 0 (GPM) H (FT) H (FT) ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- 0 450 0 397 397 0 620 0 544 544 3000 344 2917 303 299 1250 485 1170 425 424 3500 336 32B6 296 291 2000 420 1873 368 366 4000 312 3756 275 268 3500 330 3277 289 283 4500 280 4225 247 238 4000 280 3745 245 237 5000 249 4695 219 208 4500 210 4214 184 173 5500 212 5164 187 174 GROUND EL. 17.9 feet GROUND EL. 26.4 feet CURVE 10 NODE 286 WELL 110 -------------------------------------------------- 1760 RPM 1636 RPM SYSTEM HEAD ----------------- ----------------- ------------ 0 (GPM) H (FT) 0 (GPM) H (FT) H (FT) 0 650 0 562 562 2000 430 1859 372 369 2500 400 2324 346 341 3000 360 2789 311 305 3500 315 3253 272 264 4000 270 3718 233 222 GROUND EL. 19.2 feet Lop`1 Nu W Z Supersedes RATING CURVES c--� Apr It 1, 1960 Issue S S,rp S.Ction 2403 Pay* 173 November 1, 1969 .1. (60 CYCLE) 1OM•50 1760 RPM DIA co fill I I uti: �: !T. }-t. OIA � Sa z 11 - 1 O LL _ _ _ 1_ W _ ; i-.._1_�_t.. -A I.._. r ; +- ' J ti i t 1 1 1 I _t ' I ! .-j..�— i_ . . �_ !� - -...L I — 010 CL 7 2DIA• 0 5 ', ,-,-,.- -«.t 30 f- l. Q 0 tt14-t � ; ; .. -, 20 10 0 1 2 3 4 5 6 7 8 9 10 y 0 CAPACITY 100 GALLONS PER MINUTE 9i 281 6 15a-•-1 Efficiency shown is for 4 stages or more with standard materials.For fewer stages or other materials change tluetlos Cam p efficient as shown. _ M o -r-- —I- y Standard materials pischarge e) - to w MATERIAL Impeller-bronze N Bowl-cost iron Vienamelled 8a S= I eller-bro - Thru t factor s s 3 6 4 5 - ell -c l "t t wt.per t Ib 1a5 271Ib - Im it r-c i. US Bowl t t rls For additional stoges add 8 4 per stage. m owl-c.i.en . wlwt.odd'I.st s o -1Bowl-costiron 1 5 Max.bowl horsepower i4o Impeller shaft diameter .s Icolumn Pioe I -1-3 owl-bronze -2 Impeller eye areas in.) IJt 2 Minimum impeller shaft end play 1 .S ISuction pipe 1 (09 V�P.TICAL PI1►AP OPERATION, DENVER, COLORADO WORTNINC.TAN D%fKE WELL Supersedes 1, April 1, 1960 Issue RATING CURVES S .F,t 'e- Section 2403 Page 173 November 1, 1969 (60 CYCLE) IOM-50 1760 RPM I fill60 IV 0 ihr; -,- - _T_ I - 7po 3a� T. .G� Rom,` 04 _.ice _ p 90 '_ `cD 30 W _ _� : .I.__ I. �.. . I_I_ 1 �.1-1. .. =- ��7`i.. :i.:l'T_l._ .� _.I.:�_I" .;:;"�•-�_4.l�+:�;_..•+_.{=i.fit: �- W , hI �; 1 .77 at: 7DIA 32 --}- p 5 t..rt.4. ---- 30 H W W LL Q 0 20 N PS H ; 10 a 0 100 200 300 400 5ot� 600 7o0 8vb 90o IOo 0 CAPACITY 100 GALLONS PER MINUTE cj z816 IL Efficiency shown is for 4 stages or more,with standard _ j53 materials.For fewer stages or other materials change ; _ efficient as shown. _ ` Swum `am N d Standard materiols T— � ��� ci �« Wo MATERIAL Im eller-bronze Discharge N Bowl-cost iron enamelled a - Impeller-bronze - Thrust factor 5.5 3 5 - Im ell r-c.i. "� Rotor wt.per stage Ibs IS-5 27 i6 - Im eller-c.i.e is owl wt.1 t toe b . rls For additional stages odd $4 per stage. .S owl-c.i.enm. - owlwt.add'I.sta a bo .2 -1 Bowl-costiron -2.51 Max.bowl horsepower Impeller shaft diameter I Ts lColurrinpipe 1 •1.3 owl-bronze -2 Im eller e e area(s .in.) it 2 Minimum impeller shaft end play 1 .5 ISuction pipe fo '.'E:RTI(:AL PUMP OPERATION, DENVER. COL ORADO WORTF+INC:TAN r „hr,•a in V.S.A. - • - au��-��aA CI;ION ......_...... ....................... ...................... .......................... ...... .... .:1...�.............. . ..1ummommommome ...UM, area..■ ■■■!■■■■.■ ................... ..........:. ..::.... . ■■.... ... ... ...G ;::sac .... . .. ■■.■■■r■■■rm= ...._• _..........:::rr�Z■■■■! ■r■:i: : _ . ■ ■�■Z:::::iii�.■■■. .......----- .sa■a:i3a.U.N.1111333�•a:■!$$sa3■!■. _.._.. ==•::::: :::•: :•::�::�:•::::•l= 13�al��il$ MEi=i3 �=:se See:elee3eee=.e's=.� i��e:l:ii=.€eee=�' UM M i :!':`:?_ ;8 � __ � e e =a= se : s� a �a�e 3�== c?3ii�$i imm e $ass Eeeeee°'=eeeeeee""::.:::.:::.:::.::a.:::.::.::.::.:::.:::.:::.:::.:::.::l.l::.:.-..-!.-r..;•.:■.a:,..■e:_..':..e:■.s:.. =�.a.i��.�':_'$.:;-_:.�'�.�'��'e3©=:i e•.c3..:�.::: �:.:a?�';:=l:S,:c RBI:i i''s�i��e1::�fie■::■ _;��_:s•��::•l:3_•°_r.•:■�$isisii°i.6..■.i.■$.■.8■,:■a=s■�.■see■.:■eee■.:■eme■.,eMIN111111M � ��gi •:m :3911$ :o:!. i$sI1,.Ma■ .::eO : ; ■a : a:as iii . we ■■:::: e ■. ■ ■ ■ ■ ■ "ii _ ■._-4!some os ■ _ a , , .som H MECHEM . $i n.. OC : : ' . �■. ::I..._ — , = ■. . . . . . ■■ . r .e■.. goes SUMBEME ' :•:::s:a:::l:::•::::=a:::•:a::s:e:°!: . :l =se3iU is3ss::•1::::c:::�:": le:UNNOM eat::: .■■:0::: m■■s_a.$•isa:::: .seem... ! . . .s.0:.:.._ _■ r.__s. as.......ss....... . �s...........a.=.sea........._ s..a ...... =e:eeE� 3=yemasons� =? � eE it BUSHa s eiE ee=s' � �:i__::! o Eee" _ : ::::::a=■:r:::Emnnmwuww an $l��•lil� a e s• i l��i6a$iiiili �==_ ::::::::_ma ■iniin:s •• a: ••as :=sai$■=■$■■$ g i• =-=a' ° _' •3a! ' a ::_soma:: ..■. . ..... $.::.3M: $$�i�� ■ ...:: : :s ■: a■e$a1110i la.3 1i .�$$=$i1 s.:0i: ....asl....... , �! ©©� IM . aaat•o� .: 3$e=g s° $ ° @° $s aziInjilm=EEm sss.....$.s �6��. a$.s$...ss.B. ......... OUN ............................................... i ■.. ..p....�.....::Sam.......:■■. .. i�■M■ ..." S e=c:pjIUs ,, ...momon MOMMEUMEMOMMU:■M:: aS::::N-•! ::•3la:: E Nose I:i M1 ja rm llicil az ■■■■■■■■■■■ ■■r :Mi ■■■ ■E■■■ ■■ . .... ■ ■mE■■■ . ..■■■.■■■� .i ■ . ---- ------------- 0 ■ ■ ■q .■■■ ■ .-■ E=ii• •=iei0- •=:■ =G�■Tj!��i�il�i�ili��li�� 1i=l0 10MEMO NEW ::_____:::: :;e ■::s: g:. tSI III : : � _!_ I �I _! lio$��1111111mm UNI NNN�::Eii?:NN1,0411 �i� ■ � soon: aC: :N ■� ••_ on '��!01'1 - ■■■■ ■■ .• ■■ ■:e ■■■ �i SEEN_ =■N: =:?�aN:=: ��� va a -fit !et it t �i:t eaae .... ... . .. -fit Jim ��: �aa oe_a:■1611■.p aIll■3is a■s.Mast w d a ...::tNN......5 1Sc..__. v..�e��.__ .. ---... . —.. . . .. . OLLI :=:tl lln etaE 1111 �1r' .1110 -�oaudu�sa����� e� ��ae�_eU 12Voom 1110 as s It mom '41 a 11 Uni &in Nil wools No Mason .■■..UNISCISU..... . . � ■ �� 6 �� Emmons lip ■■ ■ mm man ■ miliIIIIIII11110 How S Ill ' = Hxroi , ,��� aaa=E:::Welt:::Ill:a=:Yaa.IUM.Uin ii.r...11.. ........ ::::.::.:: ..... :::::::. •� ::::; ...... : ...c:::i iiii::ii::..... :.. ..........:;::. .. ......I.......... :::. ;::i:i::::ii ........... :: ::::: I...... • I:11...::: :: :::..... .... .. ... . I....1\. :... •. •:••:: • .. r. . �:: • .. .. .. .. . - ..I.. • ...I..• . ...I • ... . I...II.II.. ...I.•. ... .... .........s::........: .ic:: �::......1 �:::: ::: J .f i1. ..I.................. .:.N.........•.11. ... • :1.:.I..1.1.1 ..N N•\.i: •...... .{ .I..• .......;...... .. . ••• •... ..I.. •{.••.•...•••.•• • -t••.... I....••.. ....••.. •.• . • • .. ...I..•• .I. I...• .-. r•.• •..• ..........N.. .................NI...I..t1. N..{..I.IN..:1..1.11..1..•...... • .I..\.• :..•\I/.I...N N .1fN•N H:.:•2:....1 I{.....1.•....1•.............1 • .:1...••.....•...•II.N. •,..," N.•.• . I•..... ..I..N.. •. •:' ':.:•.•.1 •N•.,..• ...'\\....,...I..... N111.\.• •... N..:N.N....I\..N NI• :I...• .......1N•:.. N:...\..., • ..::.:I...:1.::.a\:..:....••.:::..I. .....' ...• .•...• .I...\IN ININ�N..NN......1N 111 N...IN..•.1.:•..I.\...I..I.N. .IN........'• .. .... ....N...N.11.•.I...1.1 N.... .NN., •......••.i..NN... 1N 1.I N II.N.....N N........r•..N....:.1N..•.1....•:::' •:'•:::\:::•• ............... {. • ...... •:•• I:•...• I\.. 1.••.1... .;:•...N.;I..f....N •....•.•••.•.•• 1 ••••. •. .....• . • N. I.N.N N\ I........• I.N.. • ••.{• I.'.. '.N1..•.1....•1 •...•............... ......{.I.11....\. N...................::::.:.::::::..:.. :.•:•.:I N...........I..:.:..•...• N.r••..I. ................_ ,N:I.....I....N1.. I..IN.N.1{{If.NI..IN.11...•N••1NNNN...I...•{NNi..N....N...I..•..•I..•••...••...... .....II.11...•.......•..... . .I N.:.•...{•.:. '..••......N....\I :::::::::':21:::2Si:::•................................N..••:•::•.•:::...I.:N NII:..1:... . •::'•:::..I.N N::::•:.I .1•':::::'2:::.. ..i\.I.►....f... •N••...• .N.•N•r•••.' . .MN:•:.:N.N:.:..:..iN...H...:{.:.N•'.:...:..N.:i...N.N:..:N....../.:. ...:..I.:...:.....N:1I N.:N•I.:.••.:..•r.N:••.i'.N.:•I:rII♦:N..N:..:M:.•:.:.a:N1I:N:..':•r:NN.:r:..:••.::..:N::::.::.:.::.::.::.:.:.:l:.N::•:•{::.::{.•:•1:•:.1:•.:N:1::1.:.:.\:.:•:•.I:•N: •••••hI:..:.\•.••......:....::...�....•:•.:•.••1.• N•.•'..a••I... ,N•.I• .•I.•.•....{....:1I.:.•:..1N1 •:.:.•:.•:..•:..:•.:I.•....r.I1..:.••..:..••I1•....\...•IN•i•NI.I:I...N.NI••NINNI•.N.N..J..N..I.•.I.I..I�.I •..a...NI..a.I•.....\.. a .......... ...1..... .•..I N.N. :•. .I.I. : .... If•1.SM . . N..IN. :/::.:::{:.1:::: •........ .afN\...N•.•.III...•.....N.\f=.1..f..I.aN•1.NI...\...I. . .. .................. .I{•1.... ........2 l.....22::' .... .......�...... ....................... ........ '..:.I:•. ............................ :.::::: .N...... ....... ...........•... .......aii:ii.f...{•.':ii......::::::i ......... ..... :i::ii::::i:il:::iiii.� ....... , :.•:................ :..:................. .....................:............I................ :..........................a. .. :•::.........::::::.... ... •:��:::..................... .N:2::::::22::::•::. •...1:::.1.•r II.N• .:::.. •:::':.:':2.....1.....r.•r ... .•. •...I •::::•:::.::'�.IIa::�....•::• ..........................• • • ....N.. •�........•.....•{.IN1.11NNIIN .::•.NII•Na\I N.N I\{.••.•..:...a ........•... •.. •.• ..•1. •• •. ••...... N..•I.•.••••....{a••...........a.. ••.•. ......}. ............5•.►..• ..I..... .1 •..............• r.. . .........NN•..... ...... .........f N..... .I:.N.I•.1... ......•• ... •..• ...N I.....IN•.a.•... f1:N... .I.Ii...1.i.N.... N.I.N..NNr •• ..11•a ' •.:....I•I..N•.. '...... • r..•. . N11. .N..I.f..11. N I.N.11•I•.. .I.I..•.. ..•... .1: •:.1••I.. •.{i1.1•..: ::...NI111..N...N... • .I.Ia1.. :•:. .{I N::1. :�...: •1.:111::1.N•.rr r•N.. :..• :...11N:.Nff..f. .{N.INN N..I.•I... •1...•I.\...I•...I.:I.r.I.NININ..11.1..\•..N.•:11N a......•..r ........... •.11 N:.:.I..:. •.II.ININ.1IN f. ..• I N2::..1.........I.N•..I.11....... •..r •.III...N::"•j::.•I..N.•I...•. r.. ..........I{.... •.• •...• . • ..N•. ... I.•1.. •I.. IN NI•. I.. ..•�- 1{1..NI{:..r� N...•.• • - •.• ....... .I•....N..I•.N. .1••I..•{..INII 11.. ...N•........ .......a ... '.• .1..••.. Wel © • s ►� .� .�,_. • I f anon ■.. ' mr■.amesaess• �' mass :am■ ■rp rara�rlfn::■s — ■e,e■a:■uer:rrr u■■rar.. •!1m 1'� a. it ■ L• NBoom :frgrlmmr m•■mimmur.•■ ■■1■/afaefm:rs■ sim■■■•{■naa�■ i N:mlessmserraa •i•maef/ar■1s■{►■■\■a■■■fa■\■!■snitRota!■a■■rr1a1 r . aa■■L:sap "Moma■maptemRo■mmmta■■a= Yfttta9{■{{!■• ■•i•m•:a1■as/{■{■i■rrrprr{!■■na1■ ■/r•■!•■1m1:■ {1{�G■ft■atltap{fftgt■N■at■■■■rat ■rsUMAIgnomon ease.*!•■a{mmearmmspas" •■/■:e::me:asfrr■:■f1t■ - _ ■tI./r_■p ■Rq:lrlf■M■m:u■■ asset■fetm■■ra! Weant=tfa:t■at�f■�■•/■a■�s7r■■!falaefa!■■aft■■•■ • • • m.�_ Rot,jq ■■■■■Rot■■■■■■a■■■ /t:lea■tat•■■•! lmrs! ■{mmge■■ ran" m7■1■/O..-21■ ts'■■■ ■mas■rta ■ran■ /Hmmmmnmmlt\■■ ■anal/•arm:t■H\asUrltlt! alsta■s7:e/a{\leaf■rate! {■Nt■■aN■lea,:_•IrN�■■■��■■■�■r■■Ro ■Mast:sfeee�lma •m■rasa■//rltAO■■eta_Mf�sO■PnstsaaMeaee•tlNrY■Nsa•tlnameme■es_sM■li�gaafl��ms\daa■e■■Ri■at�■■■r_ •■a_ ass■rna■■ f ���■t��eptNa aone a■ emuNas „iasEssexs fumprim ltaart:aSn■*an sonRUNoeiNm a"aany sasaf■ O�a�r■��■Hr■r�s M■ a���■ a' N��•►�: ■Hm■safl:a::!■ !m■.t:•a■mlmm/m■ft■1!■e, saOmgr■iR*no efamens•Rfenone�rmteNle atttr{■a■.3W■re ■■■■■ self■/! ••aNfM ••rot/roc•trfafafrose■"taaalafafaa�na[mN[NNasst/aala!\Utltt\ea Imamsrarss"eras W.I.I.M. ■N■ .1a tsff"a►m/e■ffsf s■mm■ififBait*1■lfagM■7M•ir■ga■!Nn[.i•e�e{theme■{t/■■1/ftte■■tR■a1N■■ft ■a# MH /■ ■■■Rot\:fspsmst■ s■s■gfa■isN.s/!■as■saaasan,,isasnmemo@so Zoo S ogonennf■s■s■rtftlr "a■saH ■■ai■UMM■■!■■ ■ ■ ■■:■usapfsslna■ •■■■■R■ppe■r7rt■■eN■aYaMtR■■fessf/Ua■:!:■ra"MNnRsNgs■sRtaalesraUs ■r1���ii■ ■a■q ■ ■artsn■qRt/f■ •mfee�■atsassallrflarsasN/NN■f/fa■atfrlsea". "7',f:lsaist■tffsq/INfssft■ifrf r��.na■a ■■as■pgas lssamf:■/s�f+l■■ �ferfNpa<t•aaes:aeefr�eaptplsa�/■■a=�4■■latllalNM/�ilftira••rtr■rrs�.--__�=taiai!■a■■■a !■M■Offas ■ Ofsnaan•lN■ .. era:n■■•eaagwNSLfeNNptRHtate� '.■itRete/mr■imptp{a1■i:�f■1■■at■■fi■fla�a�a■Y! ■LGar Rosaasslt■■srs■f sgr._'rM!/gfia■■■ttRY■Na■■MMaulam...'mr/!\/!Eamon son sssfeUR ■ffearna■s7a■■■fa■■Ma ■■ ■ r a//ata.■ase■fa■ m■Ron■r_ Ra•ensea■aYffaoms.■!a■■an■ 0asplas.��•r7*Iowa N■swt/e■msfnessasasa\t■aa ■ aaaa■ :era INU games ■era ■tr_. rf::nm:a■�l■Was:�'.Tw\m:mat:ealmOh.. .. . -•N�il7amesf/e■■mss:mma Ns ■ ■■ mis1Ro�:I►.relate �ts�RlaYa� �■p■ImMefll:peso.`•►?r■tYrelaas■iLlti�A�_-- rr■'�.mlliifeapsRR/l�f ■ n■ I.t• ■ i • ph.iealffe . lmpeas�{tlsm... -H{e■�a■p■ftW�sq■fRleitileslS■Ra/lataaa,.:-_, -�tefNll■afefaafi7■!/i■rqs■ -/■ maastuft■ \■Y misss,. rasa■ asa Rot{�7•Qmf'i/�NfnfefN■ m�tlarsallr... waamssltmi■■e N ■lss■Crsr■ ae.. r i�sslawsf{� n�aa■ aaRoe■■ro .�•c-�earnRoRoSMgrra■raRo:Mp■onu.i_ +t■e■ta■■aa■�■aam ns■■ men ■ass atfalr�fRo■{■as■ sun vae :mRoRo:fNL/r>tr . 'tnluNlnam•■Nr■■srrin■■faN._-1sAr■!■lrre■ensar■ar■■ Na■�a:fes •■memsrrv�r■rata�■s!■�e�a�. -•iwuesar{■�as[i:p. ---_- '■•asuaaaa■■sea■■■.��a■�wa■Rpaea■as.l■e • 1 reap R■nfi[r■.;•:"a"Us ■mal■MRoe¢■■ Rose =imii//see Nstis■e■i■ng7e■�vOfeartsefrtsN•r_ ■�1711AeftfsgtNt -_leef�- �■e!■s6tnRoesf. ssrsamNraseRor■f ■■ •■ ■R■■rats■ ■M:f:llffsRoiles■sfr-■��sm■trlrasNse{.._"' •■•net{veassff' 7f/_" p/ter-]■ram ,a domaam■Roar:nrgrM■■aNeesm: • !■ ■ms/eeN■ e'rreatRsa■MMaeOsfalr._•etMttRoearftr{Laf/r...--_---__- - •■•��{r. -L7�rt►.. -%*RoomusaN►:rass■■■■a■e■Rosn"GH ■ U7.1t1nag: ■ma.�••aka■tleea•■YffNa/r.�f■f■aRae■e/g■ttamatierN■1!k!a•'. •mr,i! rases►• "aRfseteet■r. •llalesewanness "a r►h,/1f■■f■ e■l■r•tf���Ma{r■Oalsafl■Rr•r�marYR/aeHa■■psft.�.N�Aff■■►� �•►tata■a'� r.��•■rRos{mf■aragNspatrem� • ■aA ore■ ■tfMrfRosr�"off■ssesfsfHRom■■faamar." 1L'e02RoHnrf�I//'.•■tee\!Irk■r -. REnee .'.':■r.:moose seennessa■Oiassal f■ ■fm■t■am:■ ■me•:ile■rtfrr=rrH{ear■11N■■temM•'ll".m•... •�■.dowAssram/'.1■a■.item\- ''r�'.r{•.•:!�mr.:M{{{fee■Na■IisVrRomrRoH� s■salsf■■■• l■g•fsaaNNaffe!- N••■N.rmRNr■r■•■•a�i�atti�le•sea...--■ef{■t.■Rormn■•'_e-''so►r or,:,../!Roe■Ro■Roq■■[�4aslre■@ ■■faa•arm: ■■orrAs■ef ■qam■irr--•■■or•■gmream:r�a�■■Mwmawmrfap.�amm._�•••ea�r.�rc:-- •M� .i..•t.`te•Ns■■s!•tpel■!as maeM rr•rm rams!/■ao■am•!•"Soma*lose m■ �mN■f•'1�m■r■WWAM!m:N■funs'{■/YNmm••'/•�r.-•oa r/roar - ■.,- ^►fit/gr a■r�r etst■e■f•!'a/fe! ■ sssmrssome ■om•n•eesslam■nmammagamesamm■oats--�4■•/F.hl■swansaasea"AssetY-:•amsfma: cos■-.Osc4mr,A.. -ee•smntr%rassNs■■iinne ■esfspfsm am**a Namesmovep*Mar•mmupgoosenounla►.•... -r■■{\[1r:fosrte■f' .sMrsr•\rr. .t Dumb-�/■mfmr."am some*eer■ra■tfremla/ Hapnago a■■mmf■oaf■seem/m{Uanr•as■pep■f■fmaeJr /[a..-------. ■mffl�ifse■ffsr. ..1/afsess■rr. aRoaRosrRoa■as■■a�■■Rot; s[•.geslr• aamma■■atf■set■frMaiCleles■l�1■■RsllfseR■gfttrt[sealYMr._ -rmt■lffe/[rater//met■str■sr_7Rosgm■mRea Y■Ron i • MAIN rs/ *ream �/fl.� ■s■n•Nressee fgs■sef1:N■ssa{r••if■■ssaaaser�r■sere■::■■sRore■a■■now g���ia lssmtfefea rmar■ assssmf/•eefpf■fspNlfp•■■ei!r1mr. Vsesafsa_.mr■ftRo■■Roeaa■1■Ronmen rleNsrlef smart ffa■:ef\e■Rnmmot■\:■! HH:oats0:m■[:•aete:gasea[ass:s:■:sRomRoeRoe■aesa■" manstsaaa !{tat ► ■seeesYeel■nsfegnfatemff■■{r{now so"i 1a■smas■{seems Damon"■Rom■eRoNa■ /a/O�N���W��ae■!• muses ■:::mss■■r■eafe:t■t:■eau■e■■■ee■a!f■■fr1_•rf■■e{fmf■tea■te ■■mmt:msf■ ■slat■/!!/~oaf nasausel - sitR■■■Roe■■n!elfasaf■■■f[■s/:■a/sere■sea■Rot:NNpprrss■::■sa�i■■■■mr■■a■ reN■■:/seals!// ■aft■ ■■aaf■rf/r{frlr[sfsfsp!■■ffa{■■f{rf■■almflf{isf/leas/{lams■ r■am■sssm■e mppaafsaa{!:■ ■r/:■ ► tf■f!■a■eermrgalfsm■afrs■sfrmf■:r■:se:■:met/:■■al:f■■■■■Rose magmas •lsf{Namomm:me m:em■ ■■•s■m■•famemsrmmrrrm■rm■■■■m:mmmr■mf:/■•■■mgam:/■r•moer■■ tans/: ■rafatlelaa•rmar ■arm■ ■r•r■mgrm■■rrgma/roe:■a•rr■lm:malmftemae{[rs::•n•:r{mrr■■a e:no:■ tga■::t::r:::: ■lost ■m•emf■mama•n!m{lmll■el:m{{■a{rfnlfm\f•ee{rrftea■s:rmamas■ N names! r ■■ ■e■t■l:mma sera arr•f■•e■a■■mramorr■f{■ram■■mmmamr!■ae•■{armrmmaa■:f:ar{t! s:ffammoo affmanrtaffe:l■ ■mlrr■!!mlra■rltsf■o■rtfa:ef■r■■■mmamr{affemefa■•ralr/mo■!rr{!■eta■a{ar:tetet■rfg■ara■f:an!■{f■ :::aa ■■ nrlsmrfafa:raa■m .•mair!■■•amre•■m1■■rm■■rr■■■m■■■■■r■mrmroam1•rlrrams•mmmrmmmlr■mrrs•■:a■■■•t■■rmrmea:lmerrrraf • of'+�■ ■riff!■a1:a1r■l ■■parr.-- '•-��r•Rom■r1■mr•■is■■nrosm■m■m■mm■lmfaumuerm•■■m••parrrrrr•■y•m7•lf■■ru/�a::rrm■■r■ ■L '�■ • Rom n wrong rrusages ■■mam■Rom■f!■••■uu■■a..a■rr- .■•mr■mu■r■urmu■... �•t:a/■ef■ �r�venom ■ate . ■ereateam■•mmir ■■msmmrsa■\semen■■/uatf/tla7rraa■:ase•srr/■f■raga■ ••�mr���sa::t:n■{■■sanatgM{:■:g■/ft■■all!:a■ gamma ■r 1nNlfael►ffmmr i•la■rem!■sm{■tsa{apa�lae{s■araaafu!■aaa■!rap\:smmef!■lrm■!■ifrrgamn■r/m{:/{eess■:tests:sssmt �� peas■ • ■s � ■■■■olor■{am■rr ■mama ■aara•■tiNam:■• rm\wmmarm!•■•mmmsoma■rrmmatarasar•men•■a■■fammmmrl:■Rom{/■■m■a■{•!err■ ■s��{ Rot ftfefe■r■rmmrmm •mfmmsr►�rtmrrmmfa�=mrrl■mer�■■m■�mamma■rrmmmroam//•loomsr•m■mr■■■m•■r�rm�■■mmmarrr{■:■om1■■■ f■.�• ■■ taattafaolrrarn a■\rsp■ el{feam■ as flp/■r\ ■ftg ■eaa/■e■■!etas-..r.rrrmrarrrr.r..------ rraaa�ffteflne:nf■ Ross s ■� nlrtap:ar/lm!■a nr■m!!s!■[sf:ssamssaaf■ assmsst poet ■■:f■lllrooataaaaara■■famama■■oar■!■■lams■/•.._-■faftaf:rat /teat ■ f r■a HE's{■■i9r ara/•mroor mongoose aso mapasupsampr!!/�flf/■■emma■r■:•m■■■Romra ONE ago p■amimf■m■■rm■rr■i■•■r•m•m N..Mumma sees: a a••■ • al some■NesBonin s%fNreaara/ \■alas■s�lef:e!■m■rsasii ■■feesef■se\e:misr•■■/!!■mf■■nm//nmfms■mmimr■rfm/■!•mane\fr/iir:fete//, a■se■ Roa emeaaaafm■lmmaa rat/■fa■■a■RottorN■as■■=a■semtpt■fpta!!almeWorn!gne{■WantDaWes**m■■mr!■:fo{eeao:aesrlftettf:mm■ ■:tmp■ ■=i peaeafr/asr■■aa om{men{safrafa:lss7sfnr\eaas■s■fmoe■ae\sets:tests■em•rmm■rrolmmmmmmmmmela:e:p/!•sleetf:affreotet■ ■::ape■■ ■ aRm:em■a:rmmrl ■■:■mmtrf:e{r■e•■ra{mm•:■afrtfe •-. •� m■aaaammer■rlrmrmaaafmo{■a{■mrmfrf■■ gfe■aa■f■ !fa■rrrnmmlesnr as■amftl:r=m■■■m:Rop■�aspf:lRof' ■■■1■•■{gat:■:aapmmmea:awampapfamr■ ■r Houn ■ommonsommosesa •...raft!! ■anpnfe ■rtn■up■ ■•!..■■.a.■f.■■nf/fff:fef■■■mraoff■■ t■:fmtm■ p!f■p■■lpfaflta �r{■at■aIl`:■er•pr�- \■sssaC�►►�aeas■��!�tplRosa'- '.\e■■•a _•��•!al/��'�\ealmf� !►�\ss■p/��►\s• ■mmr■sm:■ ■r•••■1m■m•emm■r•w nae■■Ir■r. .a•sm■e� i•rmm:•• '. homes* . •mmmrm homage la•aa•-•. . �■rr:r, lfa■{1.'•'. Jet ■•■/mess\■ aw Irr .+• WIEILER PAR' 40 1 72 TMRL':�CO!IITAh1 40-5 I P':�P IrA�: OIA�. 2 ; • 0 ' one e o•w [.• f 1>✓`'ELLER PA1TEAr:NO. ZC1 f51 1 WR: 11•6 Lt.n;/S-Ar.E NE :.I 1 I1 - ;' - '140 ! �Q' .j•:._�_- r. 'yam._:...'_ rr.^•_^�.:�.: T`."'_'- r...-.r :• 10 1. 70 60;= 40 ,....._�'_'_ +_yr.--�-�.w,.•r•-••T_�.•-�w.._I•..i+_tr^..rTT+1-. r�. � :�•i++1• 1 ^ ._T.,,,..,.,_"/ry�'•_ .•'1:.•w�.-r'f1 ,J.r�..'- :1�{1� :�1��_i. .^�.��T;•'iT1.• IrwM , '�. N.^--'�,•. —;.r.; .i, ,.i "' �I� .!1'�li ii 1. li''iii V. 1,7, '_T+ -,-^T•":�� _{:.i.iii� i:7 ll.l ' 75 8.1 i "' - 1� _ .T�-..r•1.,�.r"'~T..�"� ._:y.j. '.-1._".1_�-'1••_t�T._h...��LET..-.n'•.. T wr_T�� -� If .� ! ' Cam., r •��T••-•li�"����-;^ _�,T-.r T•...T-_T..3'�.-_«:�.'..:-. - �^'.-rT-+—^r.' � �' r� ' ►l wlOOrwwCe raaLD On iV l•..T at,ta•a V 6 GALLON6 PER MINV rc ',�'• ►u+r.wD cL[wr CDLD a.w,aw aw Gw 1 O .+ ~1•• ,u+r.w{rVrr I I BO A•r •. ' 1 rOw I arw0[rua•.rl•w[IO 1[//.O• Q . C•.-9� Johnston Pump C07TlplfiY ./aaau_OOpraf ago■L—c.L .er row a,....rua•,ra•w0 •[rr 6„ A ' 1 (`OaTCf1 -} .l_.�' GiC1i.Cfd,Cdl::OrRld 9.740 G a awTa wo •�•'•1.r N.t . S. •.6-72 Yw �} lf/w011artD laa • ` �'�• 07AA S 1 REV. NPSH 2-13-73 raw Ir.. Ir►. IMPELLER PAR. NO. 4:9. ARUST CONSTANT 41 PUMP VAFT ?!/JV. `7 •: '�•. f IMPEL."V PA•TEPN 110. 3O 9 - WRT 17.92 LB.FWSTAGE 41h-.•_ -.., ........ : .. o . r ti Ito 7. rt go �`�; '�`�''' EEO }`'►^��. ��:�, _•x_ ..::u,. �:� �= _ ='�=' ,:.. ::' :��:.__.�= _:'�C'j��s: C� `�S / p j •1••-fr----.••"- fir• 'i .1- - --.'.Z=:r�+.-. ..•;•�, , _ - Z Sc, X 70 -'-r-:•.aTr :{�.` ':fl_'..i.: _ r-•••-•• .,' :, 7: ^^'' _ _ C ' •( r -=- ,•I. _ .i.. .�:":1" .I:- __ Oct D 7j :? .• a _ ._.�'•.. _",•.+'-�_'{•-."~*' PIT T' -fr"C,. ram..-...-.�.• _.«. .�I... - "��T i �,: 1 .l". ..^.•.. r+r-,--'-.-r•-,' r+r+.�.•� •..'... ..,,T .fir _ .. r '777►►► Ow 3 4=;: 40 �c�-1 - ;:._ :_� ----;. - T ,__ .tea- �- ':� .'1 . Z$ti. ,. 30 ".. _ __..r..._. ..,— ...' ''-T�" •..:::.:«..�'=-�-;.-►�-^" �#Soon 2�•=•"��. 7.1 .f, ^ram—l,••••I:- —..-..yam- _•. r�T•1 4 'i • to �' ` :M ....1. •• :..I.,K Trq , T -•r '•r_ r�4�•..+...- r'�T�••T_. a ♦� 1. so Or rrL[IatwD[y[f[s US 6ALlONB r[11 YINyTL U 1180 . rurnww AW cDa.O YA7M a►a U ?O fy. woo-s pwo tr►■ 1 �• rp1 11711■l rYlylr%v rfAO D[II.N .rraaa,[[_6wprU f10■a-/ 1 © ( Johnston Pump Company Glendora,California 91740 . �..«../.»' ' r f t ' alAya t i;2 J_7� mAwfawn/fwI E C-057$ A� CUSTOMER Ct'►Y OF IAIVn/7iM6 TON 86RCH DESIGN CONDITIONS CURVE PROPOSAL NO. ITEM wM 'W000 ur 49V% ' • /w9�0//•RalEd PUMP SPECIAL N017, T•M.«J 2 sW 337 so•pro \ � Curves are approaima». ►ump it guaranteed }a ena we t� i �O=9 \ RPM 177O �Q w ' rt of wnditiom.Gpetity, head and efficiency cY Ouar- DRAWN anfeaa an bard en shop test and `Than hendling DATE dear, wld,frath .afar of a temperature of not owr BT E. OR'r�Z 9�'r/B2 M degrees and not~ }sr section lift. S T'.a 17yi . Zoo- /4-':= " - - -='_'-- ►_ -�:- :� _ ,_., - I Sao PM so 96 'WC 10- CA PACTY PCRcoQM AA1C 20 10 Pump dowL ..PEA S:_. . . O /oop '2000 3 op0 00 i 5000 GALLONS PER MINUTE hSTOM-Eft DESIGN ClINO:TION3 _ (J �) h .EJ. �_... I � — •------ - CURVE� r� -I MOPO;ALNO. ZI'14,L ITF1 . , I GLM L_1r,� _ aC'•� E. ...__ . —�__� PUMP SPECIAL N)T�i).. .. .... -- T.P.!• :.t C •Iv A;_ .'c'a SG. t .. _ .✓^ __ �, - Curves are app...•I:ma_. P•.-^p is q•ae­'•.eJ for one 1 r 7•': i(;�� Drii p C- Kr tX A�JN .e1 of ennd;6oe:.Cnpac:tr Fred e,1 d eS:."cn:r Gcfr. P. t `�'Y enlre: are Lase on shzp tell n!F wh:nr Fee:•' DATE �� ci•ar• eo-j. fres% .ruler eta tea ere'um o, not ove 8; deq-res anJ rct over IS' su 1.0n Wt. _ "9 t' _r , •I. —r — - -- - - - -- -- - t t :i -1 I. �I. al• (( - ,•1 - I :l 1. i" .I. i. 1. a - al. 1 '1 I it: •f- �-r �-•� 1i`:y - 1 .L -{It1 de ' •Y I .a s � - .l �r= n. _ 4- t 1� :I, li•1 _�11r _t- •i .{'' 1 t1.•� i t :.r j cc - - - (4L Li L J - ; • : �1-: — - - so- _ -- I _ - i�a. i - 1 .. --, - -1 7v1- — •` -- - -1- - _ �- 1-- t� _ ..- �. _ __ 1_ Ali: .r� :t ../. I�`-sL' _iL7 �r4 70' �t r M F. tt. .r: L �r _ _ - - �T _ _ _ -�- - - - - x - tr - 77 Ucr to E :; s t; _ -.. r :1. :1 it. - rc i. �[- RW 81 _ is . 1. :' :t -.1. i.:. _ rj - .rt �i:I - rp r u. :i a': :i a:.l _ _- _.{: :.t aL• .Ja .--.i _ _ .}i^I �=Z-tt�Ia _r.: :�"� [-:: �. •! :'[li _ - jL: ,.1. .rT' '«rai �t. ir:. .k'`. Y. :4_''�! ~ttf - - _�' ?L: "t: ! 7E i1�t. ;it. :�:- •`T' -:Lr.: i.fi �-:yl 'tri •a r. 20 'Ti: •`•- - rl,l. - •t• :y.- _:a•' ---i- -ti. .au -- : T ...�,. -,�.., irri •r• t iM rrr' t:. :li..l �:'.{: Ei: - :1 t}F ii� :'.-' r;-r -fib •i ♦ Ira ti71 'i. :i' .t: ;1: :t r! ~r-• ..S!1 iJ �i .7:• - :l. r i rr .. — �_rt ia: rl�:: .i :l._. J- r I' -rat •�'rir _ i`(".:' :f.t �...:. a'r.. r. t�'-. `F;� •t-r'T - �a .lI Z t. �:-+�r �rrr. a..aa • .�_;J i�_ [- :i.:`.y ly.:, 1.: _ L --.-. :l T.:.:: !iT ,. _ t- •t t '♦ .i 1• :Jj _ 1.t '(Y• 'T-� _:i''' ._+ 1 .r.-�� �L+� �. _ ..+. 1 yi .:y�- •a.: L.1+ 1 a: i,.rf •i4i 1: :1- ��' `1i - :1 O-rt •-�::Y` _I:!r ffff{i .i.L �i .;-1.('a. ,t ._l.: .t, ..- ri.L: 1 1 •I nt •+' ' _ :i: :<+•_;�:� --:I:��Cr• =,j4C�:-.'."�;._iT .ALL- -7 :.:: _ '• L :t-_ . t- - 1Ur' '�: IL; rt` rr! : tl-�� _��.� -- _ '!- t a.L* - - _ •� - Y 1 '-_ ' .T'. +1 O p p O P 0 0 Q O GALLOV*S PER iiVUTE _ 4 �, f 1 HUNTINGTON BEACH RESERVOIR BOOSTER PUMP CURVES AND RESERVOIR SYSTEM CURVES (OVERMYER AND PECK) OCH1030000IBOOSTERS.CAL OVERMYER RESERVOIR (two reservoir units) CURVE NUMBER 20 ---------------------------------------------------------------------------------------------------- Reservoir 1 Reservoir 1 Reservoir 2 BOOSTER PUMP 1 (1770) BOOSTER PUMP 2 (1770) BOOSTER PUMP 364 (1200) ------------------------------ ------------------------------ ------------------------------- SYSTEM SYSTEM SYSTEM 0 (GPM) H (FT) HEAD 0 (GPM) H (FT) HEAD 0 (GPM) H (FT) HEAD ------- ------ ------- ------- ------ ------- ------- ------- ------- 2,000 140 130 3,250 160 150 6,500 165 155 2,125 125 114 3,550 142 130 6,150 160 . 149 2,175 118 106 3,750 127 114 7,550 143 130 2,225 112 100 3,850 120 106 81000 129 114 2,25,0 106 93 3,950 115 100 8,250 122 106 2,275 95 82 4,100 109 93 8,350 117 100 4,200 99 82 8,500 110 93 ------------------------------ ------------------------------ 9,650 100 82 ------------------------------- --------------------------------------- OVERMYER RESERVOIR Description of Reservoir. COMPOSITE PUMP CURVE ---------------------------- --------------------------------------- Unit 1 Bottom elevation = Approximately 48 fe 0 (GPM) TDH (FT) High Water elevation = 69.5 feet ------- ------- 0 132 Unit 2 Bottom elevation = 24.5 feet 10000 131 Hiq_h Water elevation = 69.5 feet (if inter 20650 130 = 71.8 feet (if not c 21875 114 22525 106 Assumptions: Pressure Reader at elevation 65 feet 22875 100 Water surface elevation in both reservoirs_ 23350 93 Normal system HGL is assumed to be at 180 f 23775 82 ---------------------------------------------------------------------------------------------------- PECK RESERVOIR CURVE NUMBER 30 ---------------------------------------------------------------------------------------------------- BOOSTER PUMP 162 (1200) BOOSTER PUMP 3 (1180) PECK RESERVOIR COMPOSITE PUMP CURVE ------------------------------ ------------------------------ ------------------------- SYSTEM SYSTEM 0 (GPM) H (FT) HEAD 0 (GPM) H (FT) HEAD 0 (GPM) TDH (FT) ------- ------ ------- ------- ------ ------- ------- -------- 4,635 193 183 4,635 203 193 0 172 5,000 180 168 4,800 193 182 7,500 171 5,250 170 157 5,000 191. 169 15,000 169 5,350 165 152 5,300 170 157 15,800 157 5,400 160 146 5,400 165 151 16,100 151 5,500 155 141 5,450 160 146 16,250 146 5,600 150 135 5,500 155 141 16,500 141 5,700 145 130 5,550 150 136 16,750 136 ------------------------------ ------------------------------ ------------------------- Assumptions: Pressure Reader at elevation 35 feet Water Surface Elevation at 20 feet Normal System HGL is assumed to be at 185 feet ---------------------------------------------------------------------------------------------------- r PECK RESERVOIR COMPOSITE PUMP CURVE zoo 190 180 170 `-� 160 ~ 150 140 130 120 0 2500 5000 7500 10000 12500 15000 17500 200O0 Q (GPM) OVERMYER RESERVOIR 150 COMPOSITE PUMP CURVE 140 130 120 110 I � 100 90 80 70 0 5000 1b000 15000 20000 25000 Q (GPM) • i DESIGN CONDITIONSa PROPOSAL NO. SPECIA • LLC v arm rnizi DRAWN Ram DATE MIN I b- blil mi :. OEM .® . ms mill WON OEM die. ®E .1mum 6- 4 m l W ra r W-A Emilio i � `ifcrom _�' • , Ems ® ��� y. .tea; mom®®® lummom® p = � a ism. amonlaffimmomm a Oki - ME 0 Envoim Nol 0 m m mill Lic 9 Mom 0 Room 12WEEmmilmomm sm 1111m o lmi mmomm iEM m �� • SUBMERGENCE REO'D OVER BELL TO PRE., JIORTEXES CERTIFIED BY: CUSTOMGER- BASED ON SUMP DESIGN PER HYDRAULIC INSTITUTE STOS. DATE =- PUMP= V. = 67V6 We 2PM - REF. NO: --Ica -.17:70. :4. w� - � - - ---- - 1�SQ_ �_ -IQ.3.� • 17 lib 753 Z. IL l ` L :._ .: _ -.. _ _ - _._ - 1 Y o U B.GALLONS PER MINUTE THE CAPACITY. HEAD AND EFFICIENCY IMPELLER�na1�sL.(p1A. I ' GUARANTEE IS FOR THE DESIGNATED �� 'v" PERFORMANCE POINT ONLY: IT IS BASED ON SHOP TESTS. BOWLS ? Johnston Pump Company a WHEN HANDLING CLEAR, FRESH WATER AT LIQUID 1-1AZEE F Glendora, California 91740 STAGE 1 Co l_ - �_ PUMP i A TEMPERATURE OF NOT OVER !S' F. AND i Vt`t►n UNDER SUCTION CONDITIONS AS SPECI- SP•GR._!L-- --- ESTAB41SHED 1909 R.P M. !' f1ED IN THE CONTRACT. DATE BY CURVE NO. JP-1S78 ' N M 111MIPPINIM �ftop blampma ilia hq� mail Hill 5-ififflumpmol K1111isom Iff".IN I loll • . iiif ;l� HSNNflMflAllMil� llwn MEMN pooRi sa' ..:iit • iit' t ��p t�! i+ � s�s c• rtii! •i ! !! � 1 ti .. ?l:::si ::?sl#rli�iiliNsllil. 11il�ii;lf::s:=s: l:��l� • # ttl}�1 {## #11#1lilli#li �! #1 �ll�il"i: r#is�#�{## � ##_#;�#= 4s�li��?is:iti:�i is t ,s: � 1 = t � ��� q� :511HIM !#{�#1#�1#l"�ll#i� C��la��. qN IIlUIRI�il#11M_.#�,z"�1MiR#:1 � �f��3l�illiilit��El�?lli�iill�� _ t::�l ilili j�l�i1g�3l1}i 11#I�UNiTt1 �i �.tilMIA11ifif4t'il'i1ni 12THI 11# 11: #iE#;#llll�H�illi H� =at IL41NM MOW tin 0111HROMUMM o"B'SOME Al INE": 11THMSHIM. Mr Nvm ob lit-tivewoomas :M 114.a 1 0 0 1 a a 0 i i:o M iis.c.e Fp.1 1fiT! i4 �a� � pg z: � :;:1=sl:�i tc;:!!•Eii:lintlii Offi1 lY31S � i t'1li�.�idl��l:'se:le::.l :s:s.�:::::: 1.i3 :cif l lll�li �' '1 1 1Mi::HM .Zii: ttilSit}ea3:ilss::� t . re31 ii11�U18 � l�1 HII�r.11l=�l�i3�Nili�i3� I=i-=�•'s,':,lliii#=�II1�1�� . s 1 t F_to u•• :t::t:• .: :2 SIMON .E#ll HIPMAHR11li?i::i�#liiil • �l�s�� a",Ulm owl 1k Offln, 011A.11 M ��Jjf IN "N' A VRM lum Emu :_ l.;Ni�eiai.O1 am RIB r . a �— — 10405 n Z _a. • � •. :Ii. :• ... .r .H .• .. I. ' a'i. .. .1 .. • • N N .•_ :T• N. •f �• ••. H• :I_ I: .•. •i IO 1 :.:• I+•• :1:' :«.. "� :.Z. •:T .••j•: ;�: :T: "I' ,�.: L: :: ft�I •I �':' S: .a ••.. .. .,. .I.. r O II >f0 r C 20 7 ••t: ••: : .•:i •IT. S:2' a �:� ':i :I: ma 10 • •• • •. lp: '� ...: :i: :•. :l:• ��. •�•: O r .l' ::: '• :L•: • I' :;i ... :; .,. •. . : : .... .... .... n I� PI -= — :,: v :is :�: ,. JJ ..—: j :.._ •-. "+ _ - :.4F y� ::::5: I PER -I • - .. : : _ =,: :i: .t is iR r �: a 2G^ ... :: I: ; - _ :i :: i' •it: ' : :r •sI :::: :;: - f �+ .Ili •�ET"!1i ' i«I •!it{a •I i. 1. :I.. .a •. .• . ♦. ::.i :•. ::: ►Ew►ORMANCE &ASED OM MULTISTAGE TESTS U S GALLONS PER MINUTE PUMPING CLEAR COLD WATER Sr GO 1 o L.._.� L� LO Q� �UAlINE •uM• �`/J/J k P w FOP 1 STAGE MULTIILr t1EA0• ESE .. JOHNSTON PUMP COMPANY IMKLItA—.110N IE •owl -�CAST iNp.• FORD STAGES MULTIrLT ND • EEE .r I I CURVE S,.rrc 40 O` - /` 1 ♦ASADENA. CAIIFOENIA T 40S DATE ,� .o. LO a NOTE% COLUMN LOSSES ARE INCLUDED JOHNSTON:REF.N.,. PG I 0 7 « , " « fit-1t • ; ._. _.-i ►-;-� .- t r {- IL f-C '- : 1 t-- { 1 f 1 DEALER: �1 REF.NO. A. } + t , # t i }*± CUSTOMER: M[ C I A A R0 � ri RS REF.NO. us us _r i. Z '300 UZ Z. ; 1 ' ' ' +. HEAD-CAPACITY o CD - --PUMP EFFICIENCY po W. - - - : ..� BRAKE° HORSEPOWER ­ 500 - _ ui 71 . In UA ID 3000 g000- : 6000 - - - IL US.GALLONS PER MINUTE THE CAPACITY.HEA1 AND EFFICIENCY IS6RZ- J O H N i T O N PUMP CO . TURBINE PUMP GUARANTEE FOR THE DESIGNATED wn�EtE� °'� rEwrow•+..r,ct POINT ONLY: IT IS BASED ON SHOP °ML, C-I- VI T fr TESTS. WHEN HANDLING CLEAR, L,ou10 wA'j'ER rtRum Pumm 3 nE 9 nr- .u,.• FRESH WATER AT A TEMPERATURE ' •QQ I I8Q OF NOT OVER Be F. AND UNDER � pi•4 SUCTION CONDITIONS AS SPECIFIED G a rS +L NGiNc �`B 1-4 THE CONTRACT. °'En.2 I'T4 .H. GLENDORA • CALIFORNIA • U.S. A. CITY OF HUNTINGTON DEACH,CALIFORNIA WATER IMPORTATION AND PRODUCTION ORE-FEET) SUMMARY OF HISTORIC PRODUCTION MONTH 81-82 82-83 83-84 84-85 Q5-86 AVERAGE ----------------------------------------------------------------------- JULY 3443 3482 3590 3781 3918 3643 AUGUST 3447 3432 3584 3616 3786 3573 SEPTEMBER: 3019 2915 3221 3478 3333 3193 OCTOBER 2621 2939 2729 3137 3291 2944 NOVEMBER 2407 2359 2262 2449 2563 2408 DECEMBER 1 2141 2198 2191 2287 2556 2275 JANUARY ; 2105 2357 2392 2365 2673 2379 FEBRUARY 1906 1890 2570 2196 2098 2132 MARCH 2154 2105 3003 2617 2460 2468 APRIL 1 2394 2369 3009 3039 2856 2733 MAY 2891 2884 3548 3369 3512 3241 JUNE 1 2973 3138 3488 3577 3610 3357 ----------i------------------------------------------------------------ TOTAL 1 31501 32070 35587 35910 36655 34345 CITY OF HUNTINGTON BEACH,CALIFORNIA WATER IMPORTATION AND PRODUCTION iACRE-FEET) FISCAL YEAR --------------------------------------------------------------------------------------------------------- YEAR: MWD CONNECTIONS : : 1981- :----------------------------------------: LOCAL: PERCENT PERCENT MONTHLY I 1982 OC9 OC35 OC44 TOTAL : WELLS:TOTAL 1 IMPORTED LOCAL PEAK FAC: MONTH : (AC-FT) (AC-FT) (AC-FT) (AC-FT) 1 (AC-FT) 1(AC-FT) : JULY1 588 596 133 13071 21361 3443 : 38 62 1.31: AUGUST: 640 609 127 13761 2071: 3447 : 40 60 1.31: SEPTEMBER: 548 397 78 1023: 1996: 3019 : 34 66 1.15: OCTOBER: 95 336 205 636: 1985: 2621 : 24 76 1.00: NOVEMBER: 0 321 101 4221 19851 2407 1 18 82 .92: DECEMBER: 0 85 93 178: 1963: 2141 : 8 92 .821 JANUARY: 0 0 71 71: 2034. 2105 1 3 97 .80: FEBRUARY1 0 92 133 2251 16801 1906 : 12 88 .73: MARCH: 0 351 226 577: 1578: 2154 : 27 73 .82: APRIL: 167 352. 235 754: 1640: 2394 1 32 68 .91: MAY: 573 0 213 786: 2105: 2891 : 27 73 1.10: JUNE: 553 342 88 984: 1990: 2973 1 33 67 1.13: ----------' --------------------------------------' ---------'-----------' -----------------------------' TOTAL: 3164 3471 1703 8338: 23162: 31501 : 26 74 AVERAGE MONTHLY USE: 2625 AVERAGE DEMAND: 19529 GPM POPULATION: 176379 ---------------------------------------------------------------------------------------------------------: YEAR: : MWD CONNECTIONS 1982- :----------------------------------------1 LOCAL: 1 PERCENT PERCENT MONTHLY : 1983 : OC9 OC35 OC44 TOTAL : WELLSITOTAL : IMPORTED LOCAL PEAK FAC: MONTH : (AC-FT) (AC-FT) (AC-FT) (AC-FT) 1 (AC-FT) :(AC-FT) 1 : -------------------------------------------------------------------------------------------------------- JULY: 563 624 205 1393: 20901 3482 1 40 60 1.30: AUGUST: 563 620 183 1366: 2066: 3432 : 40 60 1.29: SEPTEMBER! 420 510 175 1104: 1811: 2915 : 38 62 1.09: OCTOBER! 235 433 236 9041 2036: 2939 1 31 69 1.10: NOVEMBER'l 0 147 163 3101 2049: 2359 : 13 87 .88: DECEMBER: 0 0 96 96: 21021 2198 : 4 96 .821 JANUARY: 0 0 259 259: 2098: 2357 : 11 89 Be;. FEBRUARY: 0 0 108 108: 17811 1890 : 6 94 .71: MARCH: 0 0 75 75: 2030: 2105 1 4 96 .79: APRIL! 0 51 230 2811 20BB: 2369 1 12 Be .89: MAY: 0 99 300 399: 24861 2884 : 14 86 1.08: JUNE: 0 64 313 37B: 27611 3138 : 12 8B 1.17: ----------'----------------------------------------'----------'-----------'-------- TOTAL: 1781 2548 2344 6673: 253971 32070 : 21 79 AVERAGE MONTHLY USE: 2672 AVERAGE DEMAND: 19882 GPM POPULATION: 179316 CITY OF HUNTINGTON BEACH,CALIFORNIA WATER IMPORTATION AND PRODUCTION (ACRE-FEET) ----------------------------------------------=----------------------------------------------------------! YEAR: 11 MWD CONNECTIONS 1983- ----------------------------------------1 LOCAL PERCENT PERCENT MONTHLY 1984 OC9 OC35 OC44 TOTAL 1 WELLSITOTAL IMPORTED LOCAL PEAK FAC: MONTH ! (AC-FT) (AC-FT) (AC-FT) (AC-FT) : (AC-FT) :(AC-FT) JULY: 0 339 255 593: 2997! 3590 17 83 1.21! AUGUST: 0 465 406 8711 2713: 3594 1 24 76 1.21: SEPTEMBER! 0 334 189 522: 2699: 3221 1 16 84 1.09: OCTOBER: 0 0 120 120: 2609! 2729 : 4 96 .92: NOVEMBER: 0 0 35 361 2226! 2262 ! 2 98 .76: DECEMBER! 0 175 0 1751 2016: 2191 1 8 92 .74: JANUARY: 0 622 0 622: 1771! 2392 1 26 74 .81! FEBRUARY: 0 622 0 6221 1948: 2570 : 24 76 .87! MARCH: 0 749 0 7491 2254: 3003 ! 25 75 1.01! APRIL: 0 1164 652 1B16: 1193: 3009 : 60 40 1.01: MAY! 0 22 349 3701 3178: 3548 : 10 90 1.20: JUNE! 0 286 224 5101 29781 ' 3488 : 15 85 1.1B! ----------' ---------------------------------------' ---------'-----------' -----------------------------' TOTAL! 0 4777 2229 7007: 285B1! 35587 ! 20 BO AVERAGE MONTHLY USE: 2966 AVERAGE DEMAND: 22063 GPM POPULATION: 182253 ---------------------------------------------------------------------------------------------------------! YEAR: ! MWD CONNECTIONS 1 : ! ! 1984- l----------------------------------------: LOCAL: : PERCENT PERCENT MONTHLY 1 1985 ! OC9 OC35 OC44 TOTAL 1 WELLSITOTAL 1 IMPORTED LOCAL PEAK FAC: MONTH 1 (AC-FT) (AC-FT) (AC-FT) (AC-FT) 1 (AC-FT) :(AC-FT) ! ! JULY: 0 712 B3 7951 29861 3791 ! 21 79 1.26: AUGUST: 0 515 100 615: 30011 3616 ! 17 83 1.21: SEPTEMBER: 0 358 281 6391 2840: 3478 1 18 82 1.161 OCTOBER! 0 2 179 181! 2956: 3137 1 6 94 1.05: NOVEMBER: 0 0 36 36: 2413: 2449 1 1 99 .0 DECEMBER: 0 0 67 67: 2220! 2287 1 3 97 .761 JANUARY: 0 0 107 107: 2258: 2365 : 5 95 .79: FEBRUARY: 0 790 359 1149: 10471 2196 ! 52 48 .731 MARCH: O 1170 77 1247: 13701 2617 : 48 52 .87: APRIL: 0 747 50 797: 2242: 3039 1 26 74 1.02: MAY! 0 1217 O 1217: 21521 3369 1 36 64 1.13: JUNE! 0 1204 91 12951 2282: 3577 1 36 64 1.20: ----------'----------------------------------------'----------'-----------'------------------------------' TOTAL: 0 6715 1430 8144: 27766: 35910 1 23 77 AVERAGE MONTHLY USE: 2993 AVERAGE DEMAND: 22263 GPM POPULATION: 185199 CITY OF HUNTINGTON BEACH,CALIFORNIA WATER IMPORTATION AND PRODUCTION (ACRE-FEET) --------------------------------------------------------------------------------------------------! ``EAR: : MWD CONNECTIONS i985- ----------------------------------------: LOCAL! ; PERCENT PERCENT MONTHLY : 1936 ! OC9 OC35 OC44 TOTAL ; WELLS:TOTAL : IMPORTED LOCAL PEAK FAC: MONTH AC-FT) (AC-FT) (AC-FT) (AL'-FT) (AC-FT) ;(AC-FT) ; DULY; 271 737 198 1205: 2713: 3918 ! 31 69 1.28! AUGUST; 2'90 381 270 941! 2845; 3786 ! 25 75 1.241 SEPTEMBER! 281 340 99 7201 2613! 3333 ; 22 78 1.09; OCTOBER! 291 89 161 541: 2751: 3291 ; 16 84 1.08; NOVEMBER: 178 0 75 253: 2310: 2563 ; 10 90 .84; DDECEMBER: 0 0 122 122: 2434: 2556 ; 5 95 .841 JANUARY" O 70 106 175: 2498; 2673 ; 7 93 Be:. FEBRUARY: 422 O 71 493: 1604: 2098 ; 24 76 .69; MARCH; 619 242 285 1146: 13141 2460 ; 47 53 .81: APRIL: 597 704 380 1681: 1175: 2856 ; 59 41 .94; MAY: 618 1162 314 2094; 1418: 3512 ; 60 40 1.151 JUKE: 593 1155 60 1808: 1802; 3610 ; 50 50 1.18: ----------'----------------------------------------'----------' , TOTAL: 4158 4879 2141 11178: 25477; 36655 ; 30 70 AVERAGE MONTHLY USE: 1055 AVERAGE DEMAND: 22725 GPM POPULATION: 189014 ---------------------------------------------------------------------------------------------------------! AVERAGE ! MWD CONNECTIONS : 1982-B6 l----------------------------------------; LOCAL ; : PERCENT PERCENT MONTHLY : OC9 OC35 OC44 TOTAL ; WELLS : TOTAL ; IMPORTED LOCAL PEAK FAC; MONTH : (AC-FT) (AC-FT) (AC-FT) (AC-FT) ; (AC-FT) ; (AC-FT) ; ; -------------------------------------------------------------------------------------------------------- DULY; 284 600 175 1059! 25841, 3643 ; 29 71 1.27; AUGUST! 299 518 217 10341 2539: 3573 : 29 71 1.25: SEPTEMBER! 250 38B 164 802: 2392; 3193 ; 25 75 1.12: OCTOBER: 124 172 180 476: 2467: 2944 1 16 84 1.03: NOVEMBER! 36 94 82 211: 2197: 2408 ; 9 91 .84! DECEMBER: 0 52 76 1281 2147: 2275 ; 6 94 .79: JANUARY; 0 138 109 247; 2132! 2379 ; 10 90 .83: FEBRUARY! 84 301 134 520: 1612: 2132 1 24 76 .74: MARCH: 124 502 133 7591 1709: 2468 ! 31 69 .861 APRIL: 153 604 309 1066: 1667! 2733 1 39 61 .96! MAY! 238 500 235 9731 2268! 3241 1 30 70 1.13: JUNE! 229 610 155 995; 2362; 3357 ! 30 70 1.17: ----------'----------------------------------------'----------'-----------'---------- TOTAL! 1821 4478 1969 82b8; 26077: 34345 1 24 AVERAGE MONTHLY USE: 2862 ACRE/FEET AVERAGE DEMAND: 21292 GPM POPULATION: 189014 I . TYPICAL MAXIMUM FOUR DAY DEMAND HYDROGRAPH - EXISTING 54940 GPM. (EXISTING MAX. DAY DEMAND) EXISTING SUPPLY 41500 GPM ------------------ CUMMULATIVE RELATIVE RELATIVE REQUIRED DELTA STORAGE SUPPLY STORAGE HOUR % OF AVG AREA (GAL) (GAL) (GAL) -------- -------- -------- --------- -------- --------- DAY 1 1 . 27 . 49 0 1600000 0 2 . 24 . 52 0 1699000 0 3 . 18 . 58 0 1897000 0 4 . 15 . 61 0 1996000 0 5 . 18 . 58 0 1897000 0 6 . 36 . 40 0 1303000 0 7 . 78 - . 02 81000 0 81000 8 . 84 - . 08 279000 0 360000 9 . 78 - . 02 81000 0 441000 10 . 72 . 04 0 117000 324000 11 . 72 . 04 0 117000 207000 12 NOON . 69 . 07 0 215000 0 1 . 69 . 07 0 215000 0 2 . 72 . 04 0 117000 0 3 . 72 . 04 0 117000 0 4 . 72 . 04 0 117000 0 5 . 84 - . 08 279000 0 279000 6 . 96 - . 20 675000 0 954000 7 1 . 08 - . 32 1070000 0 2024000 8 . 90 - . 14 477000 0 2501000 9 . 72 . 04 0 117000 2384000 10 . 54 . 22 0 710000 1674000 11 . 33 . 43 0 1402000 272000 12 MID . 27 . 49 0 1600000 0 -------- -------- SUBTOTAL 2942000 15236000 DAY 2 1 . 45 . 31 0 1007000 0 2 . 40 . 36 0 1171000 0 3 . 30 . 46 0 1501000 0 4 . 25 . 51 0 1666000 0 5 . 30 . 46 0 1501000 0 6 . 60 . 16 0 512000 0 7 1 . 30 - . 54 1795000 0 1795000 8 1 . 40 - . 64 2125000 0 3920000 9 1 . 30 - . 54 1795000 0 5715000 10 1 . 20 - . 44 1466000 0 7181000 11 1 . 20 - . 44 1466000 0 8647000 12 NOON 1 . 15 - . 39 1301000 0 9948000 1 1 . 15 - . 39 1301000 0 11249000 2 1 . 20 - . 44 1466000 0 12715000 3 1 . 20 - . 44 1466000 0 14181000 4 1 . 20 - . 44 1466000 0 15647000 5 1 . 40 - . 64 2125000 0 17772000 6 1 . 60 - . 84 2784000 0 20556000 7 1 . 80 -1 . 04 3444000 0 24000000 8 1 . 50 - . 74 2455000 0 26455000 9 1 . 20 - . 44 1466000 0 27921000 10 . 90 - . 14 477000 0 28398000 11 . 55 . 21 0 677000 27721000 12 MID . 45 . 31 0 1007000 26714000 -------- -------- SUBTOTAL 28398000 9042000 DAY 3 1 . 45 . 31 0 1007000 25707000 2 . 40 . . 36 0 1171000 24536000 3 . 30 . 48 0 1501000 23035000 4 . 25 . 51 0 1666000 21369000 5 . 30 . 46 0 1501000 19868000 6 . 60 . 16 0 512000 19356000 7 1 . 30 - . 54 1795000 0 21151000 8 1 . 40 ' - . 64 2125000 0 23276000 9 1 . 30 - . 54 1795000 0 25071000 10 1 . 20 - . 44 1466000 0 26537000 11 1 . 20 - . 44 ' 1466000 0 28003000 12 NOON 1 . 15 - . 39 1301000 0 29304000 1 1 . 15 - . 39 1301000 0 30605000 2 1 . 20 - . 44 1466000 0 32071000 3 1 . 20 -.. 44 1466000 0 33537000 4 1 . 20 - . 44 1466000 0 35003000 5 1,. 40 - . 64 2125000 0 37128000 6 1 . 60 - . 84 2784000 0 39912000 7 1 . 80 -1 . 04 3444000 0 43356000 8 1 . 50 - . 74 2455000 0 45811000 9 1 . 20 - . 44 1466000 0 47277000 10 . 90 - . 14 477000 0 47754000 11 . 55 . 21 0 677000 47077000 12 MID . 45 . 31 0 1007000 46070000 - -------- -------- SUBTOTAL 28398000 9042000 DAY 4 1 . 27 . 49 0 1600000 44470000 2 . 24 . 52 0 1699000 42771000 3 . 18 . 58 0 1897000 40874000 4 . 15 . 61 0 1996000 38878000 5 . 18 . 58 0 1897000 36981000 6 . 36 . 40 0 1303000 35678000 7 . 78 - . 02 81000 0 35759000 8 . 84 - . 08 279000 0 36038000 9 . 78 - . 02 81000 0 36119000 10 . 72 . 04 0 117000 36002000 11 . 72 . 04 0 117000 35885000 12 NOON . 69 . 07 0 215000 35670000 1 . 69 . 07 0 215000 35455000 2 . 72 . 04 0 117000 35338000 3 . 72 . 04 0 117000 35221000 4 . 72 . 04 0 117000 35104000 5 . 84 - . 08 279000 0 35383000 6 . 96 - . 20 675000 0 36058000 7 1 . 08 - . 32 1070000 0 37128000 8 . 90 - . 14 477000 0 37605000 9 . 72 . 04 0 117000 10 . 54 . 22 0 710000 11 . 33 . 43 0 1402000 12 MID . 27 . 49 0 1600000 -------- -------- SUBTOTAL 2942000 15236000 20 Typical Four Dav Demand HXdrograVh Day 1 Day 2 Day 3 Day 4 60% Max. Day Demands Max. Day DemandsA Max. Day Demands 60% Max. Day Demands Figure 7-1 Existing Demand Legend + Reservoirs Draining 15 - Reservoir Filling v .O m y � ;.. 28.40 M E +28.40 M . +2.5 MG 10 +2.50 MG .44 MG y RKp +.44 MG Existing cx�; k c ipply a 76 0 I V IL -1.02 MG 11.19 MG 9.04 M 12.08 M -1.02 cm 6- 5 I I Z I I I I I I Q� I Cumulative Storage 2.50 MG 0 MG 28.40 MG 9.36 M 47.76 MG 35-68 MG 37.61 MG Required 012 1 12 12 12 1 12 15 12 M.D. Noon M.D. Noon M.D. Noon M.D. Noon M.D. I . TYPICAL MAXIMUM FOUR DAY DEMAND HYDROGRAPH - ULTIMATE 60900 GPM (ULTIMATE MAX DAY DEMAND) EXISTING SUPPLY 41500 GPM ------------------ CUMMULATIVE RELATIVE RELATIVE REQUIRED DELTA STORAGE SUPPLY STORAGE HOUR % OF AVG AREA (GAL) (GAL) (GAL) -------- -------- -------- --------- -------- --------- DAY 1 1 . 27 . 41 0 1503000 0 2 . 24 . 44 0 1613000 0 3 . 18 . 50 0 1832000 0 4 . 15 . 53 0 1942000 0 5 . 18 . 50 0 1832000 0 6 . 36 . 32 0 1175000 0 7 . 78 - . 10 360000 0 360000 8 . 84 - . 16 579000 0 939000 9 . 78 - . 10 360000 0 1299000 10 . 72 - . 04 141000 0 1440000 11 . 72 - . 04 141000 0 1581000 12 NOON . 69 - . 01 31000 0 1612000 1 . 69 - . 01 31000 0 1643000 2 . 72 - . 04 141000 0 1784000 3 . 72 - . 04 141000 0 1925000 4 . 72 - . 04 141000 0 2066000 5 . 84 - . 16 579000 0 2645000 6 . 96 - . 28 1018000 0 3663000 7 1 . 08 - . 40 1456000 0 5119000 8 . 90 - . 22 799000 0 5918000 9 . 72 - . 04 141000 0 6059000 10 . 54 . 14 0 517000 5542000 11 . 33 . 35 0 1284000 4258000 12 MID . 27 . 41 0 1503000 2755000 SUBTOTAL 6059000 13201000 DAY 2 1 . 45 . 23 0 846000 1909000 2 . 40 . 28 0 1028000 881000 3 . 30 . 38 0 1394000 0 4 . 25 . 43 0 1577000 0 5 . 30 . 38 0 1394000 0 6 . 60 . 08 0 298000 0 7 1 . 30 -.."62 2260000 0 2260000 8 1 . 40 - . 72 2626000 0 4886000 9 1 . 30 - . 62 2260000 0 7146000 10 1 . 20 - . 52 1895000 0 9041000 11 1 . 20 - . 52 1895000 0 10936000 12 NOON 1 . 15 - . 47 1712000 0 12648000 11 1 . 15 - . 47 1712000 0 14360000 2 1 . 20 - . 52 1895000 0 16255000 3 1 . 20 - . 52 1895000 0 18150000 4 1 . 20 - . 52 1895000 0 20045000 5 1 . 40 - . 72 2626000 0 22671000 6 1 . 60 - . 92 3356000 0 26027000 7 1 . 80 -1 . 12 4087000 0 30114000 8 1 . 50 - . 82 2991000 0 33105000 9 1 . 20 - . 52 1895000 0 35000000 10 . 90 - . 22 799000 0 35799000 11 . 55 . 13 0 480000 35319000 12 MID . 45 . 23 0 -846000 34473000 -------- -------- SUBTOTAL 35799000 7863000 DAY 3 1 . 45 . 23 0 846000 33627000 2 . 40 . 28 0 1028000 32599000 3 . 30 . 38 0 1394000 31205000 4 . 25 . 43 0 1577000 29628000 5 . . 30 . 38 0 1394000 28234000 6 . 60 . 08 0 298000 27936000 7 1 . 30 - . 62 2260000 0 30196000 8 1 . 40 - . 72 2626000 0 32822000 9 1 . 30 - . 62 2260000 0 35082000 10 1 . 20 - . 52 1895000 0 36977000 11 1 . 20 - . 52 1895000 0 38872000 12 NOON 1 . 15 - . 47 1712000 0 40584000 1 1 . 15 - . 47 1712000 0 42296000 2 1 . 20 - . 52 1895000 0 44191000 3 1 . 20 - . 52 1895000 0 46086000 4 1 . 20 - . 52 1895000 0 47981000 5 1 . 40 - . 72 2626000 0 50607000 6 1 . 60 - . 92 3356000 0 53963000 7 1 . 80 -1 . 12 4087000 0 58050000 8 1 . 50 - . 82 2991000 0 61041000 9 1 . 20 - . 52 1895000 0 62936000 10 . 90 - . 22 799000 0 63735000 11 . 55 . 13 0 480000 63255000 12 MID . 45 . 23 0 846000 62409000 -------- -------- SUBTOTAL 35799000 7863000 DAY 4 1 . 27 . 41 0 1503000 60906000 2 . 24 . 44 0 1613000 59293000 3 . 18 . 50 0 1832000 57461000 4 . 15 . 53 0 1942000 55519000 5 . 18 . 50 0 1832000 53687000 6 . 36 . 32 0 1175000 52512000 7 . 78 - . 10 360000 0 52872000 8 . 84 - . 16 579000 0 53451000 9 . 78 - . 10 360000 0 53811000 10 . 72 - . 04 141000 0 53952000 11 . 72 - . 04 141000 0 54093000 12 NOON . 69 - . 01 31000 0 54124000 1 . 69 - . 01 31000 0 54155000 2 . 72 - . 04 141000 0 542960D0 3 . 72 - . 04 141000 0 54437000 4 . 72 - . 04 141000 0 54578000 5 . 84 - . 16 579000 0 55157000 6 . 96 - . 28 1018000 0 56175000 7 1 . 08 - . 40 1456000 0 57631000 8 . 90 - . 22 799000 0 58430000 9 . 72 - . 04 141000 0 10 . 54 . 14 0 517000 11 . 33 . 35 0 1284000 12 MID . 27 . 41 0 1503000 -------- -------- SUBTOTAL 6059000 13201000 20 Typical Four Dav Demand Hydrograph Day 1 Day 2 Day 3 Day 4 60% Max. Day Demands Max. Day Demands : Max. Day Demands 60% Max. Day Demands Figure 7-2 Legend Ultimate Demand + Reservoirs Draining 15 - Reservoir Filling MU E r Z t N cc E 1 00- w +35.80 MG A7 �w 35.80 M a x +6.06 MGM` , '..w. r +6.06 MG ' a, `f Existing Supply °1 -9.84 MG -7.86 MG -11.23 MG c a I I LL 5 I I Z d i I N I I I I ( I N Q: Cumulative Storage 6.06 MG I 0 MG 35.80 MG 27.94 63.74 MG 52.51 MG 56.57 MG Required MG 011 1 12 12 12 112 12 1 12 M.D. Noon M.D. Noon M.D. Noon M.D. Noon M.D. I . TYPICAL MAXIMUM FOUR DAY DEMAND HYDROGRAPH - ULTIMATE W/ BOLSA CHICA 63379 GPM (ULTIMATE MAX DAY DEMAND W/ BOLSA CHICA) EXISTING SUPPLY 41500 GPM ------------------ CUMMULATIVE RELATIVE RELATIVE REQUIRED DELTA STORAGE SUPPLY STORAGE HOUR % OF AVG AREA (GAL) (GAL) (GAL) -------- -------- -------- --------- -------- --------- DAY 1 1 . 27 . 38 0 1463000 0 2 . 24 . 41 0 1577000 0 3 . 18 . 47 0 1806000 0 4 . 15 . 50 0 1920000 0 5 . 18 . 47 0 1806000 0 6 . 36 . 29 0 1121000 0 7 . 78 - . 13 476000 0 476000 8 . 84 - . 19 704000 0 1180000 9 . 78 - . 13 476000 0 1656000 10 . 72 - . 07 248000 0 1904000 11 . 72 - . 07 248000 0 2152000 12 NOON . 69 - . 04 134000 0 2286000 1 . 69 - . 04 134000 0 2420000 2 . 72 - . 07 248000 0 2668000 3 . 72 - . 07 248000 0 2916000 4 . 72 - . 07 248000 0 3164000 5 . 84 - . 19 704000 0 3868000 6 . 96 - . 31 1161000 0 5029000 7 1 . 08 - . 43 1617000 0 6646000 8 . 90 - . 25 932000 0 7578000 9 . 72 - . 07 248000 0 7826000 10 . 54 . 11 0 437000 7389000 11 . 33 . 32 0 1235000 6154000 12 MID . 27 . 38 0 1463000 4691000 -------- -------- SUBTOTAL 7826000 12828000 DAY 2 1 . 45 . 20 0 779000 3912000 2 . 40 . 25 0 969000 2943000 3 . 30 . 35 0 1349000 1594000 4 . 25 . 40 0 1539000 55000 5 . 30 . 35 0 1349000 0 6 . 60 . 05 0 208000 0 7 1 . 30 - . 65 2454000 0 2454000 8 1 . 40 - . 75 2834000 0 5288000 9 1 . 30 - . 65 2454000 0 7742000 10 1 . 20 - . 55 2073000 0 9815000 11 1 . 20 - . 55 2073000 0 11888000 12 NOON 1 . 15 - . 50 1883000 0 13771000 1 1 . 15 - . 50 1883000 0 15654000 2 1 . 20 - . 55 2073000 0 17727000 3 1 . 20 - . 55 2073000 0 19800000 4 1 . 20 - . 55 2073000 0 21873000 5 1 . 40 - . 75 2834000 0 24707000 6 1 . 60 - . 95 3594000 0 28301000 7 1 . 80 -1 . 15 4355000 0 32656000 8 1 . 50 - . 85 3214000 0 35870000 9 1 . 20 - . 55 2073000 0 37943000 10 . 90 - . 25 932000 0 38875000 11 . 55 . 10 0 398000 38477000 12 MID . 45 . 20 0 779000 37698000 -------- -------- SUBTOTAL - 38875000 7370000 DAY 3 1 . 45 . 20 0 779000 36919000 2 . 40 . 25 0 969000 35950000 3 . 30 . 35 0 1349000 34601000 4 . 25 . 40 0 1539000 33062000 5 . 30 . 35 0 1349000 31713000' 6 . 60 . 05 0 208000 31505000 7 1 . 30 - . 65 2454000 0 33959000 8 1 . 40 - . 75 2834000 0 36793000 9 1 . 30 - . 65 2454000 0 39247000 10 1 . 20 - . 55 2073000 0 41320000 11 1 . 20 - . 55 2073000 0 43393000 12 NOON 1 . 15 - . 50 1883000 0 45276000 1 1 . 15 - . 50 1883000 0 47159000 2 1 . 20 - . 55 2073000 0 49232000 3 1 . 20 - . 55 2073000 0 51305000 4 1 . 20 - . 55 2073000 0 53378000 5 1 . 40 - . 75 2834000 0 56212000 6 1 . 60 - . 95 3594000 0 59806000 7 1 . 80 -1 . 15 4355000 0 64161000 8 1 . 50 - . 85 3214000 0 67375000 9 1 . 20 - . 55 2073000 0 69448000 10 . 90 - . 25 932000 0 70380000 11 . 55 . 10 0 398000 69982000 12 MID . 45 . 20 0 779000 69203000 -------- -------- SUBTOTAL 38875000 7370000 DAY 4 1 . 27 . 38 0 1463000 67740000 2 . 24 . 41 0 1577000 66163000 3 . 18 . 47 0 1806000 64357000 4 . 15 . 50 0 1920000. 62437000 5 . 18 . 47 0 1806000 60631000 6 . 36 . 29 0 1121000 59510000 7 . 78 - . 13 476000 0 59986000 8 . 84 - . 19 704000 0 60690000 9 . 78 - . 13 476000 0 61166000 10 . 72 - . 07 248000 0 61414000 11 . 72 - . 07 248000 0 61662000 12 NOON . 69 - . 04 134000 0 61796000 1 . 69 - . 04 134000 0 61930000 2 . 72 - . 07 248000 0 62178000 3 . 72 - . 07 248000 0 62426000 4 . 72 - . 07 248000 0 62674000 5 . 84 - . 19 704000 0 63378000 6 . 96 - . 31 1161000 0 64539000 7 1 . 08 - . 43 1617000 0 66156000 8 . 90 - . 25 932000 0 67088000 9 . 72 - . 07 248000 0 10 . 54 . 11 0 437000 11 . 33 . 32 0 1235000 12 MID . 27 . 38 0 1463000 -------- -------- SUBTOTAL 7826000 12828000 20 T pical Four Day Demand Hvdrogra�h Day 1 Day 2 Day 3 Day 4 60% Max. Day Demands Max. Day Demands _ Max. Day Demands 60% Max. Day Demands Figure 7-3 Legend Ultimate with Bolsa Chica + Reservoirs Draining c 15 - Reservoir Filling 'c inf :4 >. O E 5, p cc d;3 a 1 4 9kv`hF E K ' is a flt ; 38.88M +38.88 MG a . � +7.56 MG � �=s � , ,�'�� +7.56 MG •k•. �d y f i Existing I' vC x x Supply a 6 C LL 5 I I c -9.33 MG -7.38 MG as I I t Cumulative Storage 7.58 MG 0 MG 38.88 MG 31.50 170.38 MG 59.51 MG 67.34 MG Required MG 01'2 1 12 12 12 112 12 1 12 M.D. Noon M.D. Noon M.D. Noon M.D. Noon M.D. f . ,lam-. wJ 14,i1ti •�f � / ( , , RA DISTRIBUTION SYSTEM FLUSHING RECORD Date �� - �-�- - Time S Hydrant No. /' Valve No. Blowoff No. Location Time Required to Clear /,15 j j& Estimated GPM Odor D' scoloration _ / Description and Nature of water o� O Z Turbidity General Physical Analysis Date Taken - ^emarks T� _ lop Results of Test By -7 . 7 3 0 73, (p 3 7q, `t ; 3 7 'A 7 Y. P *2 - 3 7 q- Col , -7 3.2 -7 It, 4 co ,� -S 7 ,7 #1:11::-�i•( T UrRN1=11 1T:-=; #;t#;r�• H C'i.; 1 i i:.K R ER'E.iJC E. 1'M L•r L,, t'=•i Cii".-44 ( 1•_•" ) 1:= =59PRr 9 PM •###############################+c#3:#####;:-####�=;�##•:c#•Fii##�#vc•srir::•#'G'k'####�#iiic•��#�=; ':-## �L0W RPM VA!:: LEVEL F'S.*I Zi lNE::; WELL: 1RUN :�'r�9Pm N/A Jr'A 1161:t I::ENARII::1 _'_ . 7 WELL: RI i^J 15�!'=�q PR, 1 1! :1 i 1 1 i=t FLI iI_iNCIER 71 . ' WELL: 4RUN 4 1::9 Pm 78- 14_r t HE I L : . . WELL: 5RUN ::1'=�: 9 Pm r�51 , , '=�t t B H I I_A 1 . WELL: GRI IN _27,569 Pm 5::4 1 1 " 79 t t FANN I NCG 67. ._ WELL: 7RI.-IN :9229 Pm 554 S. 1 r:1:=_t t A1'-1AM:= 74. 0 WF_LL: '=1R1_IN ='17::3Pat ;319 :�::ft WELL: lii0 F 1)9F•1n r.:1 CI" 481:t DYk::E: RUN 5549PR, N/A N/A 63= t RE:=;ERVI+I R STATUS F'F1::K RES RPM VAC i=LI�W RE:;/LEVEL P::;I ENG INE li 1FF 3C) i►9Pm ENG INE 2,uFF <► C). C) i19Pm 2 1:t 12,. 5 1 't s EN13 INE ' RI_IN :310 :3. 1 " 416f►9Pm x OVERMYER 1?<:_ RE:S: EN1=I NE 1 RI IN 845 1:3. 1 " 44449 Pm ENGINE ::RAIN _350 12. 4" 46459PM —(►. C1ft (C IV 1 ) 52:-. 7 l bs ENGiriE 30FF :► 1049Pm '.33. 2tt ODV 2) ENGINE 401_IT OF SERVICE 9 Pm TOTAL SYSTEM USAGE:.;AGE: 307819Pm INCOMING I MPCIR H22i i =;TATI S: _5. 5% � f F' I # H U _Y'_;T EM I i C:h:: REFEKEt.IC:E II0-44 (611 ) 44:?,9Prr1 7�. -•# - CiC-44 ( 16" ) 192'7sPm —'' 45ci(:)SPrr, # WELL'S ##############iP�f•#iF•lf##iFiEiF#####tt#ii'####i;icy` #ie#iei'i•it#ie#irx#i�•ie###ir#i'c###�i•i1•R•###R'cie#•�it�#ii•�ic# FLs jW RPM VAC: LEVEL PSI ZONES fi WELL: 1RUN :31'.?gprr, N/A. A 11`7 t :_:C_ENARI,i i-•i•, 4 �• WELL: ::RUN 15�7gPm 1 1�_ � � C>" ' 1•=1 f t i::U=iUNLiEiR 7 WELL: 4RUN 2, 115Pm 78:1 _" 148ft HEIL 74. 5 WELL: 5R�IN : 1c_•73Prr, 5,51 �" :'eft B/C:HIC:A 7�. : ik. WELL: GROIN :3 1 G'2 9 Prr, 78,f t FAh1hl I NG 6_ . ? WELL: 7RIIN :{86:3gPm 554 = ' 108ft AUAN'3, 74. 6 t- WELL: ',RUN =;1:369Prn 17 ft WELL: I ORUN 176 g Pm 786 72 f t # DYk:E: RUN 5543Prr, N/A 1A A 66ft # +��#���##��#�•��er•e(•etet�#�#�#�######���#�•###�###�###•st�et��#�#�eF�ettt#####�##•��##�#�###� RE?;ERVO I R TATI_I: ; �•ea��et�•�•x•�tf+r��•��ta��tti•��#���it••a••�•ia##�#����#�r�###it•ft••tf#��•���#tt••�t#�#it••tE�t#•stet#��##�#���r#�#�� RE:3: RPM VAC FLCM RE_iLEVEL P:::I _MG Ih;E liiFF (:s :=:ci" i)sPrr, ENGINE '2C(FF ti Q. C)" Q9Pm ��s. '=eft /-•4. '=� l t s ENGINE _:RUN 1(► : . 1 " 416(?9Prr, JVERMYER 1&2, RES: r� EN(�I NE 1 RUN 7'=�5 14. 7" _:/S(5 s Pm ENGINE NE 2RI IN 803 14. 7" 27,S,8 g PM —(:), c_sf t (C sV 1 ) 52. = 1 b s ENi:IhiE _uFF is ii. c.i°' i)9PR, _ :.Uft (LTV 2) # ENGINE 40LIT OF SERVICE 9 Pm ti_sTAL. 3Y,3TEM USAGE: 300919 Pm I NORM I his+ IMPORT H :U ::TATLIS: 30. 9% # r��•�#�#et#it•��t�����ia���****it�t�����•�et��•���eteF•sf#eta•���������•�er��et���it�#ef�et•��e`�et####:ter **II_:* l I URNI II I )********** t PSI * H2O -SYSTEM QUICK REFERENCE Tit, LTD, FSO F C-44 (6" ) 4479Prn 74. 2* - POC:-44 ( 16" ) 19109Fm 4500oPm # WELLS E FLOW- RPM VAC LEVEL PSI ZONES E WELL: IRUN 815opm N/A N/A 115ft SCENARIO 66. 6 F F WELL: 2RUN 1525 9 pm 1162 101, i 1 f t FLOUNDER 74. 4 F # WELL: 4RUN 18_;c s pm 78: 14; f t HE I L 74. 8 E # WELL: 5RI_IN 31599Pm 951 11 89ft b/CHICA 72. 3 E # WELL: 6RUN _1459 Pm 52:3 1 1 " 78 f t BANNING. 71 . 4 * WELL: 7RUN = _5s 9 Pm 1 c;8 f t ADAMS 74. 2 WELL: '=RUN 30989pm 117 91 ft * WELL: 10RUN 34629pm 1:= 74ft A DYKE: RUN 5569Pm - N/A N/A 63ft RESERVOIR STATUS PECK RE'. IR,PM VAC FLOW RES/LEVEL PSI cNGINE I iFF 0 0" 0 a P m ENGINE 20FF 0 i .0" ompm 20. 9ft 64: 7 i bs ENO I N9 : RUN - 1 ► 8. 1 " 41719 Pm -OVERMYER 1?:2 RES: * ENGINE 1 RUN 794 14. 8" 25719 P:n ENGINE 2RUN 796 14. :" 26389Pm -0. 00 (OV 1 ) 52. 1 lbs += ENGINE :OFF U 0.0" o9Pm 33. Oft (u'V 2) ENGINE 40UT OF SERVICE 9 Prrl TOTAL SYSTEM USAGE: 299759Pm IPJCOMINO IMPORT H2O STATI_S: 0. G'/, #�E�EiF######+F#####�EtEit�FiFiFit*#*�F�F�F�F�F�F##iF�F#iEtElE�k�l•iE#####iE####iE9F#####�F####•IFiE###i'rit###f:�:--��: **OC* ( TURNOUTS ) ********** PSI * H20 SYSTEM qj1CK REFERENCE TN, L7D, ES'::! ?OC-44 (A" ) 453gpm 74. 3* &Q-44 ( 16" ) 1938opm 5 , A Ogpm 04—jUN—S7 00: 4 FOW79 4500opm WELL::; Rp"i FLOW VA;.-: LEVEL PSI ZONES WELL: 1RUN 07— N 11 A N/A 115ft SCENARIO 66. 9 WELL: 2RUN QG7grm I i 5::-: 10;0 131ft FLOUNDER 72. 7 WELL: 4RUN 2vQ4.wm— 7 9 i 81# 148ft HEIL 72. 8 WELL: 5RUN Z7u 3168g pm 951 9" 89ft B/CHICA 74. 2 WELL: 6RUNv­ 3140gpm 5 2:3, 78ft BANNING 68. 8 WELL : 7RUNZE13847APm 595 107ft ADAMS 74. 2 WELL: 9RUN2nf3086Spm 817 91vt WELL: 10RUNZ?, 3507dpm a 74ft DYKE: RUN 7 3 557apm N/A N/A X--.'i-t -7E> RESERVOIR STATUS PFCK RES: 7 RPM VAC FLOW RES/LEVEL psi TM , C4t: EL -ENGINE !OFF 0 a Prr, ENGINE MIFF 0 0. oil oopm 20. 9;t, 64. 5 ins ANOINE QUN 810 8. 1 " 41713pm EL OVERMYER 02 RES: L (-5 3 ENG I NE I RUN 797 t 4. :-"1, 2672gpm ENGINE 2RUN 797 15. 0" 2672gpm .—O. Oft (OV 1 ) 51 . 0 lbs ENGINE TOFF 0.k) g pm 32. 9ft (OV 2) ENGINE 40UT OF SERVICE 9 Prrf TOTAL SYSTEM USAGE: 301615pm INCOMING IMPORT H20 S7AT1_S: 30. 7% CI-PM t-4 ti PSI REFEF E TM, LTD. ESU -,..1C-44 <611 > 45�gpm 74. 3* .00-44 ( i6^ ) 1949gpm * -35 0gpm * 04—J1..1N—::-7 09` 5z 45009pm *****************************************************************r************* FLOW RPM VAC LEVEL PSI ZDMES * * WELL: 1RUN 818spm N/A N/A 115ft SCENARIO 6�. 5 * * WELL: 2R11N 151Igpm 1158 12" 41311:t FLIDUNDER 74. 6 * * WELL; 4RUN 2830gpm 783 14;:-: 1:t HEIL 74. 1 * * WELL: 5RUN 3179gpm 952 9^ 8�ft B/CHICA 72. � * * WELL: 6-RUN 3128gpm' 523 1t ^ 78Ft BANNING 72. 0 * � WELL: 7RUN 3�63gpm 555 8" 107ft ADAMS 74. 3 * * WELL: 9RUN 3049gpIT, 816 8" 91 �t * * WELL: 1»RUN 35569pm 825 8" 75ft * * DYKE: RUN 558gpm N/A N/A 65ft * RESERVOIR STATUS PECK RES PM VAC FLOW RE, ;/LEVEL * * :�NGINE 1�FF 0 30" (,),I Pm * ENGINE �OFF 0 0. 0" 0gpm 20. 9ft ENGINE 3RUN 810 8. 1 " 41719pm * ' * OVERMYER 111;(2 RES: * * ENGINE 1OFF 0 ().#" 0gpIT! * ENGINE 2RUN 7'.:)6 14.5" 2,622gpm —0. 0ft 0--IV 1 ) 50. 0 it's * ENGlNE 3OFF 0 A.0" 0gpm 32. ��t ( -IV 2> * ENGINE 40UT OF SERVICE $pm * TOTAL SYSTEM USAGE: 275119PM INCOMING IMPORT H20 STATUS: 30. 7% * ` ` ' ' NEW WORKFILE TITLE CITY OF HUNTINGTON BEACH CALIBRATION RUN 1900gpm @ Edinger & Bravata *-********FILENAME=calbrl UNITS 0 0 0 0 0 0 0 FACTORS 1 . 44 1 . 0 LIMITS 50 . 1 . 1 10 . 1 10 40 80 UNKNOWNS 262 183 *Peck Res . 301 183 *Overmyer Res . 290 -34 11 276 -98 1 270 -62 5 274 -59 6 264 -89 7 284 -64 9 286 -55 10 PIPES 2 2 4 2480 16 130 4 6 2 2000 12 130 6 6 4 1600 12 130 8 8 6 2600 12 130 10 8 10 2900 12 130 12 12 10 970 10 130 14 14 4 2900 16 130 16 16 6 2620 12 130 18 18 8 2640 12 130 20 20 12 2350 12 130 22 22 12 2280 12 130 24 16 14 2600 12 130 26 16 18 2610 12 130 28 20 18 2510 12 130 30 24 14 2620 16 136 32 26 16 2700 12 130 34 28 18 2700 12 130 36 30 20 2570 12 130 38 22 32 3430 8 130 40 26 24 2680 12 130 42 26 28 2640 12 130 44 30 28 2670 12 130 46 30 32 2550 12 130 48 32 34 2800 12 130 50 36 24 2640 16 130 52 38 26 2600 12 130 54 40 28 2580 12 130 56 42 30 2640 12 130 58 46 .34 2320 12 130 60 36 38 2640 12 130 62 38 40 2640 12 130 64 40 42 2700 12 130 66 44 42 2550 12 130 68 46 48 700 12 130 70 50 36 2550 16 130 72 52 38 2640 12 130 74 54 40 2650 12 130 76 56 42 2620 12 130 78 58 44 2640 8 130 80 62 46- 2950 12 120 82 64 48 5300 12 130 84 50 52 2700 12 130 86 52 54 2600 12 130 88 54 56 2640 12 130 90 56 58 2660 12 130 92 58 60 1330 12 130 94 60 62 1130 8 130*8 & 12 96 66 52 2640 12 130 97 68 54 2640 12 130 98 70 56 2640 12 130 99 58 72 2640 8 130 100 58 72 2640 8 130 101 74 60 2640 12 130 102 80 62 3200 12 120 104 64 84 2850 12 70 106 64 84 2800 16 130 108 50 66 5250 30 120 110 68 66 2640 30 120 112 68 70 2680 30 120 114 68 70 2680 12 130 116 70 72 2600 12 130 118 70 72 2600 30 120 120 74 72 1450 30 120 122 74 76 600 30 120 124 76 78 150 8 130 126 80 78 1050 12 130 128 82 80 1150 12 130 129 92 82 1350 12 130 130 82 84 1250 12 130 132 50 98 5300 12 130 134 66 100 2580 12 130 136 102 68 2640 12 130 138 104 70 2630 12 130 140 86 72 1320 12 130 142 106 86 1320 12 . 130 144 86 88 1450 14 120 146 108 88 1280 12 130 148 88 90 650 14 120 149 88 74 1350 12 130 150 90 92 1750 12 130 151 76 90 1300 30 120 152 90 96 3150 42 120 154 90 94 2700 15 120 156 92 94 1100 12 130 158 98 100 2680 12 130 160 100 102 2680 12 130 162 102 104 2750 12 130 164 104 106 2580 12 130 166 106 108 1500 12 130 168 108 110 700 12 130 170 112 90 950 21 120 171 112 90 950 16 130 172 110 112 350 21 120 174 116 110 750 21 120 176 96 114 3400 42 120 178 118 104 2640 12 130 179 106 120 2640 8 130 180 120 106 2640 6 130 182 120 116 2550 12 130 184 122 116 1900 21 120 186 126 94 3300 14 70 188 128 114 4000 42 120 190 118 120 2550 8 130 192 120 122 2150 8 130 194 122 124 600 8 130 196 131 118 2640 8 130 197 132 130 800 8 130 198 130 129 850 6 130 199 129 120 1250 8 130 200 132 120 2750 8 130 201 134 122 2640 21 120 202 136 124 3250 12 130 204 138 126 880 14 60 206 110 128 700 12 130 208 128 142 1800 12 130 210 142 144 1150 12 130 212 292 132 1950 8 130 214 132 134 2000 12 130 216 134 136 1200 12 130 218 136 138 2050 12 130 220 146 164 2200 12 130 222 140 142 1800 12 130 224 128 146 4200 42 120 226 146 144 650 24 120 228 131 152 2700 8 130 230 154 132 3150 8 130 232 156 134 2640 21 120 234 158 136 2640 12 130 236 160 150 1400 12 130 238 150 148 700 14 130 240 148 138 500 12 130 242 162 140 2640 12 130 244 164 146 2120 42 120 246 152 154 2640 8 130 248 156 154 2640 8 130 250 156 158 1300 12 130 252 158 160 2000 12 130 254 160 162 2660 12 130 256 162 164 2660 12 130 257 180 164 2700 12 130 258 164 166 2640 12 130 260 168 152 2550 12 130 261 168 170 2330 21 120 262 170 154 3050 8 130 263 172 170 2000 21 120 264 172 156 2650 21 120 265 172 174 1350 16 130 266 174 158 2650 8 130 267 174 176 1950 16 130 269 176 178 2640 16 130 270 178 162 2700 12 130 271 178 180 2700 16 120 272 180 164 2700 42 120 273 180 182 1150 16 120 274 166 184 2680 12 130 275 182 184 1550 16 125 277 186 184 2650 16 125 279 190 186 2750 16 125 280 190 192 1340 16 125 282 194 192 3200 14 130 284 194 218 5300 14 130 286 196 170 2660 8 130 .288 198 174 2640 12 130 290 200 176 2500 12 130 292 202 204 2700 8 130 294 204 178 800 12 130 296 206 180 2700 36 120 298 206 182 3800 12 130. 300 208 184 2640 1'2 130 301 186 210 2640 8 130 302 212 190 2640 12 130 304 196 198 3300 8 130 306 198 200 2700 12 130 308 200 202 2640 12 130 310 202 206 2640 12 130 312 206 208 2640 12 130 314 208 210 2640 12 130 316 212 210 2640 12 130 318 212 214 1300 12 130 320 196 222 2700 12 130 322 224 272 1320 12 130 324 228 200 2640 12 130 326 230 202 3000 12 130 328 232 206 2640 36 120 330 236 210 2700 12 130 332 216 214 1000 1C► 130 334 238 216 2100 8 130 336 302 220 4500 12 130 338 220 218 1250 8 130 340 288 224 1700 12 130 342 224 228 2000 12 130 344 228 230 2640 12 130 346 230 232 2640 12 130 348 2.32 234 2640 12 130 350 234 236 2640 12 130 352 236 . 238 5030 12 130 354 226 224 1300 12 130 356 240 228 2700 12 130 3.58 242 230 2700 12 130 360 244 232 2700 36 120 362 246 234 2700 12 130 364 250 236 2680 12 130 366 226 240 3800 8 130 368 240 242 2640 10 130 370 242 244 2660 10 130 372 244 246 2550 12 130 374 246 248 1500 12 130 376 248 25C► 1200 10 130 378 242 252 2540 12 130 380 254 244 2640 36 120 382 256 246 2540 12 130 384 258 250 2640 12 130 386 252 278 1750 12 130 388 254 256 2600 12 130 390 256 258 2640 12 _ 130 392 254 260 2600 36 120 327 232 206 2640 12 130 408 278 254 900 12 130 406 278 276 170 8 130*WELL 1 400 270 168 970 12 130*WELL .5 414 284 168 1990 16 130*WELL 9 396 264 266 250 12 130*WELL 7 395 266 260 100 36 130 394 262 260 150 36 130*PECK RES . 418 286 288 1050 16 130*WELL 10 416 288 222 1600 12 130 402 272 274 200 12 130*WELL 6 404 272 198 1380 12 130 420 292 290 1400 6 120*DYKE WELL 422 292 131 750 8 130 424 294 50 2200 30 120*OC44 450 222 300 2850 12 130 452 168 300 5300 22 120*OC9 500 301 112 100 36 . 8 120*Overmyer Res . 501 238 302 2000 12 130 502 84 95 1000 16 130 503 95 96 452 24 120 504 304 266 1.0 36 130*OC35 516 114 115 3490 12 130 517 115 64 6850 12 130 NODES 2 0 5 0 51600 8020 4 Ct 5 0 53160 10000 6 0 . 5 0 51600 10000*Banning 8 0 5 0 48920 10000 10 0 4 0 46570 10000 12 0 4 0 45820 105.00 14 0 6 0 54240 12640 16 0 7 0 51600 12640 18 0 4 C) 48960 12640 20 C) 2 0 46320 12640 22 0 4 0 43720 12050 24 0 6 . C) 54240 15280 26 0 8 0 51600 15280 28 0 4 0 48960 15280 30 0 4 0 46320 15280 32 0 6 0 43720 15280 34 0 30 0 41300 15280 36 0 8 C) 54240 17920 38 0 9 0 51600 17920 40 0 6 0 48960 17920 42 0 6 0 46320 17920 44 0 18 0 43720 17920 46 0 36 C) 41300 17630 48 0 36 0 40600 17630 50 C) 12 0 54240 20560 52 0 10 () 51600 20560 54 0 7 0 48960 20560 56 0 10 0 46320 20560 58 0 25 0 43720 20560 60 0 35 0 42400 20560 62 0 40 0 41300 20560 64 0 75 0 36640 21100 66 0 10 0 51600 23200 68 0 8 0 48920 23200 70 0 10 0 46320 23200 72 0 55 0 43720 23200 74 C) 50 0 42400 23300 76 0 50 0 41700 23300 78 0 50 0 41700 23000 80 0 50 0 40870 23000 82 C) 75 0 39970 23200 84 0 75 0 38480 23200 86 0 57 0 43720 24490 88 0 50 0 4240.0 24490 90 0 60 0 41700 24490 92 0 70 C) 40070 24340 94 0 115 0 38920 24340 96 0 95 0 38340 24840 98 0 16 C) 54240 25840 100 0 15 0 51600 25840*Flounder 102 () 12 () 48960 25840 104 0 14 0 46320 25840 106 0 58 0 43720 25840 108 0 55 0 42400 25840 11() C) 60 0 41700 25840 112 0 60 0 41700 25500 114 0 93 0 35840 25840 116 0 60 0 41700 26640 118 0 13 0 46320 28480 120 0 55 0 43720 28480 122 0 35 0 41700 28480 124 0 25 0 41120 28340 126 0 40 0 38480 30070 128 0 5 0 35840 29920 129 0 45 0 44000 29680 130 0 45 () 44000 30420 131 0 45 0 46320 31120 132 0 55 0 43720 31120 134 0 50 0 41700 31120 136 0 50 0 40420 31120 138 0 40 0 38480 31120 140 0 2 0 35840 31120 142 0 2 0 34190 30820 144 0 2 0 33200 31120 146 0 2 0 33200 31570 148 0 40 0 38480 31620 150 0 40 0 38480 32120 152 0 28 C) 46320 33720 154 (1 25 0 43720 33720 156 0 25 0 41700 33720 158 0 30 0 40420 33720 160 0 5 0 38480 33720 162 0 3 0 35840 33720 164 0 2 0 33200 33720 166 0 2 0 30560 33720 168 0 27 0 46320 36320 170 0 26 0 43720 36320 172 0 25 0 41700 36320 174 0 25 0 40420 36320 176 0 12 0 38480 36320 178 0 5 0 35840 36320 180 0 5 0 33200 36320 182 0 5 0 31910 36320 184 0 5 0 30560 36320 186 0 34 0 2.7920 36320 190 0 35 0 25280 36320 192 0 55 0 25280 34970 194 0 5 0 22350 34970 196 0 25 0' 43720 38960 198 0 17 0 40420 38960 200 0 14 0 38480 38960*Hei1 202 0 10 0 35840 38960 204 0 10 0 35840 37320 206 0 9 0 33200 38960 208 0 14 0 30560 38960 21.0 0 15 0 27920 38960 212 0 9 0 25280 38960 214 0 9 () 24180 38960 216 0 9 0 24130 40050 218 0 5 0 18200 38270 220 0 5 0 17250 39500 222 0 26 C) 43720 41600 224 0 21 0 40420 41600 226 0 23 0 40420 42800 228 0 20 0 38480 41600 230 0 12 0 35840 41600 232 0 10 0 33200 41600 234 0 12 0 30560 41600 236 0 15 0 27920 41600*Scenario 238 0 5 0 23080 41600 240 0 21 0 38480 44240 242 0 15 0 35840 44240 244 0 16 0 33200 44240 246 0 14 0 30560 44240 248 0 14 0 29160 44240 250 0 13 0 27920 44240 252 0 22 0 35840 46880 254 0 18 0 33200 46880 256 0 17 0 30560 46880 258 0 17 0 27920 46880 260 0 23 0 33200 49200 276 0 17 0 34100 46200*WELL 1 264 0 18 0 32600 50000*WELL 7 266 0 23 0 33200 50000 262 0 34 0 32400 49200*PECK RES . 270 0 27 0 47300 36320*WELL 5 284 0 27 0 48300 36700*WELL 9 286 0 19 0 42120 40200*WELL 10 288 0 22 0 42120 41600 290 0 44 0 45570 29720*DYKE WELL 278 0 19 0 34100 46880 292 0 48 0 45570 31120 294 0 12 0 56440 20560*OC44 , Adams 300 0 25 0 46320 41600*OC9 274 0 19 0 40000 40340*WELL 6 272 C) 25 0 40420 40340 301 0 65 0 41200 25500*0vermyer Res . 302 0 5 C) 21080 41600 95 0 103 0 38480 24200*Reservoir Hill 304 0 25 0 33200 50400*OC35 115 0 35 0 32600 24640 COORDINATE PIPES 112 48720 23000 46520 23000 114 48720 23400 46520 23400 116 46120 23000 43920 23000 118 46120 23400 43920 23400 102 40700 22560 40700 21760. 41300 21760 104 38480 22600 176 38340 25740 186 38340 25800 152 41000 25100 154 41300 24800 39200 24800 208 34960 30220 222 34300 31120 224 35500 31000 34300 31000 34300 31570 202 40420 28420 284 21400 34920 18800 37720 336 19800 41600 366 40700 43240 40700 44240 334 23530 40600 24130 40450 298 32840 38520 32840 37320 31910 36970 327 33700 41000 33100 39300 257 33700 36000 33700 34000 108 53800 21000 53800 23200 276 27920 35120 10 48320 8950 14 54100 11550 53800 10700 20 46320 11050 126 41300 22900 128 40470 23200 220 33700 32000 33700 33000 414 46520 36700 171 41900 25300 41900 24600 99 44000 20760 44000 23000 179 44000 26040 44000 28280 197 44000 30920 199 44000 28680 516 34200 25840 517 32600 23340 34640 21190 PUMP CURVES 11 0 330 200 306 400 256 600 180 800 72 1 0 440 200 399 400 348 600 311 800 287 1000 205 1200 98 5 0 47.1 1882 359 2259 337 3012 292 3765 224 4518 143 4894 98 6 0 488 1761 318 2201 296 2641 287 3081 257 3521 206 3962 148 7 0 397 2817 299 3286 291 3756 268 4225 238 4695 208 5164 174 9 0 544 1170 424 1873 366 3277 283 3745 237 4214 173 10 0 562 1859 369 2324 341 2789 305 3253 264 3718 222 20 0 132 10000 131 20650 130 21875 114 22525 106 22875 100 23350 93 23775 8", 30 0 172 7500 171 15000 169 15800 157 16100 151 16250 146 16500 141 16750 1: FIXED DEMAND 294 2391 *OC44 300 4500 *OC9 302 -1900 *hydrant Flow 304 0 *OC35 DEMANDS 2 -190 . 3 4 -89 . 8 6 -158 . 4 8 -225 . 2 10 -375 . 1 12 -118 . 4 14 -244 . 5 16 -172 . 7 18 -176 . 5 20 -79 . 4 22 -73 . 4 24 -169 . 1 26 -176 . 5 28 -128 . 1 30 -303 . 1 32 -356 . 6 34 -185 . 8 36 -266 . 5 38 -230 . 6 40 -261 . 9 42 -291 . 7 44 -172 . 7 46 -231 . 7 48 -504 . 4 50 -349 . 3 52 -267 . 1 54 -185 . 4 56 -200 . 8 58 -210 . 8 60 -148 . 7 62 -287 . 9 64 -786 . 2 66 -229 . 3 68 -208 . 3 70 -199 . 1 72 -92 . 2 74 -190 . 1 76 . 0 78 . 0 80 . 0 82 -124 . 2 84 -92 . 0 86 -69 . 3 88 -142 . 4 90 . 0 92 -112 . 3 94 -17 . 4 95 -95 . 6 96 -220 . 0 98 -348 . 3 100 -85 ..6 102 -98 . 5 104 -143 . 0 106 -297 . 3 108 -54 . 1 110 . 0 112 -11 . 1 114 -422 . 8 116 -29 . 6 118 -115 . 5 120 -105 . 5 122 -167 . 5 124 -45 . 2 126 -60 . 7 128 -137 . 9 130 -117 . 5 132 -231 . 1 134 -94 . 9 136 -65 . 1 138 . 0 140 -133 . 6 142 -79 . 4 144 -88 . 7 146 -102 . 6 148 -127 . 9 150 . 0 152 -208 . 0 154 -282 . 4 156 -88 . 6 158 -92 . 6 160 -215 . 1 162 -206 . 5 164 -205 . 4 166 -145 . 8 168 -378 . 0 170 -157 . 8 172 -272 . 8 174 -120 . 8 176 -119 . 5 178 -217 . 9 180 -134 . 3 182 -100 . 9 184 -121 . 3 186 -249 . 3 190 -146 . 6 192 -34 . 7 194 -245 . 6 196 -172 . 9 198 -251 . 6 200 -282 . 7 202 -137 . 6 204 -104 . 0 206 -169 . 2 208 -170 . 7 210 -363 . 9 212 -134 . 4 214 -150 . 5 216 -266 . 2 218 -194 . 0 220 -156 . 5 222 -319 . 6 224 -207 . 4 226 -80 . 2 228 -178 . 0 230 -131 . 7 232 -272 . 0 234 -66 . 2 236 -235 . 0 238 -231 . 6 240 -153 . 1 242 -187 . 9 244 -201 . 6 246 -294 . 2 248 . 0 250 -87 . 3 252 -164 . 8 254 -126 . 8 256 -339 . 5 258 -258 . 7 260 -200 . 7 run end CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 1:30 AM CALIBRATION RUN 1900gpm @ Edinger & Bravata INPUT FILE NAME CALBRI NUMBER OF PIPES 240 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 9 NUMBER OF SOURCE PUMP NODES 7 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES NUMBER OF CHECK VALVES 0 PEAKING FACTOR 1.440 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gpm MAXIMiUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.6 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-) FIXED DEMANDS = -1900.00 SUM OF (+i FIXED DEMANDS = 6891.00 SUM OF PEAKABLE DEMANDS =-2260B.59 SUM OF ALL FIXED DEMANDS --- 4991.00 SUM OF ALL PEAKED DEMANDS -- -32556.39 SUM OF ALL DEMANDS --------- -27565.39 Solution reached in 10 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH FRI, SEP 4, 19871 1:.30 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 310 .5 .2 .1 LO 4 2 6 2000 12.0 130 36 .1 .0 .0 LO 6 4 6 1600 12.0 130 190 .5 .2 .1 8 6 8 2600 12.0 130 273 .8 .6 .2 10 8 10 2900 12.0 130 293 .8 .7 .2 12 12 10 970 10.0 130 257 1.0 .5 .5 14 14 4 2900 16.0 130 630 1.0 .B .3 16 16 6 2620 12.0 130 275 .8 .6 .2 18 18 8 2640 12.0 130 335 .9 .9 .3 20 20 12 2350 12.0 130 387 1.1 1.0 .4 22 22 12 2280 12.0 130 41 .1 .0 .0 LO 24 14 16 2600 12.0 130 205 .6 .3 .1 26 16 18 2610 12.0 130 195 .6 .3 .1 28 18 20 2510 12.0 130 97 .3 .1 .0 LO 30 24 14 2620 16.0 130 1186 1.9 2.2 .9 32 26 16 2700 12.0 130 514 1.5 2.0 .7 34 28 18 2700 12.0 130 491 1.4 1.8 .7 36 30 20 2570 12.0 130 404 1.1 1.2 .5 38 32 22 3430 B.0 130 146 .9 1.8 .5 40 24 26 2680 12.0 130 270 .8 .6 .2 42 26 28 2640 12.0 130 241 .7 .5 .2 44 28 30 2670 12.0 130 295 .8 .7 .3 46 30 32 2550 12.0 130 236 .7 .4 .2 48 34 32 2800 12.0 130 424 1.2 1.4 .5 50 36 24 2640 16.0 130 1700 2.7 4.4 1.7 52 38 26 2600 12.0 130 738 2.1 3.8 1.4 54 40 28 2580 12.0 130 730 2.1 3.7 1.4 56 42 30 2640 12.0 130 782 2.2 4.2 1.6 58 46 34 2320 12.0 130 691 2.0 3.0 1.3 60 36 38 2640 12.0 130 404 1.1 1.3 .5 62 38 40 2640 12.0 130 268 .8 .6 .2 64 40 42 2700 12.0 130 110 .3 .1 .0 LO 66 44 42 2550 12.0 130 118 .3 .1 .0 LO 68 48 46 700 12.0 130 200 .6 .1 .1 70 50 36 2550 16.0 130 2488 4.0 8.6 3.4 72 52 38 2640 12.0 130 934 2.6 5.9 2.2 74 54 40 2650 12.0 130 948 2.7 6.1 2.3 76 56 42 2620 12.0 130 974 2.9 6.3 2.4 78 58 44 2640 9.0 130 367 2.3 7.5 2.9 60 62 46 2950 12.0 120 825 2.3 6.1 2.1 82 b4 48 5300 12.0 130 926 2.6 11.7 2.2 84 50 52 2700 12.0 130 744 2.1 4.0 1.5 86 52 54 2600 12.0 130 21B .6 .4 .2 Be 56 54 2640 12.0 130 112 .3 .1 .0 LO 90 58 56 2660 12.0 130 418 1.2 1.3 .5 92 b0 58 1330 12.0 130 432 1.2 .7 .5 94 60 62 1130 8.0 A 325 2.1 2.6 2.3 B & 12 96 66 52 2640 12.0 130 793 2.2 4.4 1.6 97 68 54 2640 12.0 130 885 2.5 5.3 2.0 98 70 56 2640 12.0 130 957 2.7 6.2 2.3 99 72 58 2640 8.0 130 328 2.1 6.1 2.3 100 72 58 2640 8.0 130 328 2.1 6.1 2.3 101 74 60 2640 12.0 130 971 2.8 6.3 2.4 102 80 62 3200 12.0 120 915 2.6 B.0 2.5 104 94 64 2850 12.0 70 331 .9 2.9 1.0 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 1:30 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 1322 2.1 2.9 1.0 108 66 50 5250 30.0 120 1527 .7 .4 .1 LO 110 68 66 2640 30.0 120 2777 1.3 .6 .2 112 70 68 2680 30.0 120 3540 1A .9 .4 114 70 68 2680 12.0 130 345 1.0 .9 .4 116 72 70 2600 12.0 130 418 1.2 1.3 .5 118 72 70 2600 30.0 120 4297 2.0 1.3 .5 120 74 72 1450 30.0 120 4851 2.2 .9 .6 122 76 74 600 30.0 120 5515 2.5 .5 .8 124 76 78 150 8.0 130 483 3.1 .7 4.8 126 78 80 1050 12.0 130 483 1.4 .7 .7 12B 82 80 1150 12.0 00 432 1A .6 .5 129 92 82 1350 12.0 130 617 1.8 1.4 1.0 130 82 84 1250 12.0 130 6 .0 LO .0 .0 LO 132 50 98 53QO 12.0 00 182 .5 .6 .1 134 66 100 2590 12.0 130 128 .4 .1 .1 LO 06 102 68 2640 12.0 130 78 .2 .1 .0 LO 138 104 70 2630 12.0 130 413 1.2 1.3 .5 140 86 72 1320 12.0 130 654 1.9 1.5 1.2 142 106 86 1320 12.0 130 214 .6 .2 .1 144 88 86 1450 14.0 120 540 1.1 .6 .4 146 108 88 1280 12.0 130 642 1.8 1.4 1.1 148 90 88 650 14.0 120 684 1.4 .4 .7 149 88 74 1350 12.0 130 581 1.6 1.3 .9 150 90 92 1750 12.0 130 341 1.0 .6 .3 151 90 76 1300 30.0 120 5999 2.7 1.2 .9 152 90 96 3150 42.0 120 092 .3 .0 .0 LO 154 94 90 2700 15.0 120 19 .0 LO .0 .0 LO -156 94 92 1100 12.0 130 438 1.2 .6 .6 158 100 98 2680 12.0 130 319 .9 .B .3 160 102 100 2680 12.0 130 314 .9 .8 .3 162 104 102 2750 12.0 130 534 1.5 2.2 .8 164 106 104 2580 12.0 130 488 1.4 1.7 .7 166 108 106 1500 12.0 130 683 1.9 1.9 1.3 168 110 108 700 12.0 130 1403 4.0 13 4.8 170 112 90 950 21.0 120 548E 11 4 A 4.5 171 112 90 950 16.0 130 2908 4.6 4.3 4.5 172 110 112 350 21.0 120 560 .5 .0 .1 LO 174 116 110 750 21.0 120 1964 1.B .5 .7 176 114 96 3400 42.0 120 841 .2 .0 .0 LO 178 118 104 2640 12.0 130 665 1.9 3.1 1.2 179 120 106 2640 8.0 130 304 1.9 5.3 2.0 180 120 106 2640 6.0 130 142 1.6 5.3 2.0 182 116 120 2550 12.0 130 224 .6 .4 .2 184 122 116 1900 21.0 120 2230 2.1 1.6 .9 186 126 94 3300 14.0 70 482 1.0 3.2 1.0 188 128 114 4000 42.0 120 1855 .4 .1 .0 LO 190 120 119 2550 8.0 130 262 1.7 3.9 1.5 192 122 120 2150 9.0 130 201 1.3 2.0 .9 194 124 122 600 8.0 130 210 1.3 .6 1.0 196 131 110 2640 8.0 130 569 3.6 17.0 6.4 197 132 130 800 8.0 130 327 2.1 1.8 2.3 198 130 129 850 6.0 130 158 1.8 2.1- 2.4 199 129 120 1250 8.0 130 158 1.0 .7 .6 20Q 132 120 2750 8.0 130 277 1.8 4.7 1.7 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 1:30 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 201 134 122 2640 21.0 120 2462 2.3 2.7 1.0 202 136 124 3250 12.0 130 275 .8 .8 .2 204 138 126 880 14.0 60 570 1.2 1.6 1.8 206 140 128 700 12.0 130 188 .5 .1 .1 208 142 128 1800 12.0 130 72 .2 .0 .0 LO 210 1" 142 1150 12.0 130 102 .3 .0 .0 LO 212 292 132 1950 8.0 130 457 2.9 8.4 4.3 214 134 132 2000 12.0 130 89 .3 .1 .0 LO 216 134 136 1200 12.0 130 641 1.8 1.3 1.1 218 136 138 2050 12.0 130 744 2.1 3.0 1.5 220 164 146 2200 12.0 00 82 .2 .1 .0 LO 222 140 142 1800 12.0 130 83 .2 .0 .0 LO 224 146 12B 4200 42.0 120 1794 .4 .1 .0 LO 226 146 144 650 24.0 120 230 .2 .0 .0 LO 228 152 131 2700 8.0 130 618 3.9 20.3 7.5 230 154 132 3150 8.0 130 390 2.5 10.1 3.2 232 156 134 2640 21.0 120 3329 3.1 4.7 1.8 234 158 136 2640 12.0 130 472 1.3 1.7 .6 236 160 150 1400 12.0 130 10 .0 LO .0 .0 LO 238 150 148 700 14.0 00 10 .0 LO .0 .0 LO 240 138 148 500 12.6 130 174 .5 .0 .1 LO 242 162 140 2640 12.0 130 464 1.3 1.6 .6 244 164 146 2120 42.0 120 D90 .5 .1 .0 LD 246 152 154 2640 9.0 130 598 3.8 18.6 7.0 248 154 156 2640 8.0 130 304 1.9 5.3 2.0 250 156 158 1300 12.0 130 1167 3.3 4.4 3.4 252 158 160 2000 12.0 130 962 2.7 4.7 2.4 254 160 162 2660 12.0 130 643 1.8 3.0 1.1 256 162 164 2660 12.0 130 453 1.3 1.6 .6 257 180 164 2700 12.0 130 108 .3 .1 .0 LO 258 164 166 2640 12.0 130 790 2.2 4.3 1.6 260 168 152 2550 12.0 130 1516 4.3 14.0 5.5 261 168 170 2330 21.0 120 7101 6.6 16.9 7.3 262 170 154 3050 9.0 130 503 3.2 15.6 5.1 263 170 172 2000 21.0 120 6760 6.3 13.3 6.6 264 172 156 2650 21.0 120 4320 4.0 7.7 2.9 265 172 174 1350 16.0 130 2047 3.3 3.2 2.4 266 174 158 2650 8.0 130 400 2.6 8.9 3.4 267 174 176 1950 16.0 130 2362 3.8 6.0 3.1 269 176 178 2640 16.0 130 2372 3.8 9.2 3.1 270 178 162 2700 12.0 130 572 1.6 2.4 .9 271 178 180 2700 16.0 120 1448 2.3 3.9 1.4 272 1BO 164 2700 42.0 120 2696 .6 .1 .0 LO 273 180 182 1150 16.0 120 1809 2.9 2.5 2.2 274 166 184 2680 12.0 00 580 IA 2.5 .9 275 182 184 1550 16.0 125 2192 3.5 4.4 2.8 277 184 1B6 2650 16.0 125 2308 3.7 8.4 3.2 279 186 190 2750 16.0 125 1856 3.0 5.8 2.1 290 190 192 1340 16.0 125 051 12 1.6 1.2 282 192 194 3200 14.0 130 1301 2.7 6.2 1.9 284 194 218 5300 14.0 130 947 2.0 5.7 1.1 286 196 170 2660 8.0 130 390 2.5 8.5 3.2 28B 198 174 2640 12.0 130 889 2.5 5.4 2.0 290 200 176 2500 12.0 130 182 .5 .3 .1 292 202 204 2700 8.0 130 111 .7 .8 .3 CITY OF HUNTINGTON BEACH FRI, SEP 47 1981. 1:30 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 294 178 204 800 12.0 130 39 .1 .0 .0 LO 296 206 180 2700 36.0 120 3359 1.1 .4 .1 298 206 192 3800 12.0 130 518 1.5 2.9 .8 300 184 208 2640 12.0 130 279 .8 .6 .2 301 186 210 2640 8.0 130 93 .6 .6 .2 302 190 212 2640 12.0 130 294 .8 .7 .3 304 196 198 3300 8.0 130 544 3.5 19.6 5.9 306 198 200 2700 12.0 130 1298 3.7 11.1 4.1 308 200 202 2640 12.0 130 1071 3.0 7.6 2.9 310 202 206 2640 12.0 130 794 2.3 4.4 1.7 312 206 208 2640 12.0 130 1093 3.1 7.9 3.0 314 208 210 2640 12.0 130 1126 3.2 8.3 3.2 316 210 212 2640 12.0 130 935 2.7 5.9 2.2 318 212 214 1300 12.0 130 1036 2.4 3.5 2.7 320 222 196 2700 12.0 130 1183 3.4 9.3 3.5 322 272 224 1320 12.0 130 775 2.2 2.1 1.6 324 228 DO 200 12.0 130 361 1.0 1.0 .4 326 230 202 3000 12.0 130 32 .1 LO .0 .0 LO 327 232 206 2640 12.0 130 251 .7 .5 .2 328 232 206 2640 36.0 120 4169 1.3 .5 .2 330 236 210 2700 12.0 130 240 .7 .5 .2 332 214 216 1000 10.0 130 819 3.3 4.3 4.3 334 216 238 2100 8.0 130 435 2.8 8.2 3.9 336 220 302 4500 12.0 130 443 1.3 2.5 .6 338 218 220 1250 8.0 130 668 4.3 168 8.7 340 298 224 1700 12.0 130 2292 6.5 210 11.8 HI 342 224 228 2000 12.0 130 2137 6.1 20.7 10.4 HI 344 228 230 2640 12.0 130 1145 3.2 8.6 3.3 346 230 232 2640 12.0 130 743 2.1 3.9 1.5 348 232 234 2640 12.0 130 1082 3.1 7.8 2.9 350 234 236 2640 12.0 130 1139 3.2 8.5 3.2 352 236 238 5030 12.0 130 1355 3.9 22.4 4.5 354 224 226 1300 12.0 130 632 1.8 1.4 1.1 356 228 240 2700 12.0 130 375 1.1 1.1 .4 358 230 242 2700 12.0 130 180 .5 .3 .1 360 244 232 2700 36.0 120 5152 1.6 .8 .3 362 246 234 2700 12.0 130 152 .4 .2 .1 LO 364 250 236 2680 12.0 130 795 2.3 4.4 1.7 366 226 240 3800 8.0 130 516 3.3 20.4 5.4 368 240 242 2640 10.0 130 671 2.7 7.8 2.9 370 242 244 2660 10.0 130 384 1.6 2.8 1.0 372 244 246 2550 12.0 130 1146 3.3 8.3 3.3 374 246 248 1500 12.0 130 595 1A 1.5 1.0 376 248 250 1200 10.0 130 595 2.4 2.8 2.4 378 242 252 2540 12.0 130 196 .6 .3 .1 380 254 244 2640 36.0 120 6204 2.0 1.1 .4 382 256 246 2540 12.0 130 24 .1 LO .0 .0 LO 384 258 250 2640 12.0 130 326 .9 .8 .3 386 278 252 1750 12.0 130 41 .1 .0 .0 LO 388 254 256 2600 12.0 130 1211 3A 9.4 3.6 390 256 258 2640 12.0 130 699 2.0 3.4 1.3 392 260 254 2600 36.0 120 6830 2.2 1.3 .5 394 262 260 150 36.0 130 3579 1.1 .0 .1 PECK RES. 395 266 260 100 36.0 130 3540 1.1 .0 .1 396 264 266 250 12.0 130 3540 10.0 HI 6.6 26.4 HI WELL 7 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 1:30 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps. CK it ft11000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 400 270 168 970 12.0 130 2739 7.8 15.9 16.4 HI WELL 5 402 274 272 200 12.0 130 2781 7A 3.4 16.9 HI WELL 6 404 272 198 1380 12.0 130 2H6 53 117 9.2 406 276 278 170 8.0 130 809 5.2 2.1 12.3 HI WELL 1 408 278 254 900 12.0 130 768 2.2 1.4 1.6 414 284 168 1990 16.0 130 2930 4.7 9.1 4.6 WELL 9 416 288 222 1600 12.0 130 635 1.8 1.7 1.1 418 286 288 1050 16.0 130 2927 4.7 4.8 4.6 WELL 10 420 290 292 1400 6.0 120 408 42 219 16.4 HI DYKE WELL 422 131 292 750 8.0 130 49 .3 .1 .1 LO 424 294 50 2200 30.0 120 2391 1.1 .4 .2 OC44 00 300 222 2850 12.0 130 1009 2A 7.3 2.6 452 300 168 5300 22.0 120 3491 2.9 8.2 1.6 OC9 500 301 112 100 36.8 120 7952 2.4 .1 .6 Overmyer Res. 501 238 302 2000 12.0 130 1457 4.1 10.2 5.1 502 95 84 1000 16.0 130 1779 2.8 1.8 1.8 503 96 95 452 24.0 120 1917 1.4 .2 .3 504 304 266 10 36.0 130 0 .0 LO .0 .0 LO OC35 516 114 115 3490 12.0 130 405 1.1 1.7 .5 517 115 64 6850 12.0 130 405 1.1 3.3 .5 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 1:30 AM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -274.03 156..6 151.6 65 37 4 5 -129.31 156.8 151.9 65 37 6 5 -228.10 156.6 151.6 65 37 Banning 8 5 -324.29 156.0 151.0 65 37 10 4 -540.14 155.3 151.3 65 37 12 4 -170.50 155.8 151.8 65 37 14 6 -352.08 157.5 151.5 65 36 16 7 -248.69 157.2 150.2 65 37 18 4 -254.16 156.9 152.9 66 36 20 2 -114.34 156.8 154.8 67 36 22 4 -105.70 155.8 151.9 65 37 24 6 -243.50 159.8 153.8 66 36 26 8 -254.16 159.2 151.2 65 36 28 4 -184.46 158.7 154.7 67 36 30 4 -436.46 158.0 154.0 66 36 32 6 -513.50 157.6 151.6 65 36 34 30 -267.55 i59.0 129.0 55 40 36 8 -383.76 164.2 156.2 67 34 38 9 -332.06 162.9 153.9 66 35 40 6 -377.14 162.4 156.4 67 34 42 6 -420.05 162.2 156.2 67 34 44 18 -248.69 162.4 144.4 62 36 46 36 -333.65 162.0 126.0 54 40 48 36 -726.34 162.1 126.1 54 40 50 12 -502.99 172.9 160.8 69 31 52 10 -384.62 168.8 158.8 68 32 54 7 -266.98 168.4 161.4 69 32 56 10 -289.15 168.6 158.6 68 32 58 25 -303.55 169.9 144.9 62 34 60 35 -214.13 170.6 135.6 58 35 62 40 -414.58 168.0 128.0 55 37 64 75 -1132.13 173.7 98.7 42 42 66 10 -330.19 173.2 163.2 70 30 68 8 -299.95 173.8 165.8 71 30 70 10 -286.70 174.7 164.7 71 30 72 55 -132.77 176.0 121.0 52 36 74 50 -273.74 177.0 127.0 55 35 76 50 .00 177.4 127.4 55 35 78 50 .00 176.7 126.7 54 35 80 50 .00 176.0 126.0 54 35 82 75 -178.95 176.7 101.7 44 40 84 75 -132.48 176.7 101.7 44 40 86 57 -99.79 177.6 120.6 52 36 88 50 -205.06 178.2 128.2 55 34 90 60 .00 176.7 118.7 51 36 92 70 -161.71 178.1 108.1 46 38 94 115 -25.06 178.7 63.7 27 LO 51 95 103 -137.66 179.5 75.5 32 LO 47 Reservoir Hill 96 95 -316.80 179.6 93.6 36 LO 44 98 16 -501.55 172.2 156.2 67 32 100 15 -123.26 173.0 158.0 68 31 Flounder 102 12 -141.84 173.8 161.8 70 30 104 14 -205.92 176.0 162.0 70 30 106 58 -428.11 177.8 119.8 51 36 108 55 -77.90 179.6 124.6 54 34 CITY OF HUNTINGTON BEACH FRI, SEP 41 1997, 1:30 AM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 110 60 .00 183.0 123.0 53 33 112 60 -15.98 182.9 122.9 53 34 114 93 -608.83 178.6 85.6 37 LO 44 115 35 .00 177.0 142.11 61 32 116 60 -42.62 183.5 123.5 53 33 118 13 -166.32 179.2 166.2 72 28 120 55 -151.92 183.1 128.1 55 33 122 35 -241.20 185.1 150.1 65 28 124 25 -65.09 185.7 160.7 69 27 126 40 -87.41 181.9 141.9 61 31 128 5 -198.58 178.7 173.7 75 28 129 45 .00 183.E 138.8 60 31 130 45 169.20 185.9 140.9 61 30 131 45 .00 196.2 151.2 65 24 132 55 -332.78 187.7 132.7 57 30 134 50 -136.66 187.8 137.8 59 29 136 50 -93.74 186.4 136.4 59 30 138 40 .00 183.4 143.4 62 30 140 2 -192.3E 178.8 176.8 76 27 142 2 -114.34 178.8 176.8 76 27 144 2 -127.73 178.8 176.8 76 27 146 2 -147.74 178.8 176.8 76 27 148 40 -184.18 183.4 143.4 62 30 150 40 .00 183.4 143.4 62 30 152 28 -299.52 216.4 188.4 81 HI 13 154 25 -406.66 197.8 172.8 74 21 156 25 127.58 192.5 167.5 72 24 158 30 -133.34 188.1 158.1 66 26 160 5 -309.74 183.4 178.4 77 26 162 3 -297.36 180.4 177.4 76 27 164 2 -295.78 179.9 176.9 76 27 166 2 -209.95 174.5 172.5 74 29 168 27 -544.32 230.4 203.4 88 HI 7 170 26 -227.23 213.4 187.4 81 HI 14 172 25 -392.83 200.2 175.2 75 20 174 25 -173.95 197.0 172.0 74 22 176 12 -172.08 191.0 179.0 77 23 178 5 -313.78 IBM 177.8 77 26 ISO 5 -193.39 179.0 174.0 75 27 182 5 -145.30 176.5 171.5 74 28 194 5 -174.67 172.1 167.1 72 30 186 34 -358.99 163.7 129.7 56 38 190 35 -211.10 157.9 122.9 53 41 192 55 -49.97 156.3 101.3 43 47 194 5 -353.66 150.1 145.1 62 39 196 25 -248.98 221.9 196.9 85 HI 11 198 17 -362.30 202.4 185.4 BO HI 19 200 14 -407.09 191.3 177.3 76 23 Heil 202 10 -198.14 183.7 173.7 75 26 204 10 -149.76 182.8 172.E 74 26 206 9 -243.65 179.3 170.3 73 28 208 14 -245.81 171.4 157.4 68 32 210 15 -524.02 163.1 148.1 64 35 212 9 -193.54 157.2 148.2 64 37 214 9 -216.72 153.7 144.7 62 39 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 1:30 AM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK 7. DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 216 9 -383.33 149.4 140.4 60 40 218 5 -279.36 144.3 139.3 60 42 220 5 -225.36 133.5 128.5 55 46 222 26 -460.22 231.3 205.3 Be HI 6 224 21 -298.66 213.0 192.0 83 HI 14 226 23 115.49 211.6 188.6 81 HI 15 228 20 -256.32 192.3 172.3 74 23 230 12 -189.65 183.7 171.7 74 26 232 lip -391.68 179.8 169.8 73 28 234 12 -95.33 172.1 160.1 69 31 236 15 -338.40 163.6 148.6 64 35 Scenario 238 5 -333.50 141.2 136.2 59 43 240 21 -220.46 191.2 170.2 73 24 242 15 -270.59 183.4 168.4 73 27 244 16 -290.30 180.6 164.6 71 28 246 14 -423.65 172.3 158.3 68 31 248 14 .00 170.8 156.8 67 32 250 13 -125.71 168.0 155.0 67 33 252 22 -237.31 183.1 161.1 69 28 254 18 182.59 181.7 163.7 70 28 256 17 -488.88 172.3 155.3 67 32 258 17 -372.53 168.9 151.9 65 33 260 23 -289.01 183.0 160.0 69 28 262 34 3578.89U 183.0F 149.0 64 29 PECK RES. 264SP 18 3539.77U 189.6 171.6 74 24 WELL 7 266 23 .00 183.0 160.0 69 28 270SP 27 2739.46U 246.3 219.3 95 HI 0 WELL 5 272 25 .00 215.1 190.1 82 HI 14 274SP 19 2780.91U 218.5 199.5 86 HI 12 WELL 6 2769P 17 809.25U 185.2 168.2 72 26 WELL i 278 19 .00 183.1 164.1 71 27 284SP 27 2930.41U 237.5 212.5 92 HI 3 WELL 9 286SP 19 2926.76U 237.8 219.8 94 HI 3 WELL 10 288 22 .00 233.0 211.0 91 HI 5 290SP 44 407.92U 219.0 175.0 75 13 DYKE WELL 292 48 .00 196.1 149.1 64 25 294 12 2391.00 173.2 161.2 69 31 OC44,Adams 300 25 4500.00 238.6 213.6 92 HI 3 OC9 301 65 7852.02U 183.OF 118.0 51 34 Overmyer Res. 302 5 -1900.00 131.0 126.0 54 47 304 25 .00 183.0 158.0 68 28 OC35 Maximum Unbalanced Head = .00001 190 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 1:30 AM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH HGL LIFT PUMP NODE GPM Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 262 3579 183.0 PECK RES. 301 7852 183.0 Overmyer Res. 290SP 408 -34.0 219.0 253.0 11 DYKE WELL 276SP 809 -98.0 185.2 283.2 1 WELL 1 270SP 2739 -62.0 246.3 308.3 5 WELL 5 274SP 2781 -59.0 219.5 277.5 6 WELL 6 264SP 3540 -89.0 189.6 278.6 7 WELL 7 284SP 2930 -64.0 239.5 303.5 9 WELL 9 286SP 2927 -55.0 237.8 292.8 10 WELL 10 SOURCE PUMPS Node Pump# 290 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200. 400. 600. 800. 0. 0. 0. 276 1 Head 440 399 348 311 297 205 98 0 Flaw 0. 200, 400. 600. 800. 1000. 1200, 0. 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012. 3765. 4518. 4894. 0. 274 6 Head 488 31B 296 287 257 206 148 0 Flow 0. 1761. 2201, 2641. 3081. 3521. 3962. 0. 264 7 Head 397 299 291 268 238 208 174 0 Flow 0. 2817. 3286. 3756, 4225, 4695. 5164. 0. 284 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745. 4214. 0. 0. 296 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859. 2324. 2789. 3253. 3718. 0. 0. Iteration= 1, Flow Correction= 4651.282 Iteration= 2, Flow Correction= 5005,935 Iteration= 31 Flow Correction= 1425.646 Iteration= 4, Flow Correction= 607.467 Iteration= 5, Flow Correction= 228.748 Iteration= 6, Flow Correction= 73.112 Iteration= 19 Flow Correction= 23.719 Iteration= 8, Flow Correction= 2.659 Iteration= 9, Flow Correction= .036 Iteration= 10, Flow Correction= .000 DISTRIBUTION SYSTEM FLUSHING RECORD .4a to 9 — �� Time `T d Hydrant No. Valve No. Blowoff No. Location Time Required to Clg r 149 M/ > EstimAted GPM odor Discoloration Description and Nature of water O'fl Turbidity General Physical Analysis Date Taken Remarks �tS/C,( SIIAT/G Ar Results of Test r� `� --e el By 7. 71" a Gr. s- . o.'�� G 8• s' 3_ g 0.,qo 4/ ,7 6, 7 07 o : 3 41, (p to, D :U -3 � �03 S9 • � 0. 4 --- -- mac, - �,7.G _ ;SI So . _ 47.(e I, Go . 1 **OC* ( TURN0U7S) w=******^* - PSI * H20 SYSTEM allICK REFERENCE TM, LTD, E6i-,! -OC-44 (6" > 4449pm 71 . 2* -OC-44 ( 15" ) 19259pm * -35 ;gpm * 04—JUN-67 " .-9 4500gpm * WELLS FLOW RPM VAC LEVEL PSI ZONES � * WELL: 1RUN 8429pm N/A N/A 116ft SCENARIO 66. 9 * * WELL: 2RUN 1501gpm 1158 12" 131ft FLOUNDER 68. 5 * . * WELL: 4RUN 2812gpm 791 8'1 148ft HEIL 66. 1 * * WELL: 5RUN 32309pm 951 9" 90?t B/CHICA 70. 1 w * WELL: 6RUN 3232gpm 525 11 " 79ft BANNING 65. 2 . * * WELL: 7RUN 38209pm 555 8" 108ft ADAMS 71 . 2 * * WELL: 9RUN 31949pm 817 8" 92ft * * WELL: 10RUN 3709gpm 831 8" 77ft * * DYKE: RUN 581gpm N/A N/A 62ft * RESERVOIR STATUS PECK RES: RPM VAC FLOW RES/LEVEL PSI * * iNGINE 1OFF 0 30" 0gpm * ENGINE 20FF 0 0. 0" 09pm 21 . 0ft 62. 2 los * ENGINE 3RUN 811 8. 2" 41949pm * * OVERMYER 1&2 RES: * . * ENGINE 10FF 0 ' 0. 0" 09Pm * ENGINE 20FF 0 0. 0" 0gpm —0. 0ft (OV 1 ) 47. 1 lbs * ENGINE 3OFF 0 0. 0" 1159pm 32. 7ft (OV 2) * ENGINE 40UT OF SERVICE gpm * * TOTAL SYSTEM USAGE: 25472gpm INCOMING IMPORT H20 STATUS: 30. 0% * ' , - ' - **DC*( TURNOUTS)*°******°* � PSI * H20 SYSTEM QUICK REFERENCE TM. LTD. ES, *OC-44 (6" ) 447gpm 66. 7* WC-44 ( 16^ ) 1917gpm * —35 0gpm * 04—JUN-87 10` 42 wo-9 4500gpm * WELLS � FLOW RPM VAC LEVEL PSI ZONES * + * a WELL: 1RUN 849gpm N/A N/A 117ft SCENARIO 67. 2 * 6 WELL: 2RUN 1511gpm 1162 11 " 131ft FLOUNDER 65. 1 � v WELL: 4RUN 27979pm 792 8" 148ft HEIL 62. 5 * p WELL: 5RUN 3276gpm 951 9" 90ft B/CHICA 67. 9 * I WELL: 6RUN 32829pm 525 i 1 " 80ft 5ANNINQ 62. 4 * a WELL: 7RUN 3858gpm 554 8" 109ft ADAMS "6. 7 * v WELL: 9RUN 32369pm 817 8" 93ft * x WELL: 10RUN 3745gpm 832 8" 77ft * � * v DYKE: RUN 5929pm N/A N/A 63ft * RESERVOIR STATUS ?PFCK RES: RPM VAC FLOW RES/LEVEL PSI * . * � ENGINE !OFF 0 30" 09Pm ° � ENGINE 20FF 0 O~0" 09pm 21 . 0ft 60. 5 lbs * � ENGINE 3RUN 812 8. 2" 4217apmw * � ^ * 1OVERMYER 1&2 RES: * � * ' ENGINE 1OFF 0 0.0" 0gpm * � ENGINE 20FF 0 0.0" 0$pm —0. 0ft (OH 1 ) 44. 7 lbs � ENGINE 3OFF 0 0.0" 1119pnv 32. 7ft (OV 2) * ` ENGINE 40UT OF .SERVICE gpm * � -TOTAL SYSTEM USAGE: 25721apm INCOMING IMPORT H20 STATUS: 29. 7% * | � , . , **OC*( TVRnOVTS) ********** PSI * H20 SYSiEM QUICK REFERENCE TM, LTD, ESQ -OC-44 (6^ ) 455gpm 66. 5* -OC-44 ( 16'' )20009Pm * '35 0gpm * 04-JUN-87 10; 47 4500gpm * WELLS FLOW RPM VAC LEVEL PSI Zi-jNES * * WELL: 1RUN S,749pm N/A N/A 119ft SCENARIO 63. 8 * * WELL: 2RUN 1497gpm 1157 10" 131ft FLOUNDER 64. 5 * * WELL: 4RUN 2797gpm 792 8" 148ft HEIL 68. 5 * * WELL: 5RUN 3293gpm 950 9^ 91ft B/CHICA 66. 7 * * WELL: 6RUN 33259pm 524 11 " 81ft BANNING 60. 1 * * WELL: 7RUN 3933gpm 554 8" 110ft ADAMS 66. 5 * * WELL: 9RUN 32609pm 818 .:3" 93ft * * WELL: 10RUN 37779pm 832 8'' 78ft * * DYKE: RUN 6079pm N/A N/A 63ft * RESERVOIR STATUS PECK RES: RPM VAC FLOW RES/LEVEL PSI * * . iNGINE 1OFF 0 30" 09pm * ENGINE 20FF 0 0. 0" 0ypm 21 . 0ft 57. 5 7bs * ENGINE 3RUN 813 8. 2" 4229gpm * * OVERMYER 1&2 RES: w * ENGINE 1OFF 0 0. 0" 09pm * ENGINE 20FF 0 0. 0" 09pm -0. 00 (OV 1 ) 43. 3 lbs * ENGINE 3OFF 0 0.0" 109gpm 32. 7ft (OV 2) * ' ENGINE 40UT OF SERVICE gPm * * TOTAL SYSTEM USAGE: 25067apm INCOMING IMPORT H20 STATUS: 29. e% * ' ' � � -, i;III C:::: F;E F E R= _:t l t _Y F is m - ;)ii 4=:''g F,r 7. !,# in_:-44 ( 16" ) 1910gPrri3 -jv # _-? 4500gPm # WELL._ ###########################•�##ice#�=::is###i=####i=i#•�=iix�-#•X ###ii•�i=#i;#xrX-,=#i:•tt##�='��=#iit=#�# FLOWC�O'^'� RF'ht VAi: `d2c wA LEVEL F" :I ZONES WELL: 1Ri IN :459PR) i 7 N;A N/A -q$ 1 17f t Eh1HRIG /_,` . 4 WELL: 2RUN 1 I: :1 t=t FLOUNDER S4. WELL: 4R1!N err) 792 _" — 14 F t HE I L WELL `�F;I_Ihl :��=�=gPm -ZL,,?S 950 ��- SS.Z .:��� _(�� =�1Ft 6/)_HIt=:A (•'=�. _: WELL: 6RUN gPrr, i . .18 524 1 -7- :31 Ft 9AiVPiIN j 6). .1 WELL 7RUN .:7:_ gPR) 554 I0Ft - %•7. x WELL:. ?RUN =2,6ogPrro 2d,?S 1;_ o�.4 -(o(o ?=:ft �• WELL: 10RUN :7779Prr, \-\,\S 832 1 z 4--1 -s3 Taft �. DYKE: RUIV 5:39SPm N/A :_ N/A t _ # RESERVOIR TAT I' PECK' RE!--;: RPM, VAC FLOW R ES/LEVEL Psi F,r� ,%I t, R-el E I, -7 — T ,ZNG INE 1OFF gPm /x ENGINE ''CiFF Q 9 P m 21 . Oft /_-,:_. :_ I t.s• I(�g ENGINE :3RI_IN :3 1. 42 17g Pm e fi i,VERMYER 1?<2 F;E' ENGINE TOFF o o. ii" ogPrr, # ENi+INE �OFF Q i.:'. (i" 0gpm -0. 0ft (OV 1 ) 4,6. 4 I bs ENGINE :30FF i► ra.o 146gPm :32. 7tt (OV 2) 4-0 ENGINE 40 IT OF SERVICE g Pm TOTAL SYSTEM USAGE: 2578agpm INCOMING IMPORT Hi_o S TATL IS: 29. 5 e. ##�iC#( TUhnjO iTS) *##fr####f?# PSI # H2O SYSTEM OU I C K REF ERE NCE TM, LTD, ES'-i P ii_-44 (! " ) 4_.4gpm 74. 9* _ i0r-44 ( 16" ) 1891 sPm # 4500opm WELL'_; ###########•If###########ieie######•�#;i•####;:#i.=#•�f=##•G##,:•�••�fi#'.rtetr#iF#•R#�•#•K ti####?cfi###.•### FLOW RPM `•:Ai LEVEL PSI ZONES WELL: iRUN S17opm N/A N/A 114Q SCENARIO 66. 7 WELL: 2RUN 15089Pm_ 1 160 10" 1=:1 f t FLOUNDER 66. 6 WELL: 4RUN 279 :9 Pm 792 811 148 f t HE I L 71 , 6 WELL: 5RUN 31779pm 954 9" :'eft B/CHICA 73. 4 WELL: 6RI-IN "'•125 9 Pm 523 i l " 78 f t BANNING 60. 1 1 WELL: 7R1_IN 6759Pm 555 107ft ADAMS 74. 9 WELL -'RUN 30949Pm 817 sol91 f t � WELL: 10R UN 640 g Pm 830 77 f t UYk:E: RI!N 5619Pm N/A N/A 63ft RESERVOIR STATUS PP CK RE'=: RPM VAS_ FLOW RES/LEVEL psi ENGINE !OFF 0 30" 0 aPm ENGINE 20FF 0 0. 0" i►gPm 20. 9ft 66. 0 i os t- ENGINE 3RI.IN 812 8. 1 " 420 9 Pm r OVE:RMYER 1&2 RE'=: ENGINE I OFF 0 0.0" o9 pm ENGINE 2OFF 0 0. 0" o9 pm -U. 00 (GV 1 ) 50. 4 1 G s ENGINE ;OFF 0 0.0" 1055Pm tic. 7ft (i iV 2) ENGINE NE 40UT OF SERVICE 9 Pm s TOTAL SYSTEM USAGE: 14920gPm INCOMING IMPORT H2O =:TA"i I_S: _0. 5% #�!•###iF#iP##it#iFitit#it#iF�#i►#�#*�FiF�F�Fif�i#�t�#iF#�###i5####•lF#�1•aF##�t########iF9F####iF###?f�:#=�-�r#�• -'RE- -'_IRE QVcRi�EYEr� '.TALI_� _- NEW WORKFILE TITLE CITY OF HUNTINGTON BEACH CALIBRATION RUN 1800gpm @ Atlanta & Alabama ********FILENAME=CALBR2 UNITS 0 0 0 0 0 0 0 FACTORS 1 . 25 1 . 0 LIMITS 50 . 1 . 1 10 . 1 10 40 80 UNKNOWNS 301 172 *Overmyer Res . 262 178 *Peck Res . 290 -34 11 276 -100 1 270 -64 5 274 -62 6 264 -91 7 284 -66 9 286 -59 10 PIPES 2 2 4 2480 16 130 4 6 2 2000 12 130 6 6 4 1600 12 130 8 8 6 2600 12 130 10 8 10 2900 12 130 12 12 10 970 10 130 14 14 4 2900 16 130 16 16 6 262.0 12 130 18 18 8 2640 12 130 20 20' 12 2350 12 130 22 22 12 2280 12 130 24 16 14 2600 12 130 26 16 18 2610 12 130 28 20 18 2510 12 130 30 24 14 2620 16 130 32 26 16 2700 12 130 34 28 18 2700 12 130 36 30 20 2570 12 130 38 22 32 3430 8 130 40 26 24 2680 12 130 42 26 28 2640 12 130 44 30 28 2670 12 130 46 30 32 2550 12 130 48 32 34 2800 12 130 50 36 24 2640 16 130 52 38 26 2600 12 130 54 40 28 2580 12 130 56 42 30 2640 12 130 58 46 34 2320 12 130 60 36 38 2640 12 130 62 38 40 2640 12 130 64 40 42 2700 12 130 e 66 44 42 2550 12 130 68 46 48 700 12 130 70 50 36 2550 16 130 72 52 38 2640 12 130 74 54 40 2650 12 130 76 56 42 2620 12 130 78 58 44 2640 8 130 80 62 46 2950 12 120 82 64 48 5300 12 130 84 50 52 2700 12 130 86 52 54 2600 12 130 88 54 56 2640 12 130 90 56 58 2660 12 130 92 58 60 1330 12 130 94 60 62 1130 8 130*8 & 12 96 66 52 2640 12 130 97 68 54 2640 12 130 98 70 56 2640 12 130 99 58 72 2640 8 130 100 58 72 2640 8 130 101 74 60 2640 12 130 102 80 62 3200 12 120 104 64 84 2850 12 70 106 64 84 2800 16 130 108 50 66 5250 30 120 110 68 66 2640 30 120 112 68 70 2680 30 120 114 68 70 2680 12 130 116 70 72 2600 12 130 118 70 72 2600 30 120 120 74 72 1450 30 120 122 74 76 600 30 120 124 76 78 150 8 130 126 80 78 1050 12 130 128 82 80 1150 12 130 129 92 82 1350 12 130 130 82 84 1250 12 130 132 50 98 5300 12 130 134 66 100 2580 12 130 136 102 68 2640 12 130 138 104 70 2630 12 130 140 86 72 . 1320 12 130 142 106 86 1320 12 130 144 86 88 1450 14 120 146 108 88 1280 12 130 148 88 90 650 14 120 149 88 74 1350 12 130 150 90 92 1750 12 130 151 76 90 1300 30 120 152 90 96 3150 42 120 154 90 94 2700 15 120 156 92 94 1100 12 130 158 98 100 2680 12 130 160 100 102 2680 12 130 162 102 104 2750 12 130 164 104 106 2580 12 130 166 106 108 1500 12 130 168 108 110 700 12 130 170 112 90 950 21 120 171 112 90 950 16 130 172 110 112 350 21 120 174 116 110 750 21 120 176 96 114 3400 42 120 178 118 104 2640 12 130 179 106 120 2640 8 130 180 120 106 2640 6 130 182 120 116 2550 12 130 184 122 116 1900 21 120 186 126 94 3300 14 70 188 128 114 4000 42 120 190 118 120 2550 8 130 192 120 122 2150 8 130 194 122 124 600 8 130 196 131 118 2640 8 130 197 132 130 800 8 130 198 130 129 850 6 130 199 129 120 1250 8 130 200 132 120 2750 8 130 201 134 122 2640 21 120 202 136 124 3250 12 130 204 138 126 880 14 60 206 140 128 700 12 130 208 128 142 1800 12 130 210 142 144 1150 12 130 212 292 132 1950 8 130 214 132 134 2000 12 130 216 134 136 1200 12 130 218 136 138 2050 12 130 220 146 164 2200 12 130 222 140 142 1800 12 130 224 128 146 4200 42 120 226 146 144 650 24 120 228 131 152 2700 8 130 230 154 132 3150 8 130 2321 156 134 2640 21 120 234 158 136 2640 12 130 236 160 150 1400 12 130 238 150 148 700 14 130 240 148 138 500 12 130 242 162 140 2640 12 130 244 164 146 2120 42 120 246 152 154 2640 8 130 248 156 154 2640 8 130 250 156 158 1300 12 130 252 158 160 2000 12 130 254 160 162 2660 12 130 256 162 164 2660 12 130 257 180 164 2700 12 130 258 164 166 2640 12 130 260 168 152 2550 12 130 261 168 170 2330 21 120 262 170 154 3050 8 130 263 172 170 2000 21 120 264 172 156 2650 21 120 265 172 174 1350 16 130 266 174 158 2650 8 130 267 174 176 1950 16 130 269 176 178 2640 16 130 270 178 162 2700 12 130 271 178 180 2700 16 120 272 180 164 2700 42 120 273 180 182 1150 16 120 214 166 184 2680 12 130 275 182 184 1550 16 125 277 186 184 2650 16 125 279 190 186 2750 16 125 280 190 192 1340 16 125 282 194 192 3200 14 130 284 194 218 5300 14 130 286 196 170 2660 8 130 288 198 174 2640 12 130 290 200 176 2500 12 130 292 202 204 2700 8 130 294 204 178 800 12 130 296 206 180 2700 36 120 298 206 182 3800 12 130 300 208 184 2640 12 130 301 186 210 2640 8 130 302 212 190 2640 12 130 304 196 198 3300 8 130 306 198 200 2700 12 130 308 200 202 2640 12 130 310 202 206 2640 12 130 312 206 208 2640 12 130 314 208 210 2640 12 130 316 212 210 2640 12 130 318 212 214 1300 12 130 320 196 222 2700 12 130 322 224 272 1320 12 130 324 228 200 2640 12 130 326 230 202 3000 12 130 328 232 206 2640 36 120 33.0 236 210 2700 12 130 332 216 214 1000 10 130 334 238 216 2100 8 130 336 302 220 4500 12 130 338 220 218 1250 8 130 340 288 224 1700 12 130 342 224 228 2000 12 130 344 228 230 2640 12 130 346 230 232 2640 12 130 348 232 234 2640 12 130 350 234 236 2640 12 130 352 236 238 5030 12 130 354 226 224 1300 12 130 356 240 228 2700 12 130 358 242 230 2700 12 130 360 244 232 2700 36 120 362 246 234 2700 12 130 364 250 236 2680 12 130 366 226 240 3800 8 130 368 240 242 2640 10 130 370 242 244 2660 10 130 372 244 246 2550 12 130 374 246 248 1500 12 130 376 248 250 1200 10 130 378 242 252 2540 12 130 380 254 244 2640 36 120 382 256 246 2540 12 130 384 258 250 2640 12 130 386 252 278 1750 12 130 388 254 256 2600 12 130 390 256 258 2640 12 130 392 254 260 2600 36 120 327 232 206 2640 12 130 408 278 254 900 12 130 406 278 276 170 8 130*WELL 1 400 270 168 970 12 130*WELL 5 414 284 168 1990 16 130*WELL ,9 396 264 266 250 12 130*WELL 7 395 266 260 100 36 130 394 262 260 150 36 130*PECK RES . 418 286 288 1050 16 130*WELL 10 416 288 222 1600 12 130 402 272 274 200 12 130*WELL 6 404 272 198 1380 12 130 420 292 290 1400 6 120*DYKE WELL 422 292 131 750 8 130 424 294 50 2200 30 120*OC44 450 222 300 2850 12 130 452 168 300 5300 22 120*OC9 500 301 112 100 36 . 8 120*Overmyer Res . 501 238 302 2000 12 130 502 84 95 1000 16 130 503 95 96 452 24 120 504 304 266 10 36 130*OC35 516 114 115 3490 12 130 517 115 64 6850 12 130 NODES 2 0 5 0 51600 8020 4 0 5 0 53160 10000 6 0 5 0 51600 10000*Banning 8 0 5 0 48920 10000 10 0 4 0 46570 10000 12 0 4 0 45820 10500 14 0 6 0 54240 12640 16 0 7 () 51600 12640 18 0 4 0 48960 12640 20 0 2 0 46320 12640 22 0 4 0 43720 12050 24 [) 6 () 54240 15280 26 0 8 0 51600 15280 28 0 4 0 48960 15280 30 0 4 0 46320 15280 32 0 6 0 43720 15280 34 0 30 0 41300 15280 36 0 8 0 54240 17920 38 0 9 0 51600 17920 40 0 6 0 48960 17920 42 0 6 0 46320 17920 44 0 18 0 43720 17920 46 0 36 () 41300 17630 48 0 36 C) 40600 17630 50 0 12 0 54240 20560 52 0 10 () 51600 20560 54 0 7 0 48960 20560 56 0 10 0 46320 20560 58 0 25 0 43720 20560 60 0 35 0 42400 20560 62 0 40 0 41300 20560 64 0 75 0 36640 21100 66 0 10 0 51600 23200 68 0 8 0 48920 23200 70 0 10 0 46320 23200 72 0 55 0 43720 23200 74 0 50 0 42400 23300 76 0 50 0 41700 23300 78 0 50 0 41700 23000 80 0 50 0 40870 23000 82 0 75 0 39970 23200 84 0 75 0 38480 23200 86 0 57 0 43720 24490 88 0 50 0 42400 24490 ' 90 0 60 0 41700 24490 92 0 70 0 40070 24340 94 0 115 0 38920 24340 96 0 95 0 38340 24840 98 0 16 0 54240 25840 100 0 15 0 51600 25840*Flounder 102 0 12 0 48960 25840 104 0 14 0 46320 25840 106 C► 58 0 43720 25840 108 0 55 0 42400 25840 110 0 60 0 41700 25840 112 0 60 0 41700 25500 114 0 93 0 35840 25840 116 0 60 0 41700 26640 118 0 13 0 46320 28480 120 0 55 0 43720 28480 122 0 35 0 41700 28480 124 0 25 0 41120 28340 126 0 40 0 38480 30070 128 0 5 0 35840 29920 129 0 45 0 44000 29680 130 0 45 0 44000 30420 131 t► 45 0 46320 31120 132 0 55 C► 43720 31120 134 0 50 0 41700 31120 136 0 50 0 40420 31120 138 0 40 0 38480 31120 140 0 2 0 35840 31120 142 0 2 0 34190 30820 144 0 2 0 33200 31120 146 C► 2 0 33200 31570 148 0 40 0 38480 " 31620 150 0 40 0 38480 32120 152 0 28 0 46320 33720 154 0 25 0 43720 33720 156 0 25 0 41700 33720 158 0 30 0 40420 33720 160 0 5 0 38480 33720 162 0 3 0 35840 33720 164 0 2 0 33200 33720 166 0 2 0 30560 33720 168 0 27 0 46320 36320 170 0 26 0 43720 36320 172 0 25 0 41700 36320 174 0 . 25 0 40420 36320 176 0 12 t► 38480 36320 178 0 5 0 35840 36320 180 0 5 0 33200 36320 182 0 5 0 31910 36320 184 0 5 0 30560 36320 186 0 34 0 27920 36320 190 0 35 0 25280 36320 192 0 55 0 25280 34970 194 0 5 0 22350 34970 196 0 25 0 43720 38960 198 0 17 0 40420 38960 200 0 14 0 38480 38960*Heil 202 0 10 0 35840 38960 204 0 10 0 35840 37320 206 0 9 _ 0 33200 38960 208 0 14 0 30560 38960 210 0 15 0 27920 38960 212 0 9 0 25280 38960 214 0 9 0 24180 38960 216 0 9 0 24130 40050 218 0 5 0 18200 38270 220 0 5 0 17250 39500. 222 0 26 0 43720 41600 224 0 21 0 40420 41600 226 0 23 0 40420 42800 228 0 20 0 38480 41600 230 0 12 0 35840 41600 232 0 10 0 33200 41600 234 0 12 0 30560 41600 236 C) 15 0 27920 41600*Scenario 238 0 5 0 23080 41600 240 0 21 0 38480 44240 242 0 15 0 35840 44240 244 0 16 0 33200 44240 246 0 14 0 30560 44240 248 0 14 0 29160 44240 250 0 13 0 27920 44240 252 0 22 0 35840 46880 254 0 18 0 33200 46880 256 0 17 0 30560 46880 258 0 17 0 27920 46880 260 0 23 0 33200 49200 276 0 17 0 34100 46200*WELL 1 264 0 18 0 3260C) 50000*WELL •7 266 0 23 0 33200 50000 262 0 34 0 32400 49200*PECK RES . 270 0 27 0 47300 36320*WELL 5 284 0 27 0 48300 36700*WELL 9 286 0 19 0 42120 40200*WELL 10 288 0 22 0 42120 41600 290 0 44 0 45570 29720*DYKE WELL 278 0 19 0 34100 46880 292 0 48 0 45570 31120 294 0 12 0 56440 20560*OC44 ,Adams 300 0 25 0 46320 41600*OC9 274 0 19 0 40000 40340*WELL 6 272 0 25 0 40420 40340 301 0 65 0 41200 25500*Overmyer Res . 302 0 5 0 21080 41600 95 0 103 0 38480 24200*Reservoir Hill 304 0 25 0 33200 50400*OC35 115 0 35 0 32600 24640 COORDINATE PIPES 112 48720 23000 46520 23000 114 48720 23400 46520 23400 116 46120 23000 43920 23000 118 46120 23400 43920 23400 102 40700 22560 40700 21760 41300 21760 104 38480 22600 176 38340 25740 186 38340 25800 152 41000 25100 154 41300 24800 39200 24800 208 34960 30220 222 34300 31120 224 35500 31000 34300 31000 34300 31570 202 40420 28420 284 21400 34920 18800 37720 336 '19800 41600 366 40700 43240 40700 44240 334 23530 40600 24130 40450 298 32840 38520 32840 37320 31910 36970 327 33700 41000 33700 39300 257 33700 36000 33700 34000 108 53800 21000 53800 23200 276 27920 35120 10 48320 8950 14 54100 11550 53800 10700 20 46320 11050 126 41300 22900 128 40470 23200 220 33700 32000 33700 33000 414 46520 36700 171 41900 25300 41900 24600 99 44000 20760 44000 23000 179 44000 26040 44000 28280 197 44000 30920 199 44000 28680 516 34200 25840 517 32600 23340 34640 21190 PUMP CURVES 11 0 330 200 306 400 256 600 180 800 72 1 0 440 200 399 400 348 600 311 800 287 1000 205 1200 98 5 0 471 1882 359 2259 337 3012 292 3765 224 4518 143 4894 98 6 0 488 1761 318 2201 296 2641 287 3081 257 3521 206 3962 148 7 0 397 2817 299 3286 291 3756 268 4225 238 4695 208 5164 174 9 0 544 1170 424 1873 366 3277 283 3745 237 4214 173 10 0 562 1859 369 2324 341 2789 305 3253 264 3718 222 20 0 132 10000 131 20650 130 21875 114 22525 106 22875 100 23350 93 23775 8: 30 0 172 7500 171 15000 169 15800 157 16100 151 16250 146 16500 141 16750 131 FIXED DEMANDS 294 2342 *OC44 300 4500 *OC9 34 -1800 *hydrant Flow DEMANDS 2 -190 . 3 4 -89 . 8 6 -158 . 4 8 -225 . 2 10 -375 . 1 12 -118 . 4 14 -244 . 5 16 -172 . 7 18 -176 . 5 20 -79 . 4 22 -73 . 4 24 -169 . 1 26 -176 . 5 28 -128 . 1 30 -303 . 1 32 -356 . 6 34 -185 . 8 36 -266 . 5 38 -230 . 6 40 -261 . 9 42 -291 . 7 44 -172 . 7 46 -231 . 7 48 -504 . 4 50 -349 . 3 52 -267 . 1 54 -185 . 4 56 -200 . 8 58 -210 . 8 60 -148 . 7 62 -287 . 9 64 -786 . 2 66 -229 . 3 68 -208 . 3 70 -199 . 1 72 -92 . 2 74 -190 . 1 76 . 0 78 . 0 80 . 0 82 -124 . 2 84 -92 . 0 86 -69 . 3 88 -142 . 4 90 . 0 92 -112 . 3 i 94 -17 . 4 303 -95 . 6 96 -220 . 0 98 -348 . 3 100 -85 . 6 102 -98 . 5 104 -143 . 0 106 -297 . 3 108 -54 . 1 110 . 0 112 -11 . 1 114 -422 . 8 116 -29 . 6 118 -115 . 5 120 -105 . 5 122 -167 . 5 124 -45 . 2 126 -60 . 7 128 -137 . 9 130 -117 . 5 132 -231 . 1 134 -94 . 9 136 -65 . 1 138 . 0 140 -133 . 6 142 -79 . 4 144 -88 . 7 146 -102 . 6 148 -127 . 9 150 . 0 152 -208 . 0 154 -282 . 4 156 -88 . 6 158 -92 . 6 160 -215 . 1 162 -206 . 5 164 -205 . 4 166 -145 . 8 168 -378 . 0 170 -157 . 8 172 -272 . 8 174 -120 . 8 176 -119 . 5 178 -217 . 9 180 -134 . 3 182 -100 . 9 184 -121 . 3 186 -249 . 3 190 -146 . 6 192 -34 . 7 194 -245 . 6 196 -172 . 9 198 -251 . 6 200 -282 . 7 202 -137 . 6 204 -104 . 0 206 -169 . 2 208 -170 . 7 210 -363 . 9 212 -134 . 4 214 -150 . 5 216 -266 . 2 218 -194 . 0 220 -156 . 5 222 -319 . 6 224 -207 . 4 226 -80 . 2 228 -178 . 0 230 -131 . 7 232 -272 . 0 234 -66 . 2 236 -235 . 0 238 -231 . 6 240 -153 . 1 242 -187 . 9 244 -201 . 6 246 -294 . 2 248 . 0 250 -87 . 3 252 -164 . 8 254 -126 . 8 256 -339 . 5 258 -258 . 7 260 -200 . 7 run end CITY OF HUNTINGTON BEACH THU, SBP 3, 1987, 8:54 PM CALIBRATION RUN 1800gpm 8 Atlanta & Alabama INPUT FILE NAME CALBR2 NUMBER OF PIPES 240 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 9 NUMBER OF SOURCE PUMP NODES 7 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 1.250 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gpm MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10,0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50, Pet STATIC HGL ELEVATION 0. Feet SUN OF FIXED DEMANDS = -1800.00 SUN OF FIXED DEMANDS = 6842.00 SUN OF PRAKABLE DEMANDS =-22512.99 SUM OF ALL FIXED DEMANDS --- 5042.00 SUM OF ALL PRAKRDAEMANDS -- -28141.25 SUM OF ALL DEMANDS --------- -23099.25 Solution reached in 10 iterations Last flow correction Was .00 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:54 PM PIPE --NODBS-- LENGTH DIAN -FLOW- -VELOCITY- ---HBADLOSS--- NO FROM TO Feet Inches H-W C Gpn Fps CE ft ft11000 CE ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 336 .5 .2 .1 LO 4 2 6 2000 12.0 130 98 .3 .1 .0 LO 6 4 6 1600 12.0 130 233 .7 .3 .2 8 6 8 2600 12.0 130 393 1.1 1.2 .4 10 8 10 2900 12.0 130 428 1.2 1.5 .5 12 12 10 970 10.0 130 41 .2 .0 .0 LO 14 14 4 2900 16.0 130 681 1.1 .9 .3 16 16 6 2620 12.0 130 260 .7 .5 .2 18 18 8 2640 12.0 130 316 .9 .8 .3 20 20 12 2350 12.0 130 478 1.4 1.5 .6 22 12 22 2280 12.0 130 288 .8 .6 .3 24 14 16 2600 12.0 130 277 .8 .6 .2 26 16 18 2610 12.0 130 345 1.0 .9 .4 28 18 20 2510 12.0 130 323 .9 .8 .3 30 24 14 2620 16.0 130 1264 2.0 2.5 1.0 32 26 16 2700 12.0 130 544 1.5 2.2 .8 34 28 18 2700 12.0 130 515 1.5 2.0 .7 36 30 20 2570 12.0 130 253 .7 .5 .2 38 22 32 3430 8.0 130 197 1.3 3.1 .9 40 24 26 2680 12.0 130 339 1.0 .9 .3 42 26 28 2640 12.0 130 385 1.1 1.1 .4 44 28 30 2670 12.0 130 555 1.6 2.3 .9 46 30 32 2550 12.0 130 933 2.6 5.7 2.2 48 32 34 2800 12.0 130 684 1.9 3.5 1.3 50 36 24 2640 16.0 130 1814 2.9 5.0 1.9 52 38 26 2600 12.0 130 810 2.3 4.5 1.7 54 40 28 2580 12.0 130 845 2.4 4.8 1.9 56 42 30 2640 12.0 130 1011 2.9 6.8 2.6 58 46 34 2320 12.0 130 1348 3.8 10.2 4.4 60 36 38 2640 12.0 1,30 433 1.2 1.4 .5 62 38 40 2640 12.0 130 322 .9 .8 .3 64 40 42 2700 12.0 130 162 .5 .2 .1 LO 66 44 42 2550 12.0 130 169 .5 .2 .1 LO 68 48 46 700 12.0 130 529 1.5 .5 .8 70 50 36 2550 16.0 130 2581 4.1 9.2 3.6 72 52 38 2640 12.0 130 988 2.8 6.5 2.5 74 54 40 2650 12.0 130 1013 2.9 6.9 2.6 76 56 42 2620 12.0 130 1044 3.0 7.2 2.7 78 58 44 2640 8.0 130 385 2.5 8.2 3.1 80 62 46 2950 12.0 120 1108 3.1 10.5 3.6 82 64 48 5300 12.0 130 1160 3.3 17.7 3.3 84 50 52 2700 12.0 130 758 2.1 4.1 1.5 86 52 54 2600 12.0 130 244 .7 .5 .2 88 56 54 2640 12.0 130 93 .3 .1 .0 LO 90 58 56 2660 12.0 130 410 1.2 1.3 .5 92 60 58 1330 12.0 130 386 1.1 .6 .4 94 60 62 1130 8.0 130 434 2.8 4.4 3.9 8 A 12 96 66 52 2640 12.0 130 808 2.3 4.5 1.7 97 68 54 2640 12.0 130 907 2.6 5.6 2.1 98 70 56 2640 12.0 130 978 2.8 6.4 2.4 99 72 58 2640 8.0 130 337 2.1 6.4 2.4 100 72 58 2640 8.0 130 337 2.1 6.4 2.4 101 74 60 2640 12.0 130 1005 2.9 6.8 2.6 102 80 62 3200 12.0 120 1034 2.9 10.0 3.1 104 84 64 2850 12.0 70 342 1.0 3.1 1.1 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:54 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CH. ft ft/1000 CE ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 1367 2.2 3.1 1.1 108 66 50 5250 30.0 120 1576 .7 .4 .1 LO 110 68 66 2640 30.0 120 2765 1.3 .6 .2 112 70 68 2680 30.0 120 3501 1.6 .9 .3 114 70 68 2680 12.0 130 341 1.0 .9 .3 116 72 70 2600 12.0 130 414 1.2 1.3 .5 118 72 70 2600 30.0 120 4255 1.9 1.3 .5 120 74 72 1450 30.0 120 4858 2.2 .9 .6 122 76 74 600 30.0 120 5568 2.5 .5 .8 124 76 78 150 8.0 130 523 3.3 .8 5.5 126 78 80 1050 12.0 130 523 1.5 .8 .8 128 82 80 1150 12.0 130 512 1.5 .8 .7 129 92 82 1350 12.0 130 630 1.8 1.5 1.1 130 84 82 1250 12.0 130 37 .1 .0 .0 LO 132 50 98 5300 12.0 130 143 .4 .4 .1 LO 134 66 100 2580 12.0 130 95 .3 .1 .0 LO 136 102 68 2640 12.0 130 91 .3 .1 .0 LO 138 104 70 2630 12.0 130 400 1.1 1.2 .5 140 86 72 1320 12.0 130 599 1.7 1.3 1.0 142 106 86 1320 12.0 130 127 .4 .1 .1 LO 144 88 86 1450 14.0 120 559 1.2 .7 .5 146 108 88 1280 12.0 130 415. 1.2 .6 .5 148 90 88 650 14.0 120 855 1.8 .7 1.0 149 88 74 1350 12.0 130 532 1.5 1.1 .8 150 90 92 1750 12.0 130 333 .9 .6 .3 151 90 76 1300 30.0 120 6091 2.8 1.3 1.0 152 96 90 3150 42.0 120 2217 .5 .1 .0 LO 154 94 90 2700 15.0 120 80 .1 .0 .0 LO 156 94 92 1100 12.0 130 438 1.2 .6 .5 158 100 98 2680 12.0 130 292 .8 .7 .3 160 102 100 2680 12.0 130 305 .9 .8 .3 162 104 102 2750 12.0 130 519 1.5 2.1 .8 164 106 104 2580 12.0 130 441 1.3 1.4 .6 166 108 106 1500 12.0 130 548 1.6 1.2 .8 168 110 108 700 12.0 130 1031 2.9 1.9 2.7 170 112 90 950 21.0 120 3256 3.0 1.6 1.7 171 112 90 950 16.0 130 1725 2.8 1.6 1.7 172 110 112 350 21.0 120 1840 1.7 .2 .6 174 116 110 750 21.0 120 2870 2.7 1.0 1.4 176 114 96 3400 42.0 120 4353 1.0 .3 .1 178 118 104 2640 12.0 130 657 1.9 3.1 1.2 179 120 106 2640 8.0 130 266 1.7 4.2 1.6 180 120 106 2640 6.0 130 125 1.4 4.2 1.6 182 120 116 2550 12.0 130 30 .1 LO .0 .0 LO 184 122 116 1900 21.0 120 2877 2.7 2.6 1.4 186 126 94 3300 14.0 70 539 1.1 4.0 1.2 188 128 114 4000 42.0 120 5315 1.2 .6 .1 190 120 118 2550 8.0 130 207 1.3 2.5 1.0 192 122 120 2150 8.0 130 230 1.5 2.6 1.2 194 124 122 600 8.0 130 327 2.1 1.4 2.3 196 131 118 2640 8.0 130 594 3.8 18.4 7.0 197 132 130 800 8.0 130 347 2.2 2.1 2.6 198 130 129 850 6.0 130 200 2.3 3.2 3.8 199 129 120 1250 8.0 130 200 1.3 1.2 .9 200 132 120 2750 8.0 130 330 2.1 6.4 2.3 CITY OF HUNTINGTON BEACH THU, SBP 3, 1987, 8:54 PM PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HBADLOSS--- NO FROM TO Feet Inches H-W C Gpn Fps CB ft ft/1000 CB ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 201 134 122 2640 21.0 120 2989 2.8 3.9 1.5 202 136 124 3250 12.0 130 384 1.1 1.4 .4 204 138 126 880 14.0 60 615 1.3 1.8 2.0 206 140 128 700 12.0 130 346 1.0 .2 .4 208 142 128 1800 12.0 130 206 .6 .2 .1 210 144 142 1150 12.0 130 280 .8 .3 .2 212 292 132 1950 8.0 130 486 3.1 9.4 4.8 214 134 132 2000 12.0 130 43 .1 .0 .0 LO 216 134 136 1200 12.0 130 571 1.6 1.1 .9 218 136 138 2050 12.0 130 666 1.9 2.5 1.2 220 164 146 2200 12.0 130 207 .6 .3 .1 222 140 142 1800 12.0 130 25 .1 LO .0 .0 LO 224 146 128 4200 42.0 120 4935 1.1 .5 .1 226 146 144 650 24.0 120 391 .3 .0 .0 LO 228 152 131 2700 8.0 130 657 4.2 22.7 8.4 230 154 132 3150 8.0 130 437 2.8 12.4 3.9 232 156 134 2640 21.0 120 3721 3.4 5.8 2.2 234 158 136 2640 12.0 130 561 1.6 2.3 .9 236 160 150 1400 12.0 130 109 .3 .1 .0 LO 238 150 148 700 14.0 130 109 .2 .0 .0 LO 240 138 148 500 12.0 130 51 .1 .0 .0 LO 242 162 140 2640 12.0 130 538 1.5 2.1 .8 244 164 146 2120 42.0 120 5248 1.2 .3 .1 246 152 154 2640 8.0 130 616 3.9 19.7 7.5 248 154 156 2640 8.0 130 342 2.2 6.6 2.5 250 156 158 1300 12.0 130 1194 3.4 4.6 3.5 252 158 160 2000 12.0 130 958 2.7 4.7 2.3 254 160 162 2660 12.0 130 580 1.6 2.5 .9 256 162 164 2660 12.0 130 451 1.3 1.5 .6 257 180 164 2700 12.0 130 221 .6 .4 .2 258 164 166 2640 12.0 130 453 1.3 1.5 .6 260 168 152 2550 12.0 130 1534 4.4 14.3 5.6 261 168 170 2330 21.0 120 7260 6.7 17.6 7.6 262 170 154 3050 8.0 130 515 3.3 16.3 5.4 263 170 172 2000 21.0 120 6967 6.5 14.0 7.0 264 172 156 2650 21.0 120 4684 4.3 8.9 3.4 265 172 174 1350 16.0 130 1942 3.1 2.9 2.1 266 174 158 2650 8.0 130 440 2.8 10.6 4.0 267 174 176 1950 16.0 130 2318 3.7 5.8 3.0 269 176 178 2640 16.0 130 2460 3.9 8.7 3.3 270 178 162 2700 12.0 130 667 1.9 3.2 1.2 271 178 180 2700 16.0 120 1543 2.5 4.4 1.6 272 180 164 2700 42.0 120 5492 1.3 .4 .2 273 180 182 1150 16.0 120 1029 1.6 .9 .8 274 166 184 2680 12.0 130 271 .8 .6 .2 275 182 184 1550 16.0 125 1297 2.1 1.7 1.1 277 184 186 2650 16.0 125 1289 2.1 2.9 1.1 279 186 190 2750 16.0 125 944 1.5 1.7 .6 280 190 192 1340 16.0 125 608 1.0 .4 .3 282 192 194 3200 14.0 130 564 1.2 1.3 .4 284 194 218 5300 14.0 130 257 .5 .5 .1 LO 286 196 170 2660 8.0 130 419 2.7 9.7 3.7 288 198 174 2640 12.0 130 968 2.7 6.3 2.4 290 200 176 2500 12.0 130 291 .8 .6 .3 292 202 204 2700 8.0 130 153 1.0 1.5 .6 CITY OF HUNTINGTON BEACH THU, SBP 3, 1987, 8:54 PH PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpn Fps CE ft ft/1000 CE ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 294 204 178 800 12.0 130 23 .1 LO .0 .0 LO 296 206 180 2700 36.0 120 5367 1.7 .8 .3 298 206 182 3800 12.0 130 395 1.1 1.7 .5 300 184 208 2640 12.0 130 127 .4 .1 .1 LO 301 186 210 2640 8.0 130 34 .2 .1 .0 LO 302 190 212 2640 12.0 130 153 .4 .2 .1 LO 304 196 198 3300 8.0 130 556 3.5 20.3 6.2 306 198 200 2700 12.0 130 1319 3.7 11.4 4.2 308 200 202 2640 12.0 130 1090 3.1 7.8 3.0 310 202 206 2640 12.0 130 858 2.4 5.0 1.9 312 206 208 2640 12.0 130 711 2.0 3.6 1.3 314 208 210 2640 12.0 130 624 1.8 2.8 1.1 316 210 212 2640 12.0 130 489 1.4 1.8 .7 318 212 214 1300 12.0 130 474 1.3 .8 .6 320 222 196 2700 12.0 130 1191 3.4 9.5 3.5 322 272 224 1320 12.0 130 751 2.1 2.0 1.5 324 228 200 2640 12.0 130 414 1.2 1.3 .5 326 230 202 3000 12.0 130 94 .3 .1 .0 LO 327 232 206 2640 12.0 130 331 .9 .9 .3 328 232 206 2640 36.0 120 5494 1.7 .9 .3 330 236 210 2700 12.0 130 286 .8 .7 .3 332 214 216 1000 10.0 130 286 1.2 .6 .6 334 238 216 2100 8.0 130 47 .3 .1 .1 LO 336 302 220 4500 12.0 130 181 .5 .5 .1 338 218 220 1250 8.0 130 15 .1 LO .0 .0 LO 340 288 224 1700 12.0 130 2306 6.5 2013 11.9 HI 342 224 228 2000 12.0 130 2173 6.2 21.3 10.7 HI 344 228 230 2640 12.0 130 1178 3.3 9.1 3.4 346 230 232 2640 12.0 130 785 2.2 4.3 1.6 348 232 234 2640 12.0 130 685 1.9 3.3 1.3 350 234 236 2640 12.0 130 673 1.9 3.2 1.2 352 236 238 5030 12.0 130 517 1.5 3.8 .7 354 224 226 1300 12.0 130 624 1.8 1.4 1.1 356 228 240 2700 12.0 130 358 1.0 1.0 .4 358 230 242 2700 12.0 130 135 .4 .2 .1 LO 360 244 232 2700 36.0 120 6065 1.9 1.1 .4 362 246 234 2700 12.0 130 71 .2 .1 .0 LO 364 250 236 2680 12.0 130 424 1.2 1.4 .5 366 226 240 3800 8.0 130 524 3.3 21.0 5.5 368 240 242 2640 10.0 130 691 2.8 8.2 3.1 370 242 244 2660 10.0 130 403 1.6 3.0 1.1 372 244 246 2550 12.0 130 805 2.3 4.3 1.7 374 246 248 1500 12.0 130 382 1.1 .6 .4 376 248 250 1200 10.0 130 382 1.6 1.2 1.0 378 242 252 2540 12.0 130 188 .5 .3 .1 380 254 244 2640 36.0 120 6720 2.1 1.3 .5 382 256 246 2540 12.0 130 . 15 .0 LO .0 .0 LO 384 258 250 2640 12.0 130 151 .4 .2 .1 LO 386 278 252 1750 12.0 130 18 .1 LO .0 .0 LO 388 254 256 2600 12.0 130 914 2.6 5.6 2.1 390 256 258 2640 . 12.0 130 474 1.3 1.7 .6 392 260 254 2600 36.0 120 6994 2.2 1.3 .5 394 262 260 150- 36.0 130 3648 1.1 .0 .1 PECK RES. 395 266 260 100 36.0 130 3597 1.1 .0 .1 396 264 266 250 12.0 130 3597 10.2 HI 6.8 27.1 HI WELL 7 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:54 PM PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft11000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 400 270 168 970 12.0 130 2772 7.9 16.3 16.8 HI WELL 5 402 274 272 200 12.0 130 2797 7.9 3.4 17.0 HI WELL 6 404 272 198 1380 12.0 130 2046 5.8 13.2 9.5 406 276 278 170 8.0 130 816 5.2 2.1 12.6 HI WELL 1 408 278 254 900 12.0 130 798 2.3 1.5 1.7 414 284 168 1990 16.0 130 2966 4.7 9.3 4.7 WELL 9 416 288 222 1600 12.0 130 618 1.8 1.7 1.0 418 286 288 1050 16.0 130 2924 4.7 4.8 4.6 WELL 10 420 290 292 1400 6.0 120 423 4.8 24.4 17.5 HI DYKE WELL 422 131 292 750 8.0 130 63 .4 .1 .1 424 294 50 2200 30.0 120 2342 1.1 .4 .2 *OC44 450 300 222 2850 12.0 130 972 2.8 6.9 2.4 452 300 168 5300 22.0 120 3528 3.0 8.4 1.6 OC9 500 301 112 100 36.8 120 3156 1.0 .0 .1 Overmyer Res, 501 238 302 2000 12.0 130 181 .5 .2 .1 502 95 84 1000 16.0 130 1861 3.0 2.0 2.0 503 96 95 452 24.0 120 1861 1.3 .1 .3 504 304 266 10 36.0 130 0 .0 , LO .0 .0 LO OC35 516 114 115 3490 12.0 130 434 1.2 1.9 .5 517 115 64 6850 12.0 130 434 1.2 3.7 .5 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:54 PM GROUND HLV FLOW HGL BL HEAD ------ PRESSURE ------ NODE Feet Gpo Feet Feet Psi CE % DROP--CB ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -237.88 146.7 141.7 61 40 4 5 -112.25 146.9 141.9 61 40 6 5 -198.00 146.6 141.6 61 40 Banning 8 5 -281.50 145.4 140.4 60 40 10 4 -468.88 143.9 139.9 60 41 12 4 -148.00 143.9 139.9 60 41 14 6 -305.63 147.8 141.8 61 40 16 _ 7 -215.88 147.2 140.2 60 40 18 4 -220.63 146.2 142.2 61 40 20 2 -99.25 145.4 143.4 62 40 22 4 -91.75 143.3 139.3 60 41 24 6 -211.38 150.3 144.3 62 38 26 8 -220.63 149.4 141.4 61 39 28 4 -160.13 148.2 144.2 62 39 30 4 -378.88 146.0 142.0 61 40 32 6 -445.75 140.3 134.3 58 43 34 30 -2032.25 136.7 106.7 46 49 36 8 -333.13 155.3 147.3 63 37 38 9 -288.25 153.8 144.8 62 37 40 6 -327.38 153.0 147.0 63 37 42 6 -364.63 152.8 146.8 63 37 44 18 -215.88 153.0 135.0 58 39 46 36 -289.63 147.0 111.0 48 46 48 36 -630.50 147.5 111.5 49 45 50 12 -436.63 164.5 152.5 66 33 52 10 -333.88 160.4 150.4 65 35 54 7 -231.75 159.9 152.9 66 35 56 10 -251.00 160.0 150.0 65 35 58 25 -263.50 161.3 136.3 59 37 60 35 -185.88 16I.9 126.9 54 38 62 40 -359.88 157.5 117.5 50 41 64 75 -982.75 165.2 90.2 39 LO 46 66 10 -286.63 164.9 154.9 67 33 68 8 -260.38 165.5 157.5 68 32 70 10 -248.88 166.4 156.4 67 32 72 55 -115.25 167.7 112.7 48 39 74 50 -237.63 168.6 118.6 51 38 76 50 .00 169.1 119.1 51 38 78 50 .00 168.3 118.3 51 38 80 50 .00 167.5 117.5 50 38 82 75 -155.25 168.3 93.3 40 44 84 75 -115.00 168.3 93.3 40 44 86 57 -86.63 169.0 112.0 48 39 88 50 -178.00 169.7 119.7 51 37 90 60 .00 170.4 110.4 47 39 92 70 -140.38 169.8 99.8 43 42 94 115 -21.75 170.4 55.4 24 LO 56 95 103 .00 170.3 67.3 29 LO 51 Reservoir Hill 96 95 -275.00 170.5 75.5 32 LO 48 98 16 -435.38 164.1 148.1 64 34 100 15 -107.00 164.8 149.8 64 34 Flounder 102 12 -123.13 165.6 153.6 66 33 104 14 -178.75 167.6 153.6 66 32 106 58 -371.63 169.1 111.1 48 39 108 55 -67.63 170.3 115.3 49 38 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:54 PM GROUND ELV FLOW HGL BL HEAD ------- PRESSURE ------ NODE Feet Gpn Feet Feet Pei CE % DROP--CE ---- ------ ------ ------ ------ ------ -- ------ -- 110 60 .00 172.2 112.2 48 38 112 60 -13.88 172.0 112.0 48 38 114 93 -528.50 170.8 77.8 33 LO 47 115 35 .00 168.9 133.9 58 35 116 60 -37.00 173.2 113.2 49 37 118 13 -144.38 170.7 157.7 68 31 120 55 -131.88 173.2 118.2 51 36 122 35 -209.38 175.8 140.8 61 32 124 25 -56.50 177.2 152.2 65 29 126 40 -75.88 174.3 134.3 58 33 128 5 -172.38 171.4 166.4 72 29 129 45 .00 174.4 129.4 56 34 130 45 -146.88 177.6 132.6 57 32 131 45 .00 189.1 144.1 62 26 132 55 -288.88 179.7 124.7 54 33 134 50 -118.63 179.7 129.7 56 32 136 50 -81.38 178.6 128.6 55 33 138 40 .00 176.1 136.1 59 32 140 2 -167.00 171.6 169.6 73 29 142 2 -99.25 171.6 169.6 73 29 144 2 -110.88 171.9 169.9 73 29 146 2 -128.25 171.9 169.9 73 29 148 40 -159.88 176.1 136.1 59 32 150 40 .00 176.2 136.2 59 32 152 28 -260.00 211.8 183.8 79 14 154 25 -353.00 192.1 167.1 72 23 156 25 -110.75 185.5 160.5 69 26 158 30 -115.75 180.9 150.9 65 28 160 5 -268.88 176.2 171.2 74 27 162 3 -258.13 173.7 170.7 74 28 164 2 -256.75 172.2 170.2 73 29 166 2 -182.25 170.7 168.7 73 29 168 27 -472.50 226.1 199.1 86 HI 7 170 26 -197.25 208.4 182.4 79 15 172 25 -341.00 194.4 169.4 73 22 174 25 -151.00 191.5 166.5 72 23 176 12 -149.38 185.7 173.7 75 24 178 5 -272.38 177.0 172.0 74 27 180 5 -167.88 172.6 167.6 72 29 182 5 -126.13 171.7 166.7 72 29 184 5 -151.63 170.1 165.1 71 30 186 34 -311.63 167.2 133.2 57 36 190 35 -183.25 165.5 130.5 56 37 192 55 -43.38 165.2 110.2 47 41 194 5 -307.00 163.9 158.9 68 33 196 25 -216.13 218.1 193.1 83 HI 11 198 17 -314.50 197.8 180.8 78 19 200 14 -353.38 186.4 172.4 74 24 Heil 202 10 -112.00 178.5 168.5 73 27 204 10 -130.00 177.0 167.0 72 28 206 9 -211.50 173.5 164.5 71 29 208 14 -213.38 169.9 155.9 67 31 210 15 -454.88 167.1 152.1 65 33 212 9 -168.00 165.3 156.3 67 32 214 9 -188.13 164.5 155.5 67 33 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:54 PH GROUND BLV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet Gpm Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 216 9 -332.75 163.9 154.9 67 33 218 5 -242.50 163.3 158.3 68 33 220 5 -195.63 163.3 158.3 68 33 222 26 -399.50 227.6 201.6 87 HI 6 224 21 -259.25 209.0 188.0 81 HI 15 226 23 -100.25 207.6 184.6 80 HI 15 228 20 -222.50 187.7 167.7 72 24 230 12 -164.63 178.6 166.6 72 27 232 10 -340.00 174.3 164.3 71 29 234 12 -82.75 171.0 159.0 68 30 236 15 -293.75 167.8 152.8 66 32 Scenario 238 5 -289.50 164.0 159.0 68 32 240 21 -191.38 186.6 165.6 71 25 242 15 -234.88 178.4 163.4 70 28 244 16 -252.00 175.4 159.4 69 29 246 14 -367.75 171.1 157.1 68 31 248 14 .00 170.4 156.4 67 31 250 13 -109.13 169.2 156.2 67 31 252 22 -206.00 178.2 156.2 67 29 254 18 -158.50 176.6 158.6 68 29 256 17 -424.38 171.1 154.1 66 31 258 17 -323.38 169.4 152.4 66 32 260 23 -250.88 178.0 155.0 67 29 262 34 3647.97U 178.0F 144.0 62 30 PECK RES. 264SP 18 3597.02U 184.8 166.8 72 25 WELL 7 266 23 .00 178.0 155.0 67 29 270SP 27 2772.43U 242.3 215.3 93 HI 0 WELL 5 272 25 .00 211.0 186.0 80 HI 14 2748P 19 2796.60U 214.4 196.4 84 HI 12 WELL 6 276SP 17 816.37U 180.3 163.3 70 27 WELL 1 278 19 .00 178.2 159.2 68 28 2849P 27 2966.26U 235.4 208.4 90 HI 3 WELL 9 286SP 19 2924.18U 234.1 215.1 93 HI 3 WELL 10 288 22 .00 229.3 207.3 89 HI 5 290SP 44 422.51U 213.4 169.4 73 14 DYKE WELL 292 48 .00 189.0 141.0 61 27 294 12 2342.00 164.8 152.8 66 33 0C44,Adams 300 25 4500.00 234.5 209.5 90 HI 3 0C9 301 65 3155.91U 1720 107.0 46 39 Overmyer Res. 302 5 .00 163.8 158.8 68 33 304 25 .00 178.0 153.0 66 29 0C35 Maximum Unbalanced Head = .00001 190 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:54 PH RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HOL DISCH HOL LIFT PUMP NODE Cpm Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 301 3156 172.0 Overmyer Res, 262 3648 178.0 PECK RES. 290SP 423 -34.0 213.4 247.4 11 DYER WELL 276SP 816 -100.0 180.3 280.3 1 WELL 1 270SP 2772 -64.0 242.3 306.3 5 WELL 5 274SP 2797 -62.0 214.4 276.4 6 WELL 6 264SP 3597 -91.0 184.8 275.8 7 WELL 7 2848P 2966 -66.0 235.4 301.4 9 WELL 9 2868P 2924 -59.0 234.1 293.1 10 WELL 10 SOURCE PUMPS Node Pump4 290 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200, 400. 600, 800. 0. 0. 0. 276 1 Read 440 399 348 311 287 205 98 0 Flow 0. 200, 400. 600. 800. 1000, 1200, 0. 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012, 3765. 4518. 4894. 0. 274 6 Head 488 318 296 287 257 206 148 0 Flow 0. 1761. 2201. 2641. 3081. 3521, 3962. 0. 264 7 Head 397 299 291 268 238 208 174 0 Flow 0. 2817. 3286. 3756. 4225. 4695, 5164, 0. 284 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277, 3745, 4214, 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859, 2324, 2789. 3253. 3718. 0. 0. Iteration: 1, Flow Correction: 6368.334 Iteration: 2, Flow Correction: 5453.147 Iteration: 3, Flow Correction: 2138,796 Iteration: 4, Flow Correction: 1967,024 Iteration: 5, Flow Correction: 1094,881 Iteration: 6, Flow Correction: 203.459 Iteration: 7, Flow Correction: 56.900 Iteration: 8, Flow Correction: 5.195 Iteration: 9, Flow Correction: .040 Iteration: 10, Flow Correction: .000 DISTRIBUTION SYSTEM FLUSHING RECORD ,te Time e Hydrant No. valve No. Blowoff No. Location Time Required to Clear 4j Estimated GPM ( 6 Odor Discoloration Z Description and Nature of Water Turbidity rw General Physical Analysis Date Taken s '� p I?PS u/u Remarks S IA'Fl c- l so ' 4 'NIL - ) son S� Results of Test - /9 s�7 1s' rn�N 1doa SG I _ BY v 'P, 7S• 4 G o S a 7i . 7 ss S. L 61. 7 7 I - �- 00 :SP. C, 17 5 , 49 ?. 3 C.ch3 7. 3 3 : D7 0 , 2— 4 q.G �. ' o / 3, 07 . Z Gs. y 49• (p � 4 9 817 13.'/O 49. 7 .8 (o3 . 8 .� ' /4 6 FrI 7 g,4- S 3 � • PSI * H::I.1 SYSTEM I !i_i 1 Cr:: REFERENCE 11`I, L'i D, E&;:! •I'll_-44 (6" ) 441 9pm ;* •OC-44 ( 16" ) 19::':!5Pm t.19Pm 04-•II_II` - 7 12 . 2 .—9 45 0 g Pm +t WELL:::; •######.###########•iL####ie#####ii•###'R'####irr„="r+.ti'i•#{t•i�t=i;#r,.-i:##•t:•��##i.'•i5ici°#i;�•##i,=#S is#i=#i,:: '�i:'•#::=i.= FLOW RPM VAC LEVEL PSI ._ONES • T WELL! I RI.IN 82 1 9 Prn N/A N/A 1 14 f t SCENARIO 72. 9 WELL: 2RUN 1 5I:3 s Pm 1 1 C'=� 1 '2" 1`ti I f t FLOUNDER 71 . 7 WELL: 4RUN 2: 309 pm 792 14_f t HE I L 75. 7 WELL: 5RUN 3144opm 951 911 89ft 1_{/1=HICA 75. 1 WELL: 6Rt IN 3 i 15s Pm 5 :_I 1 1 " 78 f t BANNING 68. 0 � WELL: 7RI.:N 6489pm 55481. 106 f t ADAM'= 75. 8 �. WELL: 9RUN 3 1'23a pm 817 91 f t WELL. 10RUN 3651gpm 827 : ' 78 f t DYKE: RUN 5709pm N/A N/A 71ft � RESERVOIR STATUS PECK REc RF=i 1 VAC FLOW RES/LEVEL P 3 I ENGINE TOFF ci :_,ci" 0aPITI ENGINE 20FF 0 0. 0" UaPm 21 . ft 67. 4 i cis ENGINE =,RUN sto 41489Pm i�VERMYER 1&2 RES: w ENGINE !OFF V 0. 0" 0 aPRI ENGINE 20FF 0 0. 0" oopm —O. Oft (I_IV 1 ) 51 . 4 1 Gs ENGINE ;cOFF 0 0. 0" 1059Pm =3. 2ft (OV 2) � ENGINE 40UT OF SERVICE 9 Prt1 TOTAL SYSTEM USAGE: 2476 19 Pm INCOMING IMPORT H2 ► STATUS: 0. % #########•#########i!•##�F�F#'#•iE##�E#i!•##################•it###############�i•�e#####•Cc#•R•If'li•'1'•k= *i ii_t�( TI 1RNiil iT:_,).�•i iri a#i•;tir 'y # H_C� T''_: I Ei`1 T�_:K:: RcF-REN E -i1, L_ 1 D, E:1 : III_-44 (6" ) 4579Pm 67, !_1# 01-44 ( 16" ) 1'Sj44gPm —:� 0gPm # C)4—_Ii iN—:_:7 #�r####i'r#######•####################ir•�re##sTi;##ti•i;-i,=ici;#•�############i'iii•####i:iiic>�fi#-:#i •k-i- FLOW RPM VAC: LEVEL r"=I Z�NE'_7 s WELL: 1KUhJ N/A A 114ft Z_ENARIla '1 . 7 WELL: ::R!IN 15 _gPrr, 1 1''' 1::" 1:=1 f t FLU�IJhiIaE c•: WELL: 4RIIN _;(-)SPRi 7 14c:ft HELL 7 . .. WELL: `RI_Ihl :;1:3:_:9Pm ='4=� :�" =eft 8/i_HIC_A �. 4 WELL: l�Rl!hJ :r:�:35g Pm `�' 2 1 1 " 7:j f t HANN WELL: 7RUhJ /.,:!•gPm 554 a" 106► t AElAMI:: WELL: 9RI.!N :3'i!•1sPrr, 8 17 .y2ft i; WELL: 10RI IN 66 g Pm = 9 77 f t # DYK.'E: RUN 5745Prn N/A N/A 6. f t ##•If#############i:#######•li•########ieieir•k####ii•{itr##i'r#######•re#####ie#ie#######.�_ •G#•0.•i�-J„=,:�- Y Y t JL RE:=;ERVC-iIRY 3TA'f L.':-_-%Ji JC Y Y G ##lC########'T##3t'##########li'l ###########T'##i(•####,C##lam#i ##T'###,C##•�''w'ii w•K'k•#-Fi:w•'ii•'J.{'i�+.•rw•#:= RE RPM VAC FLOW RE: /LEVEL r' I _NG I NE I OFF c i .3 i" 0 g Pm ENGINE : �i FF i� i�. ir" (_)gPRo 1 . '.:ft 67. 7 l c ENi::INE RI!hJ _;1�► 4171gPm i JVERMYER 1&.2 RES- ENGINE TOFF 0 o. 011 ogpm ENGINE DOFF c_r o. 001 C)gpm -0. i)ft (!i`J 1 ) _ l bs ENi:INE :,OFF o . o,1 109gPm =::j. 3ft (OV �) ENGINE 40LIT OF SERVICE g Pm ; fOTAL Y'=:TEM USAGE: 24918gPm INCOMING IMPORT H2O =;TATU : 30. 8% #�.�####i�####•IF�F#�#iF1►•r►�t�t*�t•1�##�t•�►�F##•p••tttl•#####•lfat#�#####�#####•tF�t#�•9t##�##;�##it•�•tf'r'xia•ii•�aii•i� PSI * H20 SYSTEM QUICK REEFERE�CE i-iC-44 (6^ ) 4449pm 71 . 5* 0C-44 ( 16^ > 1�25apm * —35 0gPRO * 04 1UN—S7 13; C)5 —� 450�gpm * WELL� FLOW RPM VAC LEVEL PSI ZUNES * * WELL: 1RUN 846gpm N/A N/A 1161-t SCENARIO 70. 9 * * WELL: RUN 1511g�m 1162 12" 13 2 1 �t FLClUNDER 67. 3 * * WELL: 4RUM 2827gpm 148ft HEIL * WELL: 5RUN 31841pm 95� 9" �-7�t B/CHICA 70. 8 * * WELL: 6RUN 3077gpm 521 11 " 79ft BANNING 60. 6 ° * WELL: 7RUN 3782gpm 554 1C)81:t ADAMS 71 . 5 * * WELL: ?RUN 3199gpm 816 S. 92ft * * WELL: 10RUN 3687gpm 82� 8" 78ft * * DYKE: RUN 5859pm N/A N/A 70ft * RESERVOIR STATUS ZECK RES: RPM VAC FLOW R LEVEL PSI * * . —:NGINE 1OFF 0 30" 0gpm * ENGINE 2DFF 0 0. 0" 0gpm 21 . 24:t 62. 7 lbs * EH8INE '--RUN S10 O. 2" 4160gpTi * * DVERMYER 1&2 RES: * � ENGlNG 1OFF Cl 0. 0" 0gpm * ENGINE 2OFF 0 A. 0" 09pm —0. 0ft (OV 1 ) 48. 3 lbs * ENGINE 3OFF 0 0.o" 1109pm 33. 3ft (OV ENGINE 40UT OF SERVICE gPm * * TOTAL SYSTEM USAGE: 25162$pffi INCOMING IMPORT H20 STATUS: 30. 3% * ` | ' | **OC*(TLlRNOVTS)***°�*�*** HD0 SYSTEM C!UIC K REFERENCE TM, LTD, ES� �OC-44 <6" > 446gpm 72. 5* ^0C-44 ( 16" ) 19539pm * -35 0gpm * 04—J11M-87 13' 10 4500gpm * WELL8 . � FLOW RPM VAC LEVEL P I ZONES * � WELL: 1RUN 835gpm m/A N/A 115�t SCENARIO 67. 9 w � WELL: 2RUN 1510gPIT, 1163 12^ 131ft FLOUNDER ^ WELL: 4RUN 2830gPm 783 8" 148ft HEIL ' WELL: 5RUN 3181gpm 950 ft B/CHICA ' WELL: 6RUN 3055gpm 522 11 " 79f-t BANNING WELL: 7RUN 3739apm 554 107ft ADAMS, 72. 5 * ` * WELL: 9RUN 31469pm 817 ;12ft * ' * WELL: 10RUN 3646gpm 828 8" 78ft * * �� DYKE: RUN 593gPm N/A N/A �",t 718 * RESERVOIR STATUS PFCK RES: RPM VAC FLOW RES/LEVEL PSI � * ENGINE 10FF 0 30" 0gPm * ENGINE 20FF 0 0. 0" 0gPm 21 . 3ft 64. 1 lbs * ENGINE 3RUm 810 8. 2" 4160gpm * * OVERMYER 11(2 RES: ` * * ENGINE 1OFF 0 0.0" 09pm * ENGINE 20F F 0 (). 0" 09pm —0. 0,Ft (OV % ) 48. 7 l bs * EN8INE 30FF 0 0. 0" 1109pm 33. 3Ft (OV 2) * ENGINE 401-IT OF SERVICE sipm * TOTAL SYSTEM USAGE: 250229pmw INCOMING IMPOkT H20 STATUS: 30.6% * �� w'Fm qJT,) - Zot �5(o'Z �PA,, ' ' #.+a i C*( TURNOUT_ ) - _ 1.C Ficr roc IV i i'I, L i"rl E-'.. Cii.:-44 (C-•" ) 4409Prr, 75. 4# ADC7-44 ( 16" ) 19179Pm *� 45(:)()9PR, FU DW RPM VA):: LEVEL F'.;I ZI iNE' ; � WELL.: 1R►_IN = _:19Prr, N/A N/A 11_1rt =;I::ENAR 6'3j. 6 WELL: ::F:i IN i 5 151 9 PIT, 1 f t F LCj1 INElER 74 # WELL: 4RUN ,__1:_:9PR, 14:ft HEIL _•: , ; WELL: 5R1IN 31619PR, .,5r) .�i �:''�it B/I:FiII A 7:_ . '= WELL: 6RUN :o16gPR, 522 11 " 78ft BANN I NO 7'27, 2 WELL: 7RUN _:6: :5gPR, 554 1i►71:t ADA MS* 75. 4 WELL.: -,RUN _:c:)927,9 PR, :31 6 1 f t � WELL: l c_iRl_!hJ _'!, /-•g PR, 77 f t # LIYk::E: RI IN sPm N/A N/A ?=:tt RE, ERVO I R '3TA T I.I:_ PFCh; R E: RPM VAI: FLI:IW RE:'::iLEVEL F',I rl'ru;I NE 11 OFF . 9 Pm ENGINE ' 'OFF C) t). c_)" 0gPR, : 1 . =:ft 65. 7 ENiiINE IIN 2 41719Pr►, DVERMYER 1&2, RE'_;: " ENGINE IGFF o o.off ogPm ENGINE 2,0FF C) c_l, 0 : QgPR, —Ci, i)ft (�lV 1 ) 48. 4 1 t.s ENi+INE :jCIFF ii . c.i', I1()gPR, =::3. =:ft (%IV :) ; ENGINE NE 40 IT OF SERVICE 9 PR, TOTAL =;YSTEM U' AGE: Z4$37gPm INCOMING IMF'i_RT I-I'*210 _TATU'_;: _.'O. 7L �##########��#•x•####����•It�#�•�t•�t•�t•it•a•�+tit•#####�####�########,:######################�•# NEW WORKFILE TITLE CITY OF HUNTINGTON BEACH CALIBRATION RUN 1800gpm @ Brookhurst & Banning ********FILENAME=CALBR3 UNITS 0 0 0 0 0 0 0 FACTORS 1 . 21 1 . 0 LIMITS 50 . 1 . 1 10 . 1 10 40 80 UNKNOWNS 301 177 *Overmyer Res . 262 182 *Peck Res . 290 -34 11 276 -98 1 270 -62 5 274 -60 6 284 -65 9 286 -59 10 PIPES 2 2 4 2480 16 130 4 6 2 2000 12 130 6 6 4 1600 12 130 8 8 6 2600 12 130 10 8 10 2900 12 130 12 12 10 970 10 130 14 14 4 2900 16 130 16 16 6 2620 12 130 18 18 8 2640 12 130 20 20 12 2350 12 130 22 22 12 2280 12 130 24 16 14 2600 12 130 26 16 18 2610 12 130 28 20 18 2510 12 130 30 24 14 2620 16 130 32 26 16 2700 12 130 34 28 18 2700 12 130 36 30 20 2570 12 130 38 22 32 3430 8 130 40 26 24 2680 12 130 42 26 28 2640 12 130 44 30 28 2670 12 130 46 30 32 2550 12 130 48 32 34 2800 12 130 50 36 24 2640 16 130 52 38 26 2600 12 130 54 40 28 2580 12 130 56 42 30 2640 12 130 58 46 34 2320 12 130 60 36 38 2640 12 130 62 38 40 2640 12 130 64 40 42 2700 12 130 66 44 42 2550 12 130 68 46 48 700 12 130 70 50 36 2550 16 130 72 52 38 2640 12 130 74 54 40 2650 12 130 76 56 42 2620 12 130 78 58 44 2640 8 130 80 62 46 2950 12 120 82 64 48 5300 12 130 84 50 52 2700 12 130 86 52 54 2600 12 130 88 54 56 2640 12 130 90 56 58 2660 12 130 92 58 60 1330 12 130 94 60 62 1130 8 130*8 & 12 96 66 52 2640 12 130 97 68 54 2640 12 130 98 70 58 2640 12 130 99 58 72 2640 8 130 100 58 72 2640 8 130 101 74 60 2640 12 130 102 80 62 3200 12 120 104 64 84 2850 12 70 106 64 84 2800 16 130 108 50 66 5250 30 120 110 68 66 2640 30 120 112 68 70 2680 30 120 114 68 70 2680 12 130 116 70 72 2600 12 130 118 70 72 2600 30 120 120 74 72 1450 30 120 122 74 76 600 30 120 124 76 78 150 8 130 126 80 78 1050 12 130 128 82 80 1150 12 130 129 92 82 1350 12 130 130 82 84 1250 12 130 132 50 98 5300 12 130 134 66 100 2580 12 130 136 102 68 2640 12 130 138 104 70 2630 12 130 140 86 72 1320 12 130 142 106 86 1320 12 130 144 86 88 1450 14 120 146 108 88 1280 12 130 148 88 90 650 14 120 149 88 74 1350 12 130 150 90 92 1750 12 130 151 76 90 1300 30 120 152 90 96 3150 42 120 154 90 94 2700 15 120 156 92 94 1100 12 130 158 98 100 2680 12 130 160 100 102 2680 12 130 162 102 104 2750 12 130 164 104 106 2580 12 130 166 106 108 1500 12 130 168 108 110 700 12 130 170 112 90 950 21 120 171 112 90 950 16 130 172 110 112 350 21 120 174 116 110 750 21 120 176 96 114 3400 42 120 178 118 104 2640 12 130 179 106 120 2640 8 130 180 120 106 2640 6 130 182 120 116 2550 12 130 184 122 116 1900 21 120 186 126 94 3300 14 70 188 128 114 4000 42 120 190 118 120 2550 8 130 192 120 122 2150 8 130 194 122 124 600 8 130 196 131 118 2640 8 130 197 132 130 800 8 130 198 130 129 850 6 130 199 129 120 1250 8 130 200 132 120 2750 8 130 201 134 122 2640 21 120 202 136 124 3250 12 130 204 138 126 880 14 60 206 140 128 700 12 130 208 128 142 1800 12 130 210 142 144 1150 12 130 212 292 132 1950 8 130 214 132 134 2000 12 130 216 134 136 1200 12 130 218 136 138 2050 12 130 220 146 164 2200 12 130 222 140 142 1800 12 130 224 128 146 4200 42 120 226 146 144 650 24 120 228 131 152 2700 8 130 230 154 132 3150 8 130 232 156 134 2640 21 120 234 158 136 2640 12 130 236 160 150 1400 12 130 238 150 148 700 14 130 240 148 138 500 12 130 242 162 140 2640 12 130 244 164 146 2120 42 120 246 152 154 2640 8 130 248 156 154 2640 8 130 250 156 158 1300 12 130 252 158 160 2000 12 130 254 160 162 2660 12 130 256 162 164 2660 12 130 257 180 164 2700 12 130 258 164 166 2640 12 130 260 168 152 2550 12 130 261 168 170 2330 21 120 262 170 154 3050 8 130 263 172 170 2000 21 120 264 172 156 2650 21 120 265 172 174 1350 16 130 266 174 158 2650 8 130 267 174 176 1950 16 130 269 176 178 2640 16 130 270 178 162 2700 12 130 271 178 180 2700 16 120 272 180 164 2700 42 120 273 180 182 1150 16 120 274 166 184 2680 12 130 275 182 184 1550 16 125 277 186 184 2650 16 125 279 190 186 2750 16 125 280 190 192 1340 16 125 282 194 192 3200 14 130 284 194 218 5300 14 130 286 196 170 2660 8 130 288 198 174 2640 12 130 290 200 176 2500 12 130 292 202 204 2700 8 130 294 204 178 800 12 130 296 206 180 2700 36 120 298 206 182 3800 12 130 300 208 184 2640 12 130 301 186 210 2640 8 130 302 212 190 2640 12 130 304 196 198 3300 8 130 306 198 200 2700 12 130 308 200 202 2640 12 130 310 202 206 2640 12 130 312 206 208 2640 12 130 314 208 210 2640 12 130 316 212 210 2640 12 130 318 212 214 1300 12 130 320 196 222 2700 12 130 322 224 272 1320 12 130 324 228 200 2640 12 130 326 230 202 3000 12 130 328 232 206 2640 36 120 330 236 210 2700 12 130 332 216 214 1000 10 130 334 238 216 2100 8 130 336 302 220 4500 12 130 338 220 218 1250 8 130 340 288 224 1700 12 130 342 224 228 2000 12 130 344 228 230 2640 .12 130 346 230 232 2640 12 130 348 232 234 2640 12 130 350 234 236 2640 12 130 352 236 238 5030 12 130 354 226 224 1300 12 130 356 240 228 2700 12 130 358 242 230 2700 12 130 360 244 232 2700 36 120 362 246 234 2700 12 130 364 250 236 2680 12 130 366 226 240 3800 8 130 368 240 242 2640 10 130 370 242 244 2660 10 130 372 244 246 2550 12 130 374 246 248 1500 12 130 376 248 250 1200 10 130 378 242 252 2540 12 130 380 254 244 2640 36 120 382 256 246 2540 12 130 384 258 250 2640 12 130 386 252 278 1750 12 130 388 254 256 2600 12 130 390 256 258 2640 12 130 392 254 260 2600 36 120 327 232 206 2640 12 130 408 278 254 900 12 130 406 278 276 170 8 130*WELL 1 400 270 168 970 12 130*WELL 5 414 284 168 1990 16 130*WELL 9 396 264 266 250 12 130*WELL 7 395 266 260 100 36 130 394 262 260 150 36 130*PECK RES . 418 286 288 1050 16 130*WELL 10 416 288 222 1600 12 130 402 272 274 200 12 130*WELL 6 404 272 198 1380 12 130 420 292 290 1400 6 120*DYKE WELL 422 292 131 750 8 130 424 294 50 2200 30 120*OC44 450 222 300 2850 12 130 452 168 300 5300 22 120*OC9 500 301 112 100 36 . 8 120*Overmyer Res . 501 238 302 2000 12 130 502 84 95 1000 16 130 503 95 96 ' 452 24 120 504 304 266 10 36 13C_)*OC35 516 114 115 3490 12 130 517 115 64 6850 12 130 NODES 2 0 5 0 51600 8020 4 0 5 0 53160 10000 6 C) 5 0 51600 10000*Banning 8 0 5 0 48920 10000 10 0 4 0 46570 10000 12 C) 4 0 45820 1C)500 14. 0 6 0 54240 12640 16 0 7 f) 51600 12640 18 0 4 0 48960 12640 20 C) 2 C) 46320 12640 22 C) 4 0 43720 12050 24 0 6 0 54240 15280 26 0 8 0 51600 15280 28 0 4 0 48960 15280 30 0 4 0 46320 15280 32 0 6 () 43720 15280 34 0 30 0 41300 15280 36 0 8 0 54240 17920 38 0 9 0 51600 17920 40 0 6 0 48960 17920 42 0 6 0 46320 17920 44 C) 18 0 43720 17920 46 0 36 0 41300 17630 48 0 36 0 40600 17630 50 C) 12 0 54240 20560 52 0 10 0 51600 20560 54 0 7 0 48960 20560 56 0 10 0 46320 20560 58 0 25 0 43720 20560 60 0 35 0 42400 20560 62 0 40 0 41300 20560 64 0 75 0 36640 21100 66 0 10 0 51600 23200 68 0 8 0 48920 23200 70 0 10 0 46320 23200 72 0 55 0 43720 23200 74 0 50 0 42400 23300 76 0 50 0 41700 23300 78 0 50 C► 41700 23000 80 0 50 0 40870 23000 82 0 75 0 39970 23200 84 0 75 () 38480 23200 86 0 57 0 43720 24490 88 0 50 0 42400 24490 90 0 60 0 41700 24490 92 0 70 0 40070 24340 94 0 115 0 38920 24340 96 0 95 0 38340 24840 98 0 16 0 54240 25840 100 0 15 0 51600 25840*Flounder 102 0 12 0 48960 25840 104 0 14 C) 46320 25840 106 0 58 0 43720 25840 108 0 55 0 42400 25840 11.0 0 60 0 41700 25840 112 0 60 0 41700 25500 114 0 93 0 35840 25840 116 0 60 0 41700 26640 118 0 13 0 46320 28480 120 0 55 0 43720 28480 122 0 35 0 41700 28480 124 0 25 0 41120 28340 126 0 40 0 38480 30070 128 0 5 0 35840 29920 129 0 45 0 44000 29680 130 0 45 0 4400C) 30420 131 0 45 0 46320 31120 132 0 55 0 43720 31120 134 0 50 0 41700 31120 136 0 50 0 40420 31120 138 0 40 0 38480 31120 140 0 2 0 35840 31120 142 0 2 0 34190 30820 144 0 2 0 33200 31120 146 0 2 0 33200 31570 148 0 40 0 38480 31620 150 0 40 0 38480 32120 152 0 28 0 46320 33720 154 0 25 0 43720 33720 156 C) 25 0 41700 33720 158 0 30 0 40420 33720 160 0 5 0 38480 33720 162 0 3 0 35840 33720 164 0 2 0 33200- 33720 166 0 2 0 30560 33720 168 0 27 0 46320 36320 170 0 26 () 43720 36320 172 0 25 0 41700 36320 174 0 25 0 40420 36320 176 0 12 0 38480 36320 178 0 5 0 35840 36320 180 0 5 0 33200 36320 182 0 5 0 31910 36320 184 0 5 0 30560 36320 186 0 34 0 27920 36320 190 0 35 0 25280 36320 192 0 55 0 25280 34970 194 0 5 0 22350 34970 196 0 25 0 43720 38960 198 0 17 -0 40420 38960 200 0 14 0 38480 38960*Heil 202 0 10 0 35840 38960 204 0 10 0 35840 37320 206 0 9 0 33200 38960 208 0 14 () 30560 38960 210 0 15 0 27920 38960 212 0 9 0 25280 38960 214 0 9 0 24180 38960 216 0 9 0 24130 40050 218 0 5 0 18200 38270 220 0 5 0 17250 39500 222 0 26 0 43720 41600 224 0 21 0 40420 41600 226 C) 23 0 40420 42800 228 0 20 0 38480 41600 230 0 12 0 35840 41600 232 0 10 0 33200 41600 234 0 12 0 30560 41600 236 0 15 0 27920 41600*Scenario 238 0 5 0 23080 41600 240 0 21 0 38480 44240 242 0 15 0 35840 44240 244 0 16 0 33200 44240 246 0 14 0 30560 44240 248 0 14 0 29160 44240 250 0 13 0 27920 44240 252 0 22 0 35840 46880 254 0 18 0 33200 46880 256 0 17 0 30560 46880 258 0 17 0 27920 46880 260 0 23 0 33200 49200 276 0 17 0 34100 46200*WELL A 264 0 18 0 32600 50000*WELL 7 266 0 23 0 33200 50000 262 0 34 0 32400 49200*PECK RES . 270 0 27 0 47300 36320*WELL 5 284 0 27 0 48300 36700*WELL 9 286 0 19 0 42120 40200*WELL 10 288 0 22 0 42120 41600 290 0 44 0 45570 29720*DYKE WELL 278 0 19 C) 34100 46880 292 0 48 0 45570 31120 294 0 12 0 56440 20560*OC44, Adams 300 0 25 0 46320 41600*OC9 274 0 19 C) 40000 40340*WELL 6 272 0 25 0 40420 40340 301 0 65 0 41200 25500*Overmyer Res . 302 0 5 0 21080 41600 95 0 103 0 38480 24200*Reservoir Hill 304 0 25 0 33200 50400*OC35 115 0 35 0 32600 24640 COORDINATE PIPES 112 48720 23000 46520 23000 114 48720 23400 46520 23400 116 46120 23000 43920 23000 118 46120 23400 43920 23400 102 40700 22560 40700 21760 41300 21760 104 38480 22600 176 38340 25740 186 38340 25800 152 41000 25100 154 41300 24800 39200 24800 208 34960 30220 222 34300 31120 224 35500 31000 34300 31000 34300 31570 202 40420 28420 284 21400 34920 18800 37720 336 19800 41600 366 40700 43240 40700 44240 334 23530 40600 24130 40450 298 32840 38520 32840 37320 31910 36970 327 33700 41000 33700 39300 257 33700 36000 33700 34000 108 53800 21000 53800 23200 276 27920 35120 10 48320 8950 14 54100 11550 53800 10700 20 46320 11050 126 41300 22900 128 40470 23200 220 33700 32000 33700 33000 414 46520 36700 171 41900 25300 41900 24600 99 44000 20760 44000 23000 179 44000 26040 44000 28280 197 44000 30920 199 44000 28680 516 34200 25840 517 32600 23340 34640 21190 PUMP CURVES 11 0 330 200 306 400 256 600 180 800 72 1 0 440 200 399 400 348 600 311 800 287 1000 205 1200 98 5 0 471 1882 359 2259 337 3012 292 3765 224 4518 143 4894 98 6 0 488 1761 318 2201 296 2641 287 3081 257 3521 206 3962 148 7 0 397 2817 299 3286 291 3756 268 4225 238 4695 208 5164 174 9 0 544 1170 424 1873 366 3277 283 3745 237 4214 173 10 0 562 1859 369 2324 341 2789 305 3253 264 3718 222 20 0 132 10000 131 20650 130 21875 114 22525 106 22875 100 23350 93 23775 82 30 0 172 7500 171 15000 169 15800 157 16100 151 16250 146 16500 141 16750 136 FIXED DEMANDS 294 2399 *OC44 300 4500 *OC9 4 -1900 *hydrant Flow DEMANDS 2 -190 . 3 4 -89 . 8 6 -158 . 4 8 -225 . 2 10 -375 . 1 12 -118 . 4 14 -244 . 5 16 -172 . 7 18 =176 . 5 20 -79 . 4 22 -73 . 4 24 -169 . 1 26 -176 . 5 28 -128 . 1 30 -303 . 1 32 -356 . 6 34 -185 . 8 36 -266 . 5 38 -230 . 6 40 -261 . 9 42 -291 . 7 44 -172 . 7 46 -231 . 7 48 -504 . 4 50 -349 . 3 52 -267 . 1 54 -185 . 4 56 -200 . 8 58 -210 . 8 60 -148 . 7 62 -287 . 9 64 -786 . 2 66 -229 . 3 68 -208 . 3 70 -199 . 1 72 -92 . 2 74 -190 . 1 76 . 0 78 . 0 80 . 0 82 -124 . 2 84 -92 . 0 86 -69 . 3 88 -142 . 4 90 . 0 92 -112 . 3 94 -17 . 4 303 -95 . 6 96 -220 . 0 98 -348 . 3 100 -85 . 6 102 -98 . 5 104 -143 . 0 l06 -297 . 3 108 -54 . 1 110 . 0 112 -11 . 1 114 -422 . 8 116 -29 . 6 118 -115 . 5 120 -105 . 5 122 -167 . 5 124 -45 . 2 126 -60 . 7 128 -137 . 9 130 -117 . 5 132 -231 . 1 134 -94 . 9 136 -65 . 1 138 . 0 140 -133 . 6 142 -79 . 4 144 -88 . 7 146 -102 . 6 148 -127 . 9 150 . 0 152 -208 . 0 154 -282 . 4 156 -88 . 6 158 -92 . 6 160 -215 . 1 162 -206 . 5 164 -205 . 4 166 -145 . 8 168 -378 . 0 170 -157 . 8 172 -272 . 8 174 -120 . 8 176 -119 . 5 178 -217 . 9 180 -134 . 3 182 -100 . 9 184 -121 . 3 186 -249 . 3 190 -146 . 6 192 -34 . 7 194 -245 . 6 (D N N N N N N N N N N N N N) N N N N N N N N N N N N N N N i-+ F-, O) (P (PCnCnC" OCO - PP4�1kP W W W W W N r+ f-+ -AF-+ OOa) C) (000 O W � �PNO W � �? NOCO � �PNOCO � �PNO W C7) 4fl, NOCDO) PNOCOO) • _ I I I I 1 I I I I I I 11 I I I I I I I I I I I I I I I I N N FA r N N I N F- F, I LIJ I--• t J CO I-- F- I\) OCnWN0) Co (DCDW nWWrn � W --4MC) CJIWM UlWrn � s (DW000n � OOOCoC7) 'Prl 'P J CA) " 010) " " 00O11 (00) 4h, (3) rJ .P CA) O (DW-- r1NF+ IN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -4 7 Cn 00 00 W O N CY) rlo On O N O 11 (D m ul CO CP fp. CD J N C) m ­3 7 (0 CITY OF HUNTINGTON BRACH THU, SBP 3, 1987, 9:05 PM CALIBRATION RUN 1800gp® 9 Brookhurst 1 Banning INPUT FILE NAME CALBR3 NUMBER OF PIPES 240 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 9 NUMBER OF SOURCE PUMP NODES 7 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 1.210 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gp® MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HRADLOSS CHECK - LOW 0. Feet 11000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC '50; Pet STATIC HGL ELEVATION 0. Feet SUM OF FIXED DEMANDS = -1900.00 SUM OF (+) FIXED DEMANDS = 6899.00 SUM OF PRARABLE DEMANDS =-22512.99 SUM OF ALL FIXED DEMANDS --- 4999.00 SUM OF ALL PEAKED DEMANDS -- -27240.73 SUM OF ALL DEMANDS --------- -22241.73 Solution reached in 10 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 9:06 PH PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO F60N TO Feet Inches H-W C Gpn Fps CE ft ft/1000 CE ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 2 4 2480 16.0 130 122 .2 .0 .0 LO 4 6 2 2000 12.0 130 353 1.0 .7 .4 6 6 4 1600 12.0 130 407 1.2 .8 .5 8 8 6 2600 12.0 130 302 .9 .7 .3 10 8 10 2900 12.0 130 3 .0 LO .0 .0 LO 12 12 10 970 10.0 130 451 1.8 1.4 1.4 14 14 4 2900 16.0 130 1479 2.4 3.7 1.3 16 16 6 2620 12.0 130 650 1.8 3.0 1.1 18 18 8 2640 12.0 130 577 1.6 2.4 .9 20 20 12 2350 12.0 130 440 1.2 1.3 .6 22 22 12 2280 12.0 130 155 .4 .2 .1 LO 24 16 14 2600 12.0 130 41 .1 .0 .0 LO 26 18 16 2610 12.0 130 127 .4 .1 .1 LO 28 20 18 2510 12.0 130 175 .5 .3 .1 - 30 24 14 2620 16.0 130 1734 2.8 4.5 1.7 32 26 16 2700 12.0 130 772 2.2 4.2 1.6 34 28 18 2700 12.0 130 743 2.1 3.9 1.5 36 30 20 2570 12.0 130 711 2.0 3.5 1.3 38 32 22 3430 8.0 130 243 1.6 4.6 1.3 40 24 26 2680 12.0 130 177 15 .3 .1 42 26 28 2640 12.0 130 131 .4 .2 .1 LO 44 28 30 2670 12.0 130 161 .5 .2 .1 LO 46 30 32 2550 12.0 130 19 .1 LO .0 .0 LO 48 34 32 2800 12.0 130 656 1.9 3.3 1.2 50 36 24 2640 16.0 130 2116 3.4 6.6 2.5 52 38 26 2600 12.0 130 940 2.7 5.9 2.3 54 40 28 2580 12.0 130 927 2.6 5.7 2.2 56 42 30 2640 12.0 130 936 2.7 5.9 2.2 58 46 34 2320 12.0 130 881 2.5 4.7 2.0 60 36 38 2640 12.0 130 359 1.0 1.0 .4 62 38 40 2640 12.0 130 201 .6 .3 .1 64 40 42 2700 12.0 130 13 .0 LO A .0 LO 66 44 42 2550 12.0 130 197 .6 .3 .1 68 48 46 700. 12.0 130 326 .9 .2 .3 70 50 36 2550 16.0 130 . 2797 4.5 10.7 4.2 72 52 38 2640 12.0 130 1061 3.0 7.5 2.8 74 54 40 2650 12.0 130 1057 3.0 7.4 2.8 76 56 42 2620 12.0 130 1078 3.1 7.6 2.9 78 58 44 2640 8.0 130 406 2.6 9.1 3.4 80 62 46 2950 12.0 120 835 2.4 6.2 2.1 82 64 48 5300 12.0 130 937 2.7 11.9 2.2 84 50 52 2700 12.0 130 771 2.2 4.2 1.6 86' 52 54 2600 12.0 130 213 .6 .4 .1 88 56 54 2640 12.0 130 148 .4 .2 .1 LO 90 58 56 2660 12.0 130 484 1.4 1.8 .7 92 60 58 1330 12.0 130 488 1.4 .9 .7 94 60 62 1130 8.0 130 290 1.9 2.1 1.8 8 9 12 96 66 52 2640 12.0 130 827 2.3 4.7 1.8 97 68 54 2640 12.0 130 920 2.6 5.7 2.2 98 70 56 2640 12.0 130 986 2.8 6.5 2.5 99 72 58 2640 8.0 130 328. 2.1 6.1 2.3 100 72 58 2640 8.0 130 328 2.1 6.1 2.3 101 74 60 2640 12.0 130 958 2.7 6.2 2.3 102 80 62 3200 12.0 120 894 2.5 7.6 2.4 104 84 64 2850 12.0 70 301 .9 2.5 .9 CITY OF HUNTINGTON BEACH THU, SEP 3, .1987, 9:06 PH PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpn Fps CB ft ft/1000 CB ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 1202 1.9 2.5 .9 108 66 50 5250 30.0 120 1717 .8 .5 .1 LO 110 68 66 2640 30.0 120 2906 1.3 .6 .2 112 70 68 2680 30.0 120 3628 1.6 1.0 .4 114 70 68 2680 12.0 130 353 1.0 1.0 .4 116 72 70 2600 12.0 130 426 1.2 1.4 .5 118 72 70 2600 30.0 120 4376 2.0 1.4 .5 120 74 72 1450 30.0 120 4964 2.3 1.0 .7 122 76 74 600 30.0 120 5622 2.6 .5 .8 124 76 78 150 8.0 130 428 2.7 .6 3.8 126 78 80 1050 12.0 130 428 1.2 .6 .5 128 82 80 1150 12.0 130 466 1.3 .7 .6 129 92 82 1350 12.0 130 563 1.6 1.2 .9 130 84 82 1250 12.0 130 52 .1 .0 .0 LO 132 50 98 5300 12.0 130 126 .4 .3 .1 LO 134 66 100 2580 12.0 130 84 .2 .1 .0 LO 136 102 68 2640 12.0 130 96 .3 .1 .0 LO 138 104 70 2630 12.0 130 406 1.2 1.3 .5 140 86 72 1320 12.0 130 605 1.7 1.3 1.0 142 106 86 1320 12.0 130 127 .4 .1 .1 LO 144 88 86 1450 14.0 120 563 1.2 .7 .5 146 108 88 1280 12.0 130 411 1.2 .6 .5 148 90 88 650 14.0 120 854 1.8 .7 1.0 149 88 74 1350 12.0 130 531 1.5 1.1 .8 150 90 92 1750 12.0 130 297 .8 .5 .3 151 90 76 1300 30.0 120 6050 2.7 1.2 1.0 152 96 90 3150 42.0 . 120 2156 .5 .1 O'LO 154 94 90 2700 15.0 120 114 .2 .0 .0 LO 156 94 92 1100 12.0 130 402 1.l .5 .5 158 100 98 2680 12.0 130 295 .8 .7 .3 160 102 100 2680 12.0 130 315 .9 .8 .3 162 104 102 2750 12.0 130 530 1.5 2.2 .8 164 106 104 2580 12.0 130 451 1.3 1.5 .6 166 108 106 1500 12.0 130 548 1.6 1.2 .8 168 110 108 700 12.0 130 1025 2.9 1.9 2.7 170 112 90 950 21.0 120 3224 3.0 1.6 1.7 171 112 90 950 16.0 130 1708 2.7 1.6 1.7 172 110 112 350 21.0 120 1845 1.7 .2 .6 174 116 110 750 21.0 120 2869 2.7 1.0 1.4 176 114 96 3400 42.0 120 4088 .9 .3 .1 LO 178 118 104 2640 12.0 130 658 1.9 3.1 1.2 179 120 106 2640 8.0 130 265 1.7 4.1 1.6 180 120 106 2640 6.0 130 125 1.4 4.1 1.6 182 120 116 2550 12.0 130 33 .1 LO .0 .0 LO 184 122 116 1900 21.0 120 2872 2.7 2.6 1.4 186 126 94 3300 14.0 70 537 1.1 3.9 1.2 188 128 114 4000 42.0 120 4985 1.2 .5 .1 190 120 118 2550 8.0 130 208 1.3 2.5 1.0 192 122 120 2150 8.0 130 229 1.5 2.6 1.2 194 124 122 600 8.0 130 327 2.1 1.4 2.3 196 131 118 2640 8.0 130 590 3.8 18.1 6.9 197 132 130 800 8.0 130 343 2.2 2.0 2.5 198 130 129 850 6.0 130 201 2.3 3.2 3.8 199 129 120 1250 8.0 130 201 1.3 1.2 .9 200 132 120 2750 8.0 130 329 2.1 6.4 2.3 CITY OF HUNTINGTON BEACH . THU, SBP 3, 1987, 9:06 PH PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpm Fps CB ft ft/1000 CE ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 201 134 122 2640 21.0 120 2977 2.8 3.8 1.5 202 136 124 3250 12.0 130 382 1.1 1.4 .4 204 138 126 880 14.0 60 fill 1.3 1.8 2.0 206 140 128 700 12.0 130 337 1.0 .2 .3 208 142 128 1800 12.0 130 198 .6 .2 .1 210 144 142 1150 12.0 130 256 .7 .2 .2 212 292 132 1950 8.0 130 479 3.1 9.1 4.7 214 134 132 2000 12.0 130 36 .1 .0 .0 LO 216 134 136 1200 12.0 130 567 1.6 1.1 .9 218 136 138 2050 12.0 130 664 1.9 2.4 1.2 220 164 146 2200 12.0 130 193 .5 .3 .1 222 140 142 1800 12.0 130 38 .1 .0 .0 LO 224 146 128 4200 42.0 120 4617 1.1 .5 .1 226 146 144 650 24.0 120 363 .3 .0 .0 LO 228 152 131 2700 8.0 130 655 4.2 22.6 8.4 230 154 132 3150 8.0 130 436 2.8 12.4 3.9 232 156 134 2640 21.0 120 3695 3.4 5.7 2.2 234 158 136 2640 12.0 130 557 1.6 2.3 .9 236 160 150 1400 12.0 130 102 .3 .1 .0 LO 238 150 148 700 14.0 130 102 .2 .0 .0 LO 240. 138 148 500 12.0 130 53 .2 .0 .0 LO 242 162 140 2640 12.0 130 536 1.5 2.1 .8 244 164 146 2120 42.0 120 4912 1.1 .3 .1 246 152 154, 2640 8.0 130 fill 3.9 19.4 7.3 248 154 156 2640 8.0 130 343 2.2 6.6 2.5 250 156 158 1300 12.0 130 1186 3.4 4.5 3.6 252 158 160 2000 12.0 130 953 2.7 4.6 2.3 254 160 162 2660 12.0 130 591 1.7 2.5 1.0 256 162 164 2660 12.0 130 462 1.3 1.6 .6 257 180 164 2700 12.0 130 206 .6 .4 .1 258 164 166 2640 12.0 130 444 1.3 1.5 .6 260 168 152 2550 12.0 130 1518 4.3 14.0 5.5 261 168 170 2330 21.0 120 7204 6.7 17.4 7.5 262 1?0 154 3050 8.0 130 510 3.3 16.0 5.2 263 170 172 2000 21.0 120 6919 6.4 13.9 6.9 264 172 156 2650 21.0 120 4646 4.3 8.8 3.3 265 172 174 1350 16.0 130 1943 3.1 2.9 2.1 266 174 158 2650 8.0 130 436 2.8 10.4 3.9 267 174 176 1950 16.0 130 2318 3.7 5.8 3.0 269 176 178 2640 16.0 130 2452 3.9 8.7 3.3 270 178 162 2700 12.0 130 657 1.9 3.1 1.2 271 178 180 2700 16.0 120 1548 2.5 4.4 1.6 272 180 164 2700 42.0 120 5130 1.2 .4 .1 273 180 182 1150 16.0 120 1009 1.6 .8 .7 274 166 184 2680 12.0 130 268 .8 .6 .2 275 182 184 1550 16.0 125 1263 2.0 1.6 1.0 277 184 186 2650 16.0 125 1255 2.0 2.7 1.0 279 186 190 2750 16.0 125 917 1.5 1.6 .6 280 190 192 1340 16.0 125 589 .9 .3 .3 282 192 194 3200 14.0 130 547 1.1 1.3 .4 284 194 218 5300 14.0 130 250 .5 .5 .1 LO 286 196 170 2660 8.0 130 416 2.7 9.6 3.6 288_ 198 174 2640 12.0 130 957 2.7 6.2 2.3 290 200 176 2500 12.0 130 278 .8 .6 .2 292 202 204 2700 8.0 130 142 .9 1.3 .5 CITY OF HUNTINGTON BEACH THU, SHP 3, 1987, 9:06 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HRADLOSS--- NO FROM TO Feet Inches H-W C Gpn Fps CK ft ftI1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- --- 294 204 178 800 12.0 130 17 .0 LO .0 .0 LO 296 206 180 2700 36.0 120 4959 1.6 .7 .3 298 206 182 3800 12.0 130 376 1.1 1.6 .4 300 184 208 2640 12.0 130 129 .4 .2 .1 LO 301 186 210 2640 8.0 130 37 .2 .1 .0 LO 302 190 212 2640 12.0 130 151 .4 .2 .1 LO 304 196 198 3300 8.0 130 553 3.5 2012 6.1 306 198 200 2700 12.0 130 1315 3.7 11.4 4.2 308 200 202 2640 12.0 130 1096 3.1 7.9 3.0 310 202 206 2640 12.0 130 854 2.4 5.0 1.9 312 206 208 2640 12.0 130 686 1.9 3.3 1.3 314 208 210 2640 12.0 130 608 1.7 2.7 1.0 316 210 212 2640 12.0 130 472 1.3 1.7 .6 318 212 214 1300 12.0 130 460 1.3 .8 .6 320 222 196 2700 12.0 130 1179 3.3 9.3 3.4 322 272 224 1320 12.0 130 740 2.1 1.9 1.5 324 228 200 2640 12.0 130 402 1.1 1.2 .5 326 230 202 3000 12.0 130 67 .2 .1 .0 LO 327, 232 206 2640 12.0 130 305 .9 .7 .3 328 232 206 2640 36.0 120 5067 1.6 .7 .3 330 236 210 2700 12.0 130 268 .8 .6 .2 332 214 216 1000 10.0 130 278 1.1 .6 .6 334 238 216 2100 8.0 130 44 .3 .1 .1 LO 33.6 302 220 4500 12.0 130 174 .5 .4 .1 LO 338 218 220 1250 8.0 130 15 .1 LO .0 .0 LO 340 288 224 1700 12.0 130 2289 6.5 20.0 11.8 HI 342 224 228 2000 12.0 130 2160 6.1 21.1 10.6 HI 344 228 230 2640 12.0 130 1182 , 3.4 9.1 3.5 346 230 232 2640 12.0 130 788 2.2 4.3 1.6 348 232 234 2640 12.0 130 668 1.9 3.2 1.2 350 234 236 2640 12.0 130 646 1.8 3.0 1.1 352 236 238 5030 12.0 130 498 1.4 3.5 .7 354 224 226 1300 12.0 130 618 1.8 1.4 1.0 356 228 240 2700 12.0 130 361 1.0 1.0 .4 358 230 242 2700 12.0 130 168 .5 .3 .1 LO 360 244 232 2700 36.0 120 5581 1.8 .9 .3 362 246 234 2700 12.0 130 59 .2 .0 -.0 LO 364 250 236 2680 12.0 130 404 1.1 1.3 .5 366 226 240 3800 8.0 130 521 3.3 20.8 5.5 368 240 242 2640 10.0 130 697 2.8 8.3 3.2 370 242 244 2660 10.0 130 410 1.7 3.1 1.2 372 244 246 2550 12.0 130 776 2.2 4.0 1.6 374 246 248 1500 12.0 130 367 1.0 .6 .4 376 248 250 1200 10.0 130 367 1.5 1.2 1.0 378 242 252 2540 12.0 130 227 .6 .4 .2 380 254 244 2640 36.0 120 6191 2.0 1.1 .4 382 256 246 2540 12.0 130 5 .0 LO .0 .0 LO 384 258 250 2640 12.0 130 143 .4 .2 .1 LO 386 252 278 1750 12.0 130 28 .1 LO .0 .0 LO 388 254 256 2600 12.0 130 872 2.5 5.1 2.0 390 256 258 2640 12.0 130 456 1.3 1.6 .6 392 260 254 2600 36.0 120 6378 2.0 1.1 .4 394 262 260 150 36.0 130 3062 1.0 .0 .1 LO PECK RES. 395' 266 260 100 36.0 130 3559 1.1 .0 .1 396 264 266 250 12.0 130 3659 10.1 HI 6.7 26.6 HI WELL 7 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 9:06 PH PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpm Fps CE ft ft/1000 CE ---- ---- ---- ------ ------ ------ ------ ----- -- --- ------- -- 400 270 168 970 12.0 130 2739 7.8 15.9 16.4 HI WELL 5 402 274 272 200 12.0 130 2763 7.8 3.3 16.7 HI WELL 6 404 272 198 1380 12.0 130 2023 5.7 12.9 9.4 406 276 278 170 8.0 130 811 5.2 2.1 12.4 HI WELL 1 409 278 254 900 12.0 130 838 2.4 1.6 1.8 414 284 168 1990 16.0 130 2915 4.7 9.0 4.5 WELL 9 416 288 222 1600 12.0 130 590 1.7 1.5 1.0 418 286 288 1050 16.0 130 2879 4.6 4.6 4.4 WELL 10 420 290 292 1400 6.0 120 413 4.7 23.4 16.7 HI DYKE WELL 422 131 292 750 8.0 130 66 .4 .1 .1 424 294 50 2200 30.0 120 2399 1.1 .4 .2 OC44 450 300 222 2850 12.0 130 976 2.8 6.9 2.4 452 300 168 5300 22.0 120 3524 3.0 8.4 1.6 OC9 500 301 112 100 36.8 120 3100 .9 .0 .1 Overmyer Res. 501 238 302 2000 12.0 130 174 .5 .2 .1 LO 502 95 84 1000 16.0 130 1666 2.7 1.6 1.6 503 96 95 452 24.0 120 1666 1.2 .1 .3 504 304 266 10 36.0 130 0 .0 LO .0 .0 LO OC35 516 114 115 3490 12.0 130 385 1.1 1.5 .4 517 115 64 6850 12.0 130 385 1.1 3.0 .4 CITY OF HUNTINGTON BBACH THU, SRP 3, 1987, 9:06 PH GROUND BLV FLOW HGL EL HEAD ------- PRBSSURB ------ NODR Feet Gpa Feet Feet Pei CB % DROP--CB ---- ------ ------ ------ ------ ------ -- ------ -- 2 .5 -230.26 143.7 138.7 60 42 4 5 -2008.66 143.6 138.6 60 42 6 5 -191.66 144.4 139.4 60 42 Banning 8 5 -272.49 145.1 140.1 60 41 10 4 -453.87 145.1 141.1 61 41 12 4 -143.26 146.5 142.5 61 41 14 6, -295.85 147.4 141.4 61 41 16 7 -208.97 147.4 140.4 60 41 18 4 -213.57 147.5 143.5 62 40 20 2 -96.07 147.8 145.8 63 40 22 4 -88.81 146.7 142.7 61 41 24 6 -204.61 151.9 145.9 63 39 26 8 -213.57 151.6 143.6 62 39 28 4 -155.00 151.5 147.5 63 39 30 4 -366.75 151.3 147.3 63 39 32 6 -431.49 151.3 145.3 62 39 34 30 -224.82 154.5 124.5 53 42 36 8 322.46 158.5 150.5 65 36 38 9 -279.03 157.5 148.5 - 64 37 40 6 -316.90 157.2 151.2 65 37 42 6 -352.96 157.2 151.2 65 37 44 18 -208.97 157.5 139.5 60 38 46 36 -280.36 159.2 123.2 53 41 48 36 -610.32 159.4 123.4 53 41 50 12 -422.65 169.2 157.2 68 32 52 10 -323.19 165.0 155.0 67 34 54 7 -224.33 164.6 157.6 68 34 56 10 -242.97 164.8 154.8 67 34 58 25 -255.07 166.6 141.6 61 36 60 35 -179.93 167.5 132.5 57 37 62 40 -348.36 165.4 125.4 54 39 64 75 -951.30 171.3 96.3 41 43 66 10 -277.45 169.7 159.7 69 32 68 8 -252.04 170.4 162.4 70 31 70 10 -240.91 171.3 161.3 69 31 72 55 -111.56 172.7 117.7 51 38 74 50 -230.02 173.7 123.7 53 37 76 50 .00 174.2 124.2 53 36 78 50 .00 '173.6 123.6 53 37 80 50 .00 173.0 123.0 53 37 82 75 -150.28 173.7 98.7 42 42 84 75 -111.32 173.8 98.8 42 42 . 86 57 -83.85 174.0 117.0 50 38 88 50 -172.30 174.7 124.7 54 36 90 60 .00 175.4 115.4 50 38 92 70 -135.88 174.9 104.9 45 40 94 115 -21.05 175.4 60.4 26 LO 53 95 103 .00 175.4 72.4 31 LO 49 Reservoir Hill 96 95 -266.20 175.5 80.5 34 LO 46 98 16 -421.44 168.9 152.9 66 33 100 15 -103.58 169.6 154.6 67 33 Flounder 102 12 -119.19 170.4 158.4 68 32 104 14 -173.03 172.6 158.6 68 31 106 58 -359.73 174.1 116.1 50 38 108 55 -65.46 175.3 120.3 52 37 CITY OF HUNTINGTON BRACH THU, SBP 3, 1987, 9:06 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPn Feet Feet Psi CR % DROP--CE ---- ------ ------ ------ ------ ------ -- ------ -- 110 60 .00 177.2 117.2 50 37 112 60 -13.43 177.0 117.0 50 37 114 93 -511.59 175.8 82.8 35 LO 45 115 35 .00 174.3 139.3 60 34 116 60 -35.82 178.2 118.2 51 36 118 13 -139.76 175.7 162.7 70 30 120 55 -127.66 178.2 123.2 53 35 122 35 -202.68 180.8 145.8 63 30 124 25 -54.69 182.2' 157.2 68 28 126 40 -73.45 179.4 139.4 60 32 128 5 -166.86 176.3 171.3 74 29 129 45 .00 179.4 134.4 58 33 130 45 -142.18 182.6 137.6 59 31 131 45 .00 19318 148.8 64 26 132 55 -279.63 184.6 129.6 56 32 134 50 -114.83 184.6 134.6 58 31 136 50 -78.77 183.6 133.6 57 31 138 40 .00 181.1 141.1 61 31 140 2 -161.66 176.5 174.5 75 28 142 2 -96.07 176.5 174.5 75 28 144 2 -107.33 176.8 174.8 75 28 146 2 -124.15 176.8 174.8 75 28 148 40 -154.76 181.1 141.1 61 31 150 40 .00 181.1 141.1 61 31 152 28 -251.68 216.4 188.4 81 HI 13 154 25 -341.70 197.0 172.0 74 22 156 25 -107.21 190.4 165.4 71 25 158 30 -112.05 185.8 155.8 67 27 160 5 -260.27 181.2 176.2 76 26 162 3 -249.87 178.6 175.6 76 27 164 2 -248.53 177.0 175.0 75 28 166 2 -176.42 175.5 173.5 75 28 168 27 -457.38 230.4 203.4 88 HI_ 7 170 26 -190.94 213.0 187.0 81 HI 15 172 25 -330.09 199.1 174.1 75 21 174 25 -146.17 196.3 171.3 74 22 176 12 -144.60 190.5 178.5 77 23 178 5 -263.66 181.8 176.8 76 26 180 5 -162.50 177.4 172.4 74 28 182 5 -122.09 176.6 171.6 74 28 184 5 '-146.77 174.9. 169.9 73 29 186 34 -301.65 172.2 138:2 59 34 190 _ 35 -177.39 170.7 135.7 58 35 192 55 -41.99 170.3 115.3 49 39 194 5 -297.18 169.1 164.1 71 32 196 25 -209.21 222.6 197.6 85 HI 10 198 17 -304.44 202.4 185.4 80 HI 19 200 14 -342.07 191.1 177.1 76 23 Heil 202 10 -166.50 183.1 173.1 75 26 204 10 -125.84 181.8 171.8 74 27 206 9 -204.73 178.1 169.1 73 28 208 14 -206.55 174.8 160.8 69 30 210 15 -440.32 172.1 157.1 68 32 212 9 -162.62 170.5 161.5 69 31 214 9 -182.11 169.7 160.7 69 32 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 9:06 PH GROUND BLV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet Gpm Feet Feet Psi CE % DROP--CE ---- ------ ------ ------ ------ ------ -- ------ -- 216 9 -322.10 169.1 160.1 69 32 218 5 -234.74 168.6 163.6 70 32 220 5 -189.37 168.6 163.6 70 32 222 26 -386.72 231.9 205.9 89 HI 6 224 21 -250.95 213.4 192.4 83 HI 14 226 23 -97.04 212.1 189.1 81 HI 15 228 20 -215.38 192.3 172.3 74 23 230 12 -159.36 183.2 171.2 74 26 232 10 -329.12 178.9 168.9 73 28 234 12 -80.10 175.7 . 163.7 70 30 236 15 -284.35 172.7 157.7 68 31 Scenario 238 5 -280.24 169.2 164.2 71 31 240 21 -185.25 191.3 170.3 73 24 242 15 -221.36 182.9 167.9 72 27 244 16 -243.94 179.8 163.8 71 28 246 14 -355.98 175.7 161.7 70 30 248 14 .00 175.1 161.1 69 30 250 13 -105.63 174.0 161.0 69 30 252 22 -199.41 182.5 160.5 69 28 254 18 -153.43 180.9 162.9 70 28 256 17 -410.80 175.7 158.7 68 30 258 17 -313.03 174.2 157.2 68 31 260 23 -242.85 182.0 159.0 68 28 262 34 3062.45U 182.0F 148.0 64 30 PECK RES, 264SP 18 3558.76U 188.7 170.7 73 25 WELL 7 266 23 .00 182.0 159.0 68 28 270SP 27 2739.46U 246.3 219.3 95 HI 0 WELL 5 272 25 .00 215.3 190.3 82 HI 13 274SP 19 2763.22U 218.7 199.7 86 HI 12 WELL 6 276SP 17 810.69U 184.6 167.6 72 26 WELL 1 278 19 .00 182.5 163.5 70 28 284SP 27 2914.99U 239.4 212.4 92 HI 3 WELL 9 286SP 19 2878.98U 238.0 219.0 94 HI 3 WELL 10 288 22 .00 233.4 211.4 91 HI 5 290SP 44 412.81U 217.1 173.1 75 14 DYER WELL 292 48 .00 193.7 145.7 63 26 294 12 2399.00 169.6 157.6 68 32 OC44,Adams 300 25 4500.00 238.8 213.8 92 HI 3 0C9 301 65 3100.37U 177.0F 112.0 48 38 Overmyer Res. 302 5 .00 169.0 164.0 71 32 304 25 .00 182.0 157.0 68 29 OC35 Maximum Unbalanced Head = .00001 190 CITY OF HUNTINGTON BRACH THU, SEP 3, 1987, 9:06 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH HGL LIFT PUMP NODE Gpm Feet Feet Feet NUMBER 301 3100 177.0 Overmyer Res, 262 3062 182.0 PECK RES. 290SP 413 -34.0 217.1 251.1 11 DYKE WELL 276SP 811 -98.0 184.6 282.6 1 WELL 1 270SP 2739 -62.0 246.3 308.3 5 WELL 5 274SP 2763 -60.0 218.7 278.7 6 WELL 6 264SP 3559 -8910 188.7 277.7 7 WELL 7 284SP 2915 -65.0 239.4 304.4 9 WELL 9 286SP 2879 -59.0 238.0 297.0 10 WELL 10 SOURCE PUMPS Node Pump# 290 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200. 400, 600. 800. 0. 0. 0. 276 1 Head 440 399 348 311 287 205 98 0 Flow 0. 200. 400. 600. 800. 1000. 1200. 0. 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012, 3765, 4518. 4894. 0. 274 6 Head 488 318 296 287 257 206 148 0 Flow 0, 1761. 2201. 2641, 3081. 3521, 3962. 0. 264 7 Head 397 299 291 268 238 208 174 0 Flow 0. 2817, 3286, 3756. 4225. 4695. 5164. 0. 284 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745, 4214. 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859, 2324. 2789. 3253. 3718. 0. 0. Iteration: 1, Flow Correction: 6263.163 Iteration: 2, Flow Correction: 4875.166 Iteration: 3, Flow Correction: 1846.508 Iteration: 4, Flow Correction: 1251.911 Iteration: 5, Flow Correction: 667.828 Iteration: 6, Flow Correction: 192,969 Iteration: 7, Flow Correction: 55.839 Iteration: 8, Flow Correction: 4.900 Iteration: 9, Flow Correction: .036 Iteration: 10, Flow Correction: .000 -------------------------------------------------------------------------------------------------------------------------' EXISTING LAND USE ------------------------------------------------------------------------------------------------------------------; RESIDENTIAL ! ----------- ; OPEN; SCHOOL ; VACANT; SPECIAL 1 TOTAL TOTAL LOW MEDIUM HIGH; COMM.: MANU.1 SPACE; ------ ; USERS ; ACRES DEMAND DENSITY DENSITY DENSITY; ; ; 1 ; ------- NODE ACRES ACRES ACRES; ACRES; ACRES; ACRES; ACRES STUDENTS; ACRES ; NAME ACRES ; G.P.M. ------------------------------------------------------------------' 2 ; 37.4 ; ; 28.9! ; CSDOC 87.4 ; 153.71 190.3 4 34.0 ; ; ; ; ; ; CSDOC 37.7 ; 71.1: 89.9 6 ; 115.5 ; ; ; 6.8; 8.5 614: ; 130.8; 158.4 8 ; 79.0 ; ; 1.7; ; ; EDISON 30.6 ; 111.31 225.2 1!: ; 4.2 ; 1 1 71.3; ; 1 EDISON 69.4 ; 144.9: 375.1 12 ; 9.5 46.7 1 4.2: ; ; ; ; 59.4; 118.4 14 ; 50.1 39.1: 22.1! ; ; ; ; ; 111.3; 244.5 16 ; 175.0 3.4 ; 2.5: 1 ; ; ; 140.9: 172.7 18 1 76.4 ; ; ; 67.11 8.5 551: ; ; 152.01 176.5 20 ; 45.0 19.5; ; ; ; 50.11 1 114.61 77.4 1 22 1 27.2! ; ; ! ; 28.0: ; 55.2; 73.4 24' 1 129.9 : 10.2: ; ! ; ; 140.1: 169.1 : 26 1 121.4 ; ; ; 5.9: 22.1 CLOSED; 41.6: ; 191.01 176.5 : : 28 : 18.7 17.8: ; 28.9: 60.3 25341 14.4: 1 140.11 128.1 30 : 116.3 17.0 46.7; ; 1 : 1 1 1 180.0: 303.1 ! 32 1 25.5 135.9 5.11 10.2: ; ; 22.91 1 199.6! 356.6 1 34 : 68.8: 1 1 1 1 37.41 1 106.2: 185.8 ! : 36 1 208.9 3.41 11.0 CLOSED! ; 1 223.3: 266.5 1 1 38 1 158.0 1 1.7: 5.1: 22.9 1659: 1 ; 187.7: 230.6 : ! 40 ; 206.4 1 ; 1.7: 6.8 6111 ; 1 214.9: 261.9 1 42 ; 223.4 1 1.11 : 3.4; 16.1 CLOSED: 1 ; 244.61 291.7 44 23.8 11.9 42.5: 2.51 ; ; 11.01 : 91.71 172.7 1 46 1 85.81 1 1 1 1 4.2: 1 90.0! 231.7 : 48 ; 11.0 22.1 163.9; ! 1 1 ! ! 1 197.G 564.4 ! 1 50 1 138.4 5.9 34.8: 55.2; : ! 14.4 2261 .8! 1 249.51 349.3 : 52 1 110.4 15.3 37.4; 1 1 1 ! ; 1 163.1: 261.1 1 1 54 ; 110.4 ! 26.3: ! 1.71 15.3 CLOSED! 2.5: ! 156.2: 185.4 ! 56 1 167.3 1 ; 1 1 1 : ; 167.31 58 1 20.4 51.81 35.7! : ; 1 32.31 1 140.2! 210.8 : 60 1 6.8 17.0 38.21 ! ! 1 1 1 62.61 148.7 ! 1 62 1 101.9 5.1 52.7: ; 1 11.0: 1 ! ; 170.7: 87.?'; 64 ! 132.5 141.81 2.51 8.51 77.3: 25.5 13281 39.9: SHELL 51.6 1 479.61 786.2 66 : 173.2 1 1 : 2.5; 17.0 CLOSED! 1 1 192.7: 229.3 : : 68 : 163.9 : ; ; : 12.7 581: ! 1 176.6: 208.3 ! 1 70 1 154.6 ! 1 ; 4.21 10.2 448: 1 1 169.01 199.1 ! 72 ; 17.0 1 55.2: 1 ! ! 1 : 72.2: 92.2 1 74 1 20.4 72.2 2.5: 1 : : ; 21.21 1 116.3: 190.1 : 76 78 i i 80 82 : 31.4 6.8 1 16.21 1 1 46.7 2525: 2.51 1 103.6: 124.2 84 1 39.5 1.7: 4.21 1 31.41 ; 1 ! 76.8: 92.0 1 86 21.2 7.4: 23.81- ! 3.4: ; 5.1: 1 56.9: 69.3 1 1 88 ; 2.5 50.1 5.9: 10.21 1 : 1 : 1 6B.71 142.4 ! 92 ! 45.0 : 10.21 1 ! 1 2.51 1 57.71 112.3 1 94 ; B.5 1 5.5; : : ! 55.2: ; 69.2! 17.4 1 : 95 1 55.4 1 22.4: ; 1 1 1 1 77.8: 95.6 ! 96 ! 46.7 2.5! 39.91 11.91 ! 1 1 101.0: 220.0 1 98 : 114.7 73.0 1 26.31 1 1 14.4 CLOSED: .8; 1 229.2: 348.3 1 100 1 71.3 : 1 1 ! ; 3.4: ! 74.7: 85.6 ------------------------------------------------------------- EXISTING LAND USE ----------------------------------------------------------------------------------------------------------------- RESIDENTIAL ----------- ; ; ; OPEN; SCHOOL 1 VACANT; SPECIAL ; TOTAL TOTAL LOW MEDIUM HIGH; COMM.! MANU.: SPACE; ------ ; ; USERS 1 ACRES DEMAND DENSITY DENSITY DENSITY; ; ! ! ------ ; NODE ; ACRES ACRES ' ACRES; ACRES; ACRES; ACRES; ACRES STUDENTS; ACRES ; NAME ACRES ; G.P.M. ------------------------------------------------------------------------------------------------------------------------ 102 43.3 2.51 30.6: ; ! ; 76.4: 98.5 104 110.4 ; ; 10.2 524: ; 120.61 143.0 1 106 ; 21.2 67.9; 51.8: ; ; ; ; 1 140.91 297.3 1 "08 24.6 ; ; 18.7: 43.3; 54.1 ilo 112 ; 8.5: ; ; ; 8.51 11.1 1 114 1 83.2 57.71 ; ; 1 308.31 SHELL 44.2 ; 493.4! 422.9 1 1 116 ; 8.5: 5.1: ; ; 27.21 40.8! 29.6 1 1 118 ; 43.3 28.9 ; ; ; 1 ; ; 72.2: 115.5 120 12.7 10.2 5.1: 41.6: ; 1 1 1.71 ; 71.31 105.5 122 ; 58.6 17.0 14.4! 16.1: ; ; 1 14.4: 120.51 167.5 ; 124 ; ; 34.8: ; ; 172.4: 207.2; 45.2 126 ; ; ; 55.2; ; 102.8: ; 158.01 60.7 1 128 ; 43.3 ; ; 1 78.1! ! ; 121.41 137.9 130 : 52.7 ; ; ; 49.3: ; ; ; 102.0: 117.5 1 132 ; 53.5 32.3 2.5: 56.1: ; 5.11 13.6 527: ; ; 163.11 231.1 1 134 ; ; 73.0; ; ; ; 1 ; 73.01 94.9 136 1 50.1: ; ; ; 28.9; ; 79.01 65.1 1�8 ; 140 111.3 ; ; ; ; ; ; ; 111.3: 133.6 142 ; 66.2 ; ; ; ; ; ; ; 66.21 79.4 144 ; 73.9 ; ; ; ; ; ; ; 73.9; 88.7 1 146 ; 83.2 ; : ! 2.5: ; 10.21 ; 95.9: 102.6 I 148 ; ; ; ; 116.3: 116.3! 127.9 . 5 152 ; 62.8 55.2 ; 1.7; ; ; 16.1 4511 ; ; 135.8: 208.0 154 ; 29.7 62.8; 36.5: ; ; ; 129.0: 282.4 156 1 3.4; 61.1: ; ; ; ; ! 64.5: 88.6 158 ; 11.0 A 61.1; ; ; ; 16.11 ; 88.2; 92.6 160 1 139.3. ; 1.71 ; 41.6: ; ; ; 182.6: 215.1 1 1 162 ; 141.0 1 ; ; 8.5: 43.3 1397j: 4.21 1 197.01 206.5 164 1 157.1 ; 1 ; 1 15.3 CLOSED: 1 1 172.41 205.4 1 1 166 1 110.4 1 : : : 15.3 668; ; : 125.11 145.9 : 1 168 ; 245.4 18.71 16.1! : 1 11.4 CLOSED: 1 1 291.2: 378.0 : 170 1 28.0 1.7: 51.8: : 1 22.1 CLOSED! ; ! 103.6, 157.8 1 i72 1 65.4 42.51 : : 3.41 14.4 522: ; ; 125.71 272.8 : 174 1 23.8 ; 29.91 : ! 56.9 27311 11.0: ; 120.61 120.8 ! : 116 : 11.91 49.31 ! 21.21 ! 6.81 : 89.2: 119.5 : 1 179 ! 17.8 66.2: ! 1 ! : : 1 84.01 217.9 : 1 180 1 2B.0 29.7 1 27.2: 1 1 : : 1 84.91 134.3 1 1 182 1 84.1 ; 1 1 : 1 ! M.G.C.- 9.9 ! 94.0: 100.9 1 184 1 62.8 17.01 1 1 : 1 21.21 M.G.C. 10.7 1 111.7: 121.3 1 186 1 26.3 13.6 57.71 24.61 :' : 1 72.2: 1 194.41 249.3 1 ! 190 1 86.6 5.1. 5.11 13.6: : ! : 1 1 110.4: 146.6 1 1 192 : 28.9 1 : ; : 1 3.41 1 32.31 34.1 194 1 86.6 11.0 3B.21 11.01 ! ! ! ! ; 146.81 245.6 1 ! 196 : 45.9 17.8 1 52.11, : 2.51 12.7 370: : 1 131.6: 172.9 198 1 101.1 100.2! ! : : ! 1 201.3! 251.E 1 ! 200 : 160.5 29.71 ! : 1 11.0 4971 ! ; 201.2: 282.7 1 IL02 1 105.3 : ; : 1 17.0 563: ; : 122.3; 137.6 1 : 204 1 78.1 : : : 9.3: 1 1 1 87.4: 104.0 : I ------------------------------------------------------------------------------------------------------------------------- EXISTING LAND USE ------------------------------------------------------------- RESIDENTIAL ; ----------- ; ; OPEN; SCHOOL ; VACANT; SPECIAL ; TOTAL TOTAL LOW MEDIUM HIGH; COMM.; MANU.; SPACE; ------ ; ; USERS ; ACRES DEMAND DENSITY DENSITY DENSITY; ; ; ; ; ------ NODE ; ACRES ACRES ACRES; ACRES; ACRES; ACRES; ACRES STUDENTS; ACRES ; NAME ACRES ; G.P.M. I-------------------------------------------------------------------------------------------------------------------------; 206 ; 129.1 ; 1.1; ; 11.0; ; ; 141.8; 169.2 208 ; 129.1 5.1 1.7; ; ; ; ; M.G.C. 57.9 ; 193.8 170.7 210 ; 36.5 135.0 ; 17.8; ; ; 56.9; ; 246.2; 363.9 212 ; 61.1 ; ; ; 61.1; 134.4 214 ; 33.1 34.0: i ; 4.2; 18.7 718; 0 1 150.5 1 216 ; 92.6 70.5 163.1; 266:2 218 1 59.4 6.8 39.9; ; ; ; 106.1; 194,0 220 1.6 /.b 48.4; ; ; ; ; ; 63.6; 156.5 222 ; 94.3; 40.8; ; ; ; ; H.C.A. 29.9 ; 165.0;1 319.6 224 ; 32.3 ; 111.3; ; ; ; ; H.C.A. 59.9 ; 203.5; 207.4 226 ; 6.8 ; ; ; 118.0 36i�0; 7.6; ; 132.4; 80.2 228 1 106.2 ; 28.9; ; 3.4; 15.3 461; ; ; 153.8; 178.0 230 ; 95.1 ; 8.5; ; ; 11.9 327; 115.5; 131.7 232 1 74.7 26.3; 26.3; ; 11.0; 57.7 2596; ; ; 196.0; 272.0 11.9 CLOSED! ; ; 11.9; 234 ; 40.4 ; ; I ; 12.7 408; ; 61.1; 66.2 ; 236 ; 168.2 5.9E 8.5E 15.3 309E ; ; 197.9; 235.0 238 ; , 147.8 18.7 ; ; ; 11.9E ; ; ; 178.4; 231.6 240 ; 96.0 ; 11.9E ; 11.9E 8.5 CLOSED; ; ; 128.3E 153.1 242 ; 134.2 8.5E ; 14.4 CLOSED; ; ; 157.1E 187.9 244 ; 83.2 ; 69.6E ; 3.4E 13.6 378E 8.5E ; 178.3E 201.6 246 ; ; 151.1E ; ; ; ; WEISER 27.2 ; 184.3E 294,2 248 ; 250 ; 61.1 ; ; ; ; 12.7 CLOSED; ; ; 73.8E 87.3 252 ; 111.3 6.8E ; 2.5; 33.1 980; ; ; 153.1E 164.8 254 ; 68.8 ; 34.0: ; ; ; 61.11 3.9E 126.8 McD-D 118.1 ; ' 256 28.0' WEISER 26.4 ; 2ii3.i; 339.5 258 ; ; 72.2E ; ; ; 48.4E McD-D 91.6 ; 212.2E 258.711 I 260 ; 147.8 ; ; ; ; 21.2 CLOSED; 13.6E ; 182.6E 2(10.7 ------------------------------------------------------------------------------------------------------------------------ TOTALS: 16784.6 22608.1 ACRES 7893.4 1373.0 1613.3 1928.3 48.4 819.9 936.3 29110 1419.4 752.6 16784.6 N/A GPM 9472.1 3020.6 4355.9 2506.8 179.1 901:9 234.3 592.2 .0 1355.2 N/A 22608.1 NOTES: 1. "M.G.C" IS MEADOWLARK GOLF COURSE; ALL IRRIGATION PUMPED FROM WELL ON SITE, NO DEMANDS ON SYSTEM. 2. "H.C.A." IS HUNTINGTON CENTER AREA AS BOUNDED BY EDINGER, S.P. RAILROAD, AND 405 FREEWAY. 3. CLOSED SCHOOLS ARE ASSUMED TO USE WATER AT THE RATE OF 1.0 GPM/ACRE FOR IRRIGATION AND MINIMAL USE. I ---------------------------------------------------------------------------------------------------------------; ZONING DESCRIPTION GPM/ACRE ---------------------------------------------------------------------------------------------------------------; R1,RA LOW DENSITY RESIDENTIAL 1.2 R2,MH MED. DENSITY RESIDENTIAL 2.2 R3,R4 HIGH DENSITY RESIDENTIAL 2.7 Ci,C2,C4, COMMERCIAL 1.3 RS,MI,CFC M2 MANUFACTURING 3.7 ROS,CFR OPEN SPACE, PARKS 1.1 CFE SCHOOL .02 GPMISTUDENT -------------------------------------------------------------------------------=------------------------------ ;---------------------------------------------------------------------------------------------------------------; SPECIAL WATER CONSUMERS ACRES GPM-1986 SPMiACRE -------------------------------------------------------------------------------------------------------------- COUNTY SANITATION DISTRICTS PLANT i2 125.1 162.6 1.30 WEISER LOCK COMPANY 53.6 177.0 3.30 SHELL PRODUCTION 95.8 182.0 1.90 MCDONNELL DOUGLAS 209.7 377.5 1.80 SOUTHERN CALIFORNIA EDISON 100.0 420.2 4.20 HUNTINGTON CENTER AREA 89.8 35.9 .40 MEADOWLARK GOLF COURSE 70.5 TOTAL 752.6 1355.2, -------------------------------------------------------------------------------------------------------------- NEW WORKFILE TITLE CITY OF HUNTINGTON BEACH Existing System -- PEAK HOUR DEMAND ********FILENAME=PHEX UNITS 0 0 0 0 0 0 0 FACTORS 4 1 . 0 LIMITS 50 . 1 . 1 10 . 1 10 40 80 UNKNOWNS 262 20 30 *Peck Res . 301 50 20 *Overmyer Res . 290 -34 11 276 -98 1 270 -62 5 274 -59 6 264 -89 7 284 -64 9 286 -55 10 PIPES 2 2 4 2480 16 130 4 6 2 2000 12 130 6 6 4 1600 12 130 8 8 6 2600 12 130 10 8 10 2900 12 130 12 12 10 970 10 130 14 14 4 2900 16 130 16 16 6 2620 12 130 18 18 8 2640 12 130 20 20 12 2350 12 130 22 22 12 2280 12 130 24 16 14 2600 12 130 26 16 18 2610 12 130 28 20 18 2510 12 130 30 24 14 2620 16 130 32 26 16 2700 12 130 34 28 18 2700 12 130 36 30 20 2570 12 130 38 22 32 3430 8 130 40 26 24 2680 12 130 42 26 28 2640 12 130 44 30 28 2670 12 130 46 30 32 2550 12 130 48 32 34 2800 12 130 50 36 24 2640 16 130 52 38 26 2600 12 130 54 40 28 2580 12 130 56 42 30 2640 12 130 58 46 34 2320 12 130 60 36 38 2640 12 130 62 38 40 2640 12 130 64 40 42 2700 12 130 66 44 42 2550 12 130 68 46 48 700 12 130 70 50 36 2550 16 130 72 52 38 2640 12 130 74 54 40 2650 12 130 76 56 42 2620 12 130 78 58 44 2640 8 130 80 62 46 2950 12 120 82 64 48 5300 12 130 84 50 52 2700 12 130 86 52 54 2600 12 130 88 54 56 2640 12 130 90 56 58 2660 12 130 92 58 60 1330 12 130 94 60 62 1130 8 130*8 & 12 96 66 52 2640 12 130 97 68 54 2640 12 130 98 70 56 2640 12 130 99 58 72 2640 8 130 100 58 72 2640 8 130 101 74 60 2640 12 130 102 80 62 3200 12 120 104 64 84 2850 12 70 106 64 84 2800 16 130 108 50 66 5250 30 120 110 68 66 2640 30 120 112 68 70 2680 30 120 114 68 70 2680 12 130 116 70 72 2600 12 130 118 70 72 2600 30 120 120 74 72 1450 30 120 122 74 76 600 30 120 124 76 78 150 8 130 126 80 78 1050 12 130 128 82 80 1150 12 130 129 92 82 1350 12 130 130 82 84 1250 12 130 132 50 98 5300 12 130 134 66 100 2580 12 130 136 102 68 2640 12 130 138 104 70 2630 12 130 140 86 72 1320 12 130 142 106 86 1320 12 130 144 86 88 1450 14 120 146 108 88 1280 12 130 148 88 90 650 14 120 149 88 74 1350 12 130 150 90 92 1750 12 130 151 76 90 1300 30 120 152 90 96 3150 42 120 154 90 94 2700 15 120 156 92 94 1100 12 130 158 98 100 2680 12 130 160 100 102 2680 12 130 162 102 104 2750 12 130 164 104 106 2580 12 130 166 106 108 1500 12 130 168 108 110 700 12 130 170 112 90 950 21 120 171 112 90 950 16 130 172 110 112. 350 21 120 174 116 110 750 21 120 176 96 114 3400 42 120 178 118 104 2640 12 130 179 106 120 2640 8 130 180 120 106 2640 6 130 182 120 116 2550 12 130 184 122 116 1900 21 120 186 126 94 3300 14 70 188 128 114 4000 42 120 190 118 120 2550 8 130 192 120 122 2150 8 130 194 122 124 600 8 130 196 131 118 2640 8 130 197 132 130 800 8 130 198 130 129 850 6 130 199 129 120 1250 8 130 200 132 120 2750 8 130 201 134 122 2640 21 120 202 136 124 3250 12 130 204 138 126 880 14 60 206 140 128 700 12 130 208 128 142 1800 12 130 210 142 144 1150 12 130 212 292 132 1950 8 130 214 132 134 2000 12 130 216 134 136 1200 12 130 218 136 138 2050 12 130 220 146 164 2200 12 130 222 140 142 1800 12 130 224 128 146 4200 42 120 226 146 144 650 24 120 228 131 152 2700 8 130 230 154 132 3150 8 130 232 156 134 2640 21 120 234 158 136 2640 12 130 236 160 150 1400 12 130 238 150 148 700 14 130 240 148 138 500 12 130 242 162 140 2640 12 130 244 164 146 2120 42 120 246 152 154 2640 8 130 248 156 154 2640 8 130 250 156 158 1300 12 130 252 158 160 2000 12 130 254 160 162 2660 12 130 256 162 164 2660 12 130 257 180 164 2700 12 130 258 164 166 2640 12 130 260 168 152 2550 12 130 261 168 170 2330 21 120 262 170 154 3050 8 130 263 172 170 2000 21 120 264 172 156 2650 21 120 265 172 174 1350 16 130 266 174 158 2650 8 130 267 174 176 1950 16 130 269 176 178 2640 16 130 270 178 162 2700 12 130 271 178 180 2700 16 120 272 180 164 2700 42 120 273 180 182 1150 16 120 274 166 184 2680 12 130 275 182 184 1550 16 125 277 186 184 2650 16 125 279 190 186 2750 16 125 280 190 192 1340 16 125 282 194 192 3200 14 130 284 194 218 5300 14 130 286 196 170 2660 8 130 288 198 174 '2640 12 130 290 200 176 2500 12 130 292 202 204 2700 8 130 294 204 178 800 12 130 296 206 180 2700 36 120 298 206 182 3800 12 130 300 208 . 184 2640 12 130 301 186 210 2640 8 130 302 212 190 2640 12 130 304 196 198 3300 8 130 306 198 200 2700 12 130 308 200 202 2640 12 130 310 202 206 2640 12 130 312 206 208 2640 12 130 314 208 210 2640 12 130 316 212 210 2640 12 130 318 212 214 1300 12 130 320 196 222 2700 12 130 322 224 272 1320 12 130 324 228 200 2640 12 130 326 230 202 3000 12 130 328 232 206 2640 36 120 330 236 210 2700 12 130 332 216 214 1000 10 130 334 238 216 2100 8 130 336 302 220 4500 12 130 338 220 218 1250 8 130 340 288 224 1700 12 130 342 224 228 2000 12 130 344 228 230 2640 12 130 346 230 232 2640 12 130 348 232 234 2640 12 130 350 234 236 2640 12 130 352 236 238 5030 12 130 354 226 224 1300 12 130 356 240 228 2700 12 130 358 242 230 2700 12 130 360 244 232 2700 36 120 362 246 234 2700 12 130 364 250 236 2680 12 130 366 226 240 3800 8 130 368 240 242 2640 10 130 370 242 244 2660 10 130 372 244 246 2550 12 130 374 246 248 1500 12 130 376 248 250 1200 10 130 378 242 252 2540 12 130 380 254 244 2640 36 120 382 256 246 2540 12 130 384 258 250 2640 12 130 386 252 278 1750 12 130 388 254 256 2600 12 130 390 256 258 2640 12 130 392 254 260 2600 36 120 327 232 206 2640 12 130 408 278 254 900 12 130 406 278 276 170 8 130*WELL 1 400 270 168 970 12 130*WELL 5 414 284 168 1990 16 130*WELL 9 396 264 266 250 12 130*WELL 7 395 266 260 100 36 130 394 262 260 150 36 130*PECK RES . 418 286 288 1050 16 130*WELL 10 416 288 222 1600 12 130 402 272 274 200 12 130*WELL 6 404 272 198 1380 12 130 420 292 290 1400 6 120*DYKE WELL 422 292 131 750 8 130 424 294 50 2200 30 120*OC44 450 222 300 2850 12 130 452 168 300 5300 22 120*OC9 500 301 112 100 36 . 8 120*Overmyer Res . 501 238 302 2000 12 130 502 84 95 1000 16 130 503 95 96 452 24 120 504 3C)4 266 1C) 36 13C)*OC35 516 114 115 3490 12 130 517 115 64 6850 12 130 NODES 2 0 5 0 51600 8020 4 0 5 0 53160 10000 6 C) 5 C) 51600 10000*Banning 8 0 5 0 48920 10000 10 C) 4 0 46570 10000 12 0 4 C) 45820 10500 14 C) 6 C) 54240 12640 16 0 7 0 51600 12640 18 0 4 0 48960 12640 20 0 2 0 46320 12640 22 0 4 0 43720 12050 24 0 6 0 54240 15280 26 0 8 0 51600 15280 28 0 4 C) 48960 15280 30 C) 4 0 46320 15280 32 0 6 0 43720 15280 34 0 30 C► 41300 15280 36 C) 8 C) 54240 17920 38 0 9 0 51600 17920 40 0 6 0 48960 17920 42 0 6 0 46320 17920 44 C) 18 0 43720 17920 46 C► 36 0 41300 17630 48 0 36 0 40600 17630 50 0 12 () 54240 20560 52 0 10 0 51600 20560 54 0 7 0 48960 20560 56 0 10 0 46320 20560 58 0 25 0 43720 20560 60 0 35 0 42400 20560 62 0 40 0 41300 20560 64 0 75 0 36640 21100 66 0 10 0 51600 23200 68 0 8 0 48920 23200 70 0 10 0 46320 23200 72 0 55 0 43720 23200 74 0 50 0 42400 23300 76 0 50 0 41700 23300 78 0 50 0 41700 23000 80 0 50 0 40870 23000 82 0 75 0 39970 23200 84 0 75 0 38480 23200 86 0 57 0 43720 24490 88 0 50 0 42400 24490 90 0 60 0 41700 24490 92 0 70 0 -40070 24340 94 0 115 0 38920 24340 96 0 95 0 38340 24840 98 0 16 0 54240 25840 100 0 15 0 51600 25840*Flounder 102 0 12 0 48960 25840 104 0 14 0 46320 25840 106 0 58 0 43720 25840 108 0 55 0 42400 25840 110 0 60 0 41700 2.5840 112 0 60 0 41700 25500 114 0 93 0 35840 2.5840 116 0 60 0 41700 26640 118 0 13 0 46320 28480 120 0 55 0 43720 28480 122 C► 35 0 41700 28480 124 0 25 0 41120 28340 126 0 40 0 38480 30070 128 0 5 0 35840 29920 129 0 45 0 44000 29680 130 0 45 0 44000 30420 131 0 45 0 46320 31120 132 0 55 0 43720 31120 134 0 50 0 41700 31120 136 0 50 0 40420 31120 138 0 40 0 38480 31120 140 0 2 0 35840 31120 142 0 2 0 34190 30820 144 0 2 0 33200 31120 146 0 2 0 33200 31570 148 C) 40 0 38480 31620 150 0 40 0 38480 32120 152 0 28 0 46320 33720 154 0 25 0 43720 33720 156 0 25 0 41700 33720 158 0 30 0 40420 33720 160 0 5 0 38480 33720 162 0 3 0 35840 33720 164 0 2 0 33200 33720 166 0 2 0 30560 33720 168 0 27 0 46320 36320 170 0 26 0 43720 36320 172 0 25 0 41700 36320 174 0 25 0 40420 36320 176 0 12 0 38480 36320 178 0 5 0 35840 36320 180 0 5 0 33200 36320 182 0 5 0 31910 36320 184 0 5 0 30560 36320 186 0 34 0 27920 36320 190 0 35 0 25280 36320 192 0 55 0 25280 34970 194 0 5 0 22350 34970 196 0 25 0 43720 38960 198 0 17 0 40420 38960 200 0 14 0 38480 38960*Heil 202 0 10 () 35840 38960 204 0 10 0 35840 37320 206 0 9 () 33200 38960 208 0 14 0 30560 38960 210 0 15 0 27920 38960 212 0 9 0 25280 38960 214 0 9 0 24180 38960 216 0 9 0 24130 40050 218 0 5 0 18200 38270 220 0 5 0 17250 39500 222 0 26 0 43720 41600 224 0 21 0 40420 41600 226 0 23 0 40420 42800 228 0 20 0 38480 41600 230 0 12 0 35840 41600 232 C) 10 0 33200 41600 234 0 12 0 30560 41600 236 0 15 0 27920 41600*Scenario 238 0 5 0 23080 41600 240 0 21 0 38480 44240 242 0 15 0 35840 44240 244 0 16 0 33200 44240 246 0 14 0 30560 44240 248 0 14 0 29160 44240 250 0 13 0 27920 44240 252 0 22 C) 35840 46880 254 0 18 0 33200 46880 256 0 17 0 30560 46880 258 0 17 0 27920 46880 260 0 23 0 33200 49200 276 0 17 0 34100 46200*WELL 1 264 0 18 0 32600 50000*WELL 7 266 0 23 0 33200 50000 262 0 34 0 32400 49200*PECK RES . 270 0 27 0 47300 36320*WELL 5 284 0 27 0 48300 36700*WELL 9 286 0 19 0 42120 40200*WELL 10 288 0 22 0 42120 41600 290 0 44 0 45570 29720*DYKE WELL 278 0 19 0 34100 46880 292 0 48 0 45570 31120 294 0 12 0 56440 20560*OC44,Adams 300 0 25 0 46320 41600*OC9 274 0 19 0 40000 40340*WELL 6 272 0 25 0 40420 40340 301 C) 65 0 41200 25500*Overmyer Res . 302 0 5 0 21080 41600 95 0 103 0 38480 24200*Reservoir Hill 304 0 25 0 33200 50400*OC35 115 0 35 0 32600 24640 COORDINATE PIPES 112 48720 23000 46520 23000 114 48720 23400 46520 23400 116 46120 23000 43920 23000 118 46120 23400 43920 23400 102 40700 22560 40700 21760 41300 21760 104 38480 22600 176 38340 25740 186 38340 25800 152 41000 25100 154 41300 24800 39200 24800 208 34960 30220 222 34300 31120 224 35500 31000 34300 31000 34300 31570 202 40420 28420 284 21400 34920 18800 37720 336 19800 41600 366 40700 43240 40700 44240 334 23530 40600 24130 40450 298 32840 38520 32840 37320 31910 36970 327 33700 41000 33700 39300 257 33700 36000 33700 34000 108 53800 21000 53800 23200 276 27920 35120 10 48320 8950 14 54100 11550 5"3800 10700 20 46320 11050 126 41300 22900 128 40470 23200 220 33700 32000 33700 33000 414 46520 36700 171 41900 25300 41900 24600 99 44000 20760 44000 23000 179 44000 26040 44000 28280 197 44000 30920 199 44000 28680 516 34200 25840 517 32600 23340 34640 21190 PUMP CURVES 11 0 330 200 306 400 256 600 180 800 72 1 0 440 200 399 400 348 600 311 800 287 1000 205 1200 98 5 0 471 1882 359 2259 337 3012 292 3765 224 4518 143 4894 98 6 0 488 1761 318 2201 296 2641 287 3081 257 3521 206 3962 148 7 0 397 2817 299 3286 291 3756 268 4225 238 4695 208 5164 174 9 0 544 1170 424 1873 366 3277 283 3745 237 4214 173 10 0 562 1859 369 2324 341 2789 305 3253 264 3718 222 20 0 132 10000 131 20650 130 21875 114 22525 106 22875 100 23350 93 23775 8 30 0 172 7500 171 15000 169 15800 157 16100 151 16250 146 16500 141 16750 13 FIXED DEMAND 294 6700 *OC44 300 4500 *OC9 304 9000 *OC35 DEMANDS 2 -190 . 3 4 -89 . 8 6 -158 . 4 8 -225 . 2 10 -375 . 1 12 -118 . 4 14 -244 . 5 16 -172 . 7 18 -176 . 5 20 -79 . 4 22 -73 . 4 24 -169 . 1 26 -176 . 5 28 -128 . 1 30 -303 . 1 32 -356 . 6 34 -185 . 8 36 -266 . 5 38 -230 . 6 40 -261 . 9 42 -291 . 7 44 -172 . 7 46 -231 . 7 48 -504 . 4 50 -349 . 3 52 -267 . 1 54 -185 . 4 56 -200 . 8 58 -210 . 8 60 -148 . 7 62 -287 . 9 64 -786 . 2 66 -229 . 3 68 -208 . 3 70 -199 . 1 72 -92 . 2 74 -190 . 1 76 . 0 78 . 0 80 . 0 82 -124 . 2 84 -92 . 0 86 -69 . 3 88 -142 . 4 90 . 0 92 -112 . 3 94 -17 . 4 95 -95 . 6 96 -220 . 0 98 -348 . 3 100 -85 . 6 102 -98 . 5 104 -143 . 0 106 -297 . 3 108 -54 . 1 110 0 112 -11 . 1 114 -422 . 8 116 -29 . 6 118 -115 . 5 120 -105 . 5 122 -167 . 5 124 -45 . 2 126 -60 . 7 128 -137 . 9 130 -117 . 5 132 -231 . 1 134 -94 . 9 136 -65 . 1 138 . 0 140 -133 . 6 142 -79 . 4 144 -88 . 7 146 -102 . 6 148 -127 . 9 150 . 0 152 -208 . 0 154 -282 . 4 156 -88 . 6 158 -92 . 6 160 -215 . 1 162 -206 . 5 164 -205 . 4 166 -145 . 8 168 -378 . 0 170 -157 . 8 172 -272 . 8 174 -120 . 8 176 -119 . 5 178 -217 . 9 180 -134 . 3 182 -100 . 9 184 -121 . 3 186 -249 . 3 190 -146 . 6 192 -34 . 7 194 -245 . 6 196 -172 . 9 198 -251 . 6 200 -282 . 7 202 -137 . 6 204 -104 . 0 206 -169 . 2 208 -170 . 7 210 -363 . 9 212 -134 . 4 214 -150 . 5 216 -266 . 2 218 -194 . 0 220 -156 . 5 222 -319 . 6 224 -207 . 4 226 -80 . 2 228 -178 . 0 230 -131 . 7 232 -272 . 0 234 -66 . 2 236 -235 . 0 238 -231 . 6 240 -153 . 1 242 -187 . 9 244 -201 . 6 246 -294 . 2 248 . 0 250 -87 . 3 252 -164 . 8 254 -126 . 8 256 -339 . 5 258 -258 . 7 260 -200 . 7 run end CITY OF HUNTINGTON BEACH FBI, SBP 4, 1987, 2:34 AN Existing System -- PEAK HOUR DEMAND INPUT FILE NAME PHEX NUMBER OF PIPES 240 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 9 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 4.000 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gpm MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40, Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pet STATIC HGL ELEVATION 0, Feet SUM OF (-► FIXED DEMANDS = 00 SUM OF FIXED DEMANDS = 20200.00 SUM OF PEAKABLE DEMANDS =-22608.59 SUM OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -90434.36 SUN OF ALL DEMANDS --------- -70234.36 Solution reached in 31 iterations Last flow correction Was .10 CITY OF HUNTINGTON BEACH FHI, SEP 4, 1987, 2:35 AN PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpo Fps CH ft ft/1000 CB ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 860 1.4 1.2 .5 4 2 6 2000 12.0 130 99 .3 .1 .0 LO 6 4 6 1600 12.0 130 527 1.5 1.2 .8 8 6 8 2600 12.0 130 756 2.1 3.9 1.5 10 8 10 2900 12.0 130 785 2.2 4.7 1.6 12 12 10 970 10.0 130 715 2.9 3.2 3.3 14 14 4 2900 16.0 130 1746 2.8 5.1 1.8 16 16 6 2620 12.0 130 763 2.2 4.0 1.5 18 18 8 2640 12.0 130 930 2.6 5.9 2.2 20 20 12 2350 12.0 130 1073 3.0 6.8 2.9 22 22 12 2280 12,0 130 116 .3 .1 .0 LO 24 14 16 2600 12.0 130 566 1.6 2.3 .9 26 16 18 2610 12.0 130 538 1.5 2.1. .8 28 18 20 2510 12.0 130 265 .8 .5 .2 30 24 14 2620 16.0 130 3291 5.3 14.9 5.7 32 26 16 2700 12.0 130 1425 4.0 13.2 4.9 34 28 18 2700 12.0 130 1364 3.9 12.2 4.5 36 30 20 2570 12.0 130 1126 3.2 8.1 3.2 38 32 22 3430 8.0 130 409 2.6 12.0 3.5 40 24 26 2680 12.0 130 747 2.1 4.0 1.5 42 26 28 2640 12.0 130 663 1.9 3.1 1.2 44 28 30 2670 12.0 130 811 2.3 4.6 1.7 46 30 32 2550 12.0 130 640 1.8 2.8 1.1 48 34 32 2800 12.0 130 1196 3.4 9.9 3.5 50 36 24 2640 16.0 130 4714 7.5 29.1 11.0 HI 52 38 26 2600 12.0 130 2047 5.8 24.9 9.6 54 40 28 2580 12.0 130 2024 5.7 24.2 9.4 56 42 30 2640 12.0 130 2166 6.1 28.0 10.6 HI 58 46 34 2320 12.0 130 1939 5.5 20.1 8.6 60 36 38 2640 12.0 130 1118 3.2 8.2 3.1 62 38 40 2640 12.0 130 739 2.1 3.8 1.4 64 40 42 2700 12.0 130 298 .8 .7 .3 66 44 42 2550 12.0 130 332 .9 .8 .3 68 48 46 700 12.0 130 571 1.6 .6 .9 70 50 36 2550 16.0 130 6899 11.0 HI 57.0 22.3 HI 72 52 38 2640 12.0 130 2590 7.3 39.0 14.8 HI 74 54 40 2650 12.0 130 2631 7.5 40.3 15.2 HI 76 56 42 2620 12.0 130 2703 7.7 41.9 16.0 HI 78 58 44 2640 8.0 130 1023 6.5 50.3 19.1 HI 80 62 46 2950 12.0 120 2295 6.5 40.4 13.7 HI 82 64 48 5300 12.0 130 2589 7.3 78.3 14.8 HI 84 50 52 2700 12.0 130 2062 5.9 26.2 9.7 86 52 54 2600 12.0 130 597 1.7 2.5 1.0 88 56 54 2640 12.0 130 329 .9 .9 .3 90 58 56 2660 12.0 130 1187 3.4 9.3 3.5 92 60 58 1330 12.0 130 1228 3.5 4.9 3.7 94 60 62 1130 8.0 130 889 5.7 16.6 14.7 HI 8 A 12 96 66 52 2640 12.0 130 2193 6.2 28.7 10.9 HI 97 68 54 2640 12.0 130 2446 6.9 35.1 13.3 HI 98 70 56 2640 12.0 130 2649 7.5 40.7 15.4 HI 99 72 58 2640 8.0 130 913 5.8 40.7 15.4 HI 100 72 58 2640 8.0 130 913 5.8 40.7 15.4 HI 101 74 60 2640 12.0 130 2712 7.7 42.5 16.1 HI 102 80 62 3200 12.0 120 2557 7.3 53.6 16.7 HI 10t 84 64 2850 12.0 70 919 2.6 19.4 6.8 CITY OF HUNTINGTON BEACH FBI, BHP 4, 1987, 2:35 AM PIPE --NODBB-- LENGTH DIAM -FLOW- -VELOCITY- ---BBADL08B--- NO FROM TO Feet Inches H-V C Gpn Fps CE ft ft/1000 CB ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 3671 519 19.4 6.9 108 66 50 5250 30.0 120 4172 1.9 2.5 .5 110 68 66 2640 30.0 120 7660 3.5 3.9 1.5 112 70 68 2680 30.0 120 9961 4.5 6.4 2.4 114 70 68 2680 12.0 130 969 2.7 6.4 2.4 116 72 70 2600 12.0 130 1207 3.4 9.3 3.6 118 72 70 2600 30.0 120 12401 5.6 9.3 3.6 120 74 72 1450 30.0 120 14169 6.4 6.7 4.6 122 76 74 600 30.0 120 16107 7.3 3.5 5.8 124 76 78 150 8.0 130 1317 8.4 4.6 30.4 HI 126 78 80 1050 12.0 130 1317 3.7 4.4 4.2 128 82 80 1150 12.0 130 1240 3.5 4.3 3.8 129 92 82 1350 12.0 130 1676 4.8 8.9 6.6 130 84 82 1250 12.0 130 60 .2 .0 .0 LO 132 50 98 5300 12.0 130 514 1.5 3.9 .7 134 66 100 2580 12.0 130 377 1.1 1.1 .4 136 102 68 2640 12.0 130 10 .0 LO .0 .0 LO 138 104 70 2630 12.0 130 768 2.2 4.1 1.6 140 86 72 1320 12.0 130 1633 4.6 8.3 6.3 142 106 86 1320 12.0 130 117 .3 .1 .0 LO 144 88 86 1450 14.0 120 1793 3.7 5.9 4.1 146 108 88 1280 12.0 130 1459 4.1 6.5 5.1 148 90 88 650 14.0 120 2438 5.1 4.7 7.2 149 88 74 1350 12.0 130 1534 4.4 7.6 5.6 150 90 92 1750 12.0 130 1009 2.9 4.5 2.6 151 90 76 1300 30.0 120 17424 7.9 8.8 6.7 152 96 90 3150 42.0 120 690 .2 .0 .0 LO 154 90 94 2700 15.0 120 616 1.1 1.1 .4 156 94 92 1100 12.0 130 1116 3.2 3.4 3.1 158 100 98 2680 12.0 130 879 2.5 5.4 2.0 160 102 100 2680 12.0 130 844 2.4 5.0 1.9 162 104 102 2750 12.0 130 1247 3.5 10.5 3.8 164 106 104 2580 12.0 130 1485 4.2 13.6 5.3 166 108 106 1500 12.0 130 1893 5.4 12.4 8.3 168 110 108 700 12.0 130 3568 10.1 HI 18.7 26.7 HI 170 112 90 950 _ 21.0 120 13594 12.6 HI 23.0 24.2 HI 171 112 90 950 16.0 130 7203 11.5 HI 23.0 24.2 HI 172 112 110 350 21.0 120 6918 6.4 2.4 6.9 174 110 116 750 21.0 120 3349 3.1 1.4 1.8 176 114 96 3400 42.0 120 6970 1.6 .8 .2 178 118 104 2640 12.0 130 1102 3.1 8.0 3.0 179 120 106 2640 8.0 130 612 3.9 19.4 7.4 180 120 106 2640 6.0 130 287 3.3 19.4 7.4 182 116 120 2550 12.0 130 1290 3.7 10.4 4.1 184 116 122 1900 21.0 120 1941 1.8 1.3 .7 186 126 94 3300 14.0 70 570 1.2 4.4 1.3 188 128 114 4000 42.0 120 9806 2.3 1.8 .5 190 120 118 2550 8.0 130 715 4.6 25.0 9.8 192 122 120 2150 8.0 130 454 2.9 9.1 4.2 194 122 124 600 8.0 130 486 3.1 2.9 4.8 196 131 118 2640 8.0 130 849 5.4 35.7 13.5 HI 197 132 130 800 8.0 130 500 3.2 4.1 5.1 198 130 129 850 6.0 130 30 .3 ,1 .1 199 129 120 1250 8.0 130 30 .2 .0 .0 LO 20T 132 120 2750 8.0 130 261 1.7 4.2 1.5 CITY OF HUNTINGTON BEACH FBI, SEP 4, 1987, 2:35 AN PIPE --NODBS-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpn Fps CB ft ftI1000 CB ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 201 122 134 2640 21.0 120 331 .3 .1 .0 LO 202 124 136 3250 12.0 130 305 .9 .9 .3 204 138 126 880 14.0 60 813 1.7 3.0 3.4 206 140 128 700 12.0 130 210 .6 .1 .1 208 142 128 1800 12.0 130 223 .6 .3 .2 210 144 142 1150 12.0 130 718 2.0 1.6 1.4 212 292 132 1950 8.6 130 430 2.7 7.5 3.8 214 134 132 2000 12.0 130 977 2.8 4.9 2.4 216 134 136 1200 12.0 130 1116 3.2 3.7 3.1 218 136 138 2050 12.0 130 1249 3.5 7.8 3.8 220 164 146 2200 12.0 130 432 1.2 1.2 .5 222 142 140 1800 12.0 130 177 .5 .2 .1 224 146 128 4200 42.0 120 9924 2.3 1.9 .5 226 146 144 650 24.0 120 1073 .8 .1 .1 228 152 131 2700 8.0 130 604 3.9 19.4 7.2 230 154 132 3150 8.0 130 279 1.8 5.4 1.7 232 156 134 2640 21.0 120 2142 2.0 2.1 .8 234 158 136 2640 12.0 130 88 .2 .1 .0 LO 236 160 150 1400 12.0 130 76 .2 .0 .0 LO 238 150 148 700 14.0 130 76 .2 .0 .0 LO 240 138 148 500 12.0 130 436 1.2 .3 .5 242 162 140 2640 12.0 130 567 1.6 2.3 .9 244 164 146 2120 42.0 120 10975 2.5 1.2 .6 246 152 154 2640 8.0 130 629 4.0 20.5 7.7 . 248 156 154 2640 . 8.0 130 155 1.0 1.5 .6 250 156 158 1300 12.0 130 1349 3.8 5.7 4.4 252 158 160 2000 12.0 130 1292 3.7 8.2 4.1 254 160 162 2660 12.0 130 356 1.0 1.0 .4 256 164 162 2660 12.0 130 288 .8 .1 .3 257 180 164 2700 12.0 130 540 1.5 2.2 .8 258 164 166 2640 12.0 130 1468 4.2 13.6 5.2 260 168 152 2550 12.0 130 2065 5.9 24.8 9.7 261 168 170 2330 21.0 120 8171 7.6 22.0 9.4 262 170 154 3050 8.0 130 624 4.0 23.3 7.6 263 170 172 2000 21.0 120 7245 6.7 15.1 7.5 264 172 156 2650 21.0 120 4001 3.7 6.7 2.5 265 172 174 1350 16.0 130 2153 3.4 3.5 2.6 266 174 158 2650 8.0 130 401 2.6 8.9 3.4 267 174 176 1950 16.0 130 2297 3.7 5.7 2.9 269 176 178 2640 16.0 130 2403 3.8 8.4 3.2 270 178 162 2700 12.0 130 749 2.1 4.0 1.5 271 178 180 2700 16.0 120 750 1.2 1.1 .4 272 180 164 2700 42.0 120 13445 3.1 2.2 .8 273 180 182 1150 16.0 120 3222 5.1 7.3 6.3 274 166 184 2680 12.0 130 884 2.5 5.4 2.0 275 182 184 1550 16.0 125 4061 6.5 14.0 9.0 277 184 186 2650 16.0 125 4062 6.5 23.9 9.0 279 186 190 2750 16.0 125 2995 4.8 14.1 5.1 280 190 192 1340 16.0 125 1934 3.1 3.1 2.3 282 192 194 3200 14.0 130 1795 3.7 11.3 3.5 284 194 218 5300 14.0 130 812 1.7 4.3 .8 286 196 170 2660 8.0 130 328 2.1 6.2 2.3 288 198 174 2640 12.0 130 1028 2.9 7.0 2.7 290 200 176 2500 12.0 130 585 1.7 2.3 .9 292 202 204 2700 8.0 130 383 2.4 8.3 3.1 CITY OF HUNTINGTON BEACH FBI, SHP 4, 1987, 2:35 AN PIPE --NODBS-- LENGTH DIAM -FLOW- -VELOCITY- ---HBADLOSS--- NO FROM TO Feet Inches H-W C Gpn Fps CE ft ft/1000 CB ---- ---- ---- ------ ------ ------ ------ -=---- -- --- ------- -- 294 178 204 800 12.0 130 33 .1 LO .0 .0 LO 296 206 180 2700 36.0 120 16994 5.4 7.2 2.6 298 206 182 3800 12.0 130 1243 3.5 14.4 3.8 300 184 208 2640 12.0 130 399 1.1 1.2 .5 301 186 210 2640 8.0 130 70 .4 .4 .1 302 190 212 2640 12.0 130 475 1.3 1.7 .6 304 196 198 3300 8.0 130 516 3.3 17.7 5.4 306 198 200 2700 12.0 130 1252 3.6 10.4 3.8 308 200 202 2640 12.0 130 571 1.6 2.4 .9 310 202 206 2640 12.0 130 566 1.6 2.3 .9 312 206 208 2640 12.0 130 2231 6.3 29.6 11.2 HI 314 208 210 2640 12.0 130 1947 5.5 23.0 8.7 316 210 212 2640 12.0 130 1569 4.5 15.4 5.8 318 212 214 1300 12.0 130 1506 4.3 7.0 5.4 320 222 196 2700 12.0 130 1536 4.4 15.2 5.6 322 272 224 1320 12.0 130 1212 3.4 4.8 3.6 324 228 200 2640 12.0 130 1035 2.9 7.1 2.7 326 230 202 3000 12.0 130 928 2.6 6.6 2.2 327 232 206 2640 12.0 130 1169 3.3 8.9 3.4 328 232 206 2640 36.0 120 19410 6.1 8.9 3.4 330 236 210 2700 12.0 130 1007 2.9 6.9 2.6 332 214 216 1000 10.0 130 904 3.7 5.1 5.1 334 238 216 2100 8.0 130 161 1.0 1.3 .6 336 302 220 45DO 12.0 130 590 1.7 4.3 1.0 338 218 220 1250 8.0 130 36 .2 .0 .0 LO 340 288 224 1700 12.0 130 2620 7.4 25.7 15.1 HI 342 224 228 2000 12.0 130 2185 6.2 21.6 10.8 HI 344 228 230 2640 12.0 130 634 1.9 2.9 1.1 346 230 232 2640 12.0 130 32 .1 LO .0 .0 LO 348 232 234 2640 12.0 130 2072 5.9 25.8 9.8 350 234 236 2640 12.0 130 2199 6.2 28.8 10.9 HI 352 236 238 5030 12.0 130 1677 4.8 33.2 6.6 354 224 226 1300 12.0 130 817 2.3 2.3 1.7 356 240 228 2700 12.0 130 196 .6 .3 .1 358 242 230 2700 12.0 130 852 2.4 5.1 1.9 360 244 232 2700 36.0 120 23708 7.5 13.3 4.9 362 246 234 2700 12.0 130 391 1.1 1.2 .4 364 250 236 2680 12.0 130 1425 4.0 13.1 4.9 366 226 240 3800 8.0 130 496 3.2 19.0 5.0 368 242 240 2640 10.0 130 312 1.3 1.9 .7 370 244 242 2660 10.0 130 685 2.8 8.1 3.1 372 244 246 2550 12.0 130 2596 7.4 37.9 14.8 HI 374 246 248 1500 12.0 130 1249 3.5 5.7 3.8 376 248 250 1200 10.0 130 1249 5.1 11.2 9.3 378 252 242 2540 12.0 130 1230 3.5 9.5 3.7 380 254 244 2640 36.0 120 27796 8.8 17.4 6.6 382 256 246 2540 12,0 130 221 .6 .4 .2 384 258 250 2640 12.0 130 526 1.5 2.0 .8 386 278 252 1750 12.0 130 1889 5.4 14.4 8.2 388 254 256 2600 12.0 130 3139 8.9 54.9 21.1 HI 390 256 258 2640 12.0 130 1560 4.4 15.3 5.8 392 260 254 2600 36.0 120 32286 10.2 HI 22.6 8.7 394 262 260 150 36.0 130 19342 6.1 .4 2.9 PECK BBB. 395 266 260 100 36.0 130 13747 4.3 .2 1.5 396- 264 266 250 12.0 130 4747 13.5 HI 11.3 45.4 HI WELL 7 CITY OF HUNTINGTON BEACH FBI, SEP 4, 1987, 2:35 AN PIPE --NODBS-- LENGTH DIAN -FLOW- -VELOCITY- ---HBADLOSS--- NO FROM TO Feet Inches H-W C Gpm Fps CB ft ft(1000 CB ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 400 270 168 970 12.0 130 4119 11.7 HI 33.8 34.9 HI WELL 5 402 274 272 200 12.0 130 3983 11.3 HI 6.6 32.8 HI WELL 6 404 272 198 1380 12.0 130 2771 7.9 23.1 16.7 HI 406 276 278 170 8.0 130 1045 6.7 3.4 19.8 HI WELL 1 408 254 278 900 12.0 130 844 2.4 1.7 1.9 414 284 168 1990 16.0 130 4221 6.7 17.9 9.0 WELL 9 416 288 222 1600 12.0 130 1723 4.9 11.1 6.9 418 286 288 1050 16.0 130 4343 6.9 10.0 9.5 WELL 10 420 290 292 1400 6.0 120 676 7.7 58.3 41.6 HI DYKE WELL 422 292 131 750 8.0 130 245 1.6 1.0 1.4 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1092 3.1 8.5 3.0 452 300 168 5300 22.0 120 3408 2.9 7.9 1.5 OC9 500 301 112 100 36.8 120 27758 8.4 .6 5.9 Overmyer Res. 501 238 302 2000 12.0 130 590 1.7 1.9 1.0 502 95 84 1000 16.0 130 5018 8.0 12.4 12.4 HI 503 96 95 452 24.0 120 5400 3.8 1.0 2.3 504 304 266 10 36.0 130 9000 2.8 .0 .7 OC35 516 114 115 3490 12.0 130 1145 3.2 11.4 3.3 517 115 64 6850 12.0 130 1145 3.2 22.3 3.3 P CITY OF HUNTINGTON BEACH FBI, SEP 4, 1987, 2:35 AN GROUND HLV FLOW BGL BL BRAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Pei CE % DROP--CE ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -761.20 -121.9 -126.9 -54 LO 206 4 5 -359.20 -120.7 -125.7 -54 LO 205 6 5 -633.60 -121.9 -126.9 -55 LO 206 Banning 8 5 -900.80 -125.9 -130.9 -56 LO 210 10 4 -1500.40 -130.6 -134.6 -58 LO 212 12 4 -473.60 -127.3 -131.3 -56 LO 209 14 6 -978.00 -115.6 -121.6 -52 LO 203 16 7 -690.80 -117.9 -124.9 -54 LO 206 18 4 -706.00 -120.0 -124.0 -53 LO 203 20 2 -317.60 -120.5 -122.5 -53 LO 200 22 4 -293.60 -127.2 -131.2 -56 LO 209 24 6 -676.40 -100.7 -106.7 -46 LO 190 26 8 -706.00 -104.7 -112.7 -48 LO 197 28 4 -512.40 -107.8 -111.8 -48 LO 193 30 4 -1212.40 -112.4 -116.4 -50 LO 197 32 6 -1426.40 -115.3 -121.3 -52 LO 202 34 30 -743.20 -105.4 -135.4 -58 LO 244 36 8 -1066.00 -71.6 -79.6 -34 LO 168 38 9 -922.40 -79.8 -88.8 -38 LO 177 40 6 -1047.60 -83.7 -89.7 -38 LO 176 42 6 -1166.80 -84.4 -90.4. -39 LO 176 44 18 -690.80 -83.6 -101.6 -44 LO 195 46 36 -926.80 -85.3 -121.3 -52 LO 237 48 36 -2017.60 -84.7 -120.7 -52 LO 237 50 12 -1397.20 -14.7 -26.7 -11 LO 123 52 10 -1068.40 -40.8 -50.8 -22 LO 144 54 7 -741.60 -43.4 -50.4 -21 LO 143 56 10 -803.20 -42.5 -52.5 -22 LO 146 58 25 -843.20 -33.2 -58.2 -25 LO 158 60 35 -594.80 -28.3 -63.3 -27 LO 171 62 40 -1151.60 -44.9 -84.9 -36 LO 201 64 75 -3144.80 -6.4 -81.4 -35 LO 266 66 10 -917.20 -12.2 -22.2 -9 LO 119 68 8 -833.20 -8.3 -16.3 -7 LO 114 70 10 -796.40 -1.8 -11.8 -5 LO 110 72 55 -368.80 7.5 -47.5 -20 LO 168 74 50 -760.40 14.2 -35.8 -15 LO 148 76 50 .00 17.7 -32.3 -14 LO 143 . 78 50 .00 13.1 -36.9 -15 LO 149 80 50 .00 8.7 -41.3 -17 LO 155 82 75 -496.80 13.0 -62.0 -26 LO 226 84 75 -368.00 13.0 -62.0 -26 LO 226 86 57 -277.20 15.8 -41.2 -17 LO 161 88 50 -569.60 21.7 -28.3 -12 LO 138 90 60 .00 26.4 -33.6 -14 LO 152 92 70 -449.20 21.9 -48.1 -20 LO 189 94 115 -69.60 25.3 -89.7 -38 LO 1103 95 103 -382.40 25.4 -77.6 -33 LO 470 Reservoir Bill 96 95 -880.00 26.4 -68.6 -29 LO 336 98 16 -1393.20 -18.6 -34.6 -14 LO 132 100 15 -342.40 -13.2 -28.2 -12 LO 125 Flounder 102 12 -394.00 -8.3 -20.3 -8 LO 118 104 14 -572.00 2.2 -11.8 -5 LO 110 106 58 -1189.20 15.9 -42.1 -18 LO 163 106 55 -216.40 28.3 -26.7 -11 LO 138 1 CITY OF HUNTINGTON BEACH FBI, 8EP 4, 1987, 2:35 AN GROUND BLV FLOW HGL BL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CB % DROP--CE ---- ------ ------ ------ ------ ------ -- ------ -- 110 60 .00 47.0 -13.0 -5 LO 120 112 60 -44.40 49.4 -1016 -4 LO 116 114 93 -1691.20 27.3 -65.7 -28 LO 312 115 35 .00 15.9 -1911 -8 LO 121 116 60 -118.40 4516 -14.4 -6 LO 122 118 13 -462.00 1013 -2.7 -1 LO 102 120 55 -422.00 35.3 -19.7 -8 LO 128 122 35 -670.00 4414 9.4 4 LO 89 124 25 -180.80 41.5 16.5 7 LO 83 126 40 -242.80 29.7 -10.3 -4 LO 112 128 5 -551.60 29.1 24.1 10 LO 79 129 45 .00 3513 -9.7 -4 LO 112 130 45 -470.00 3514 -9.6 -4 LO 112 131 45 .00 45.9 .9 0 LO 98 132 55 -924.40 39.5 -15.5 -6 LO 122 134 50 -379.60 44.3 -517 -2 LO 107 136 50 -260.40 40.6 -9.4 -4 LO 112 138 40 .00 32.7 -7.3 -3 LO 108 140 2 -534.40 29.2 27.2 11 LO 77 142 2 -317.60 29.3 27.3 11 LO 77 144 2 -354.80 30.9 28.9 12 LO 76 146 2 -410.40 31.0 29.0 12 LO 76 148 40 -511.60 32.5 -7.5 -3 LO 108 150 40 .00 32.5 -7.5 -3 LO 108 152 28 -832.00 65.3 37.3 16 LO 61 154 25 -1129.60 4419 19.9 8 LO 79 156 25 -354.40 46.4 21.4 9 LO 78 158 30 -370.40 40.7 10.7 4 LO 88 160 5 -860.40 32.5 27.5 11 LO 76 162 3 -826.00 31.5 28.5 12 LO 76 164 2 -821.60 32'.2 30.2 13 LO 75 166 2 -583.20 18.6 16.6 7 LO 86 168 27 -1512.00 90.1 63.1 27 LO 34 170 26 -631.20 68.1 42.1 18 LO 56 172 25 -1091.20 53.1 28.1 12 LO 71 174 25 -483.20 49.6 24.6 10 LO 75 176 12 -478.00 43.9 31.9 13 LO 71 178 5 -871.60 35.5 30.5 13 LO 74 180 5 -537.20 34.4 29.4 12 LO 75 182 5 -403.60 27.1 22.1 9 LO 81 184 5 -485.20 1311 811 3 LO 93 186 34 -997.20 =10.7 -44.7 -19 LO 149 190 35 -586.40 -24.8 -59.8 -25 LO 167 192 55 -138.80 -27.9 -82.9 -35 LO 220 194 5 -982.40 -39.2 -44.2 -19 LO 137 196 25 -691.60 74.3 49.3 21 LO 50 198 17 -1006.40 56.6 39.6 17 LO 62 200 14 -1130.80 46.2 32.2 13 LO 70 Heil 202 10 -550.40 43.9 33.9 14 LO 70 204 10 -416.00 35.5 25.5 11 LO 77 206 9 -676.80 41.5 32.5 14 LO 71 208 14 -682.80 11.9 -2.1 0 LO 101 210 15 -1455.60 -11.1 -26.1 -11 LO 123 212 9 -537.60 -2615 -35.5 -15 'LO 130 214 9 -602.00 -33.5 -42.5 -18 LO 137 CITY OF HUNTINGTON BEACH FBI, SEP 4, 1987, 2:35 AN GROUND BLV FLOW HOL EL HEAD ------- PRESSURE ------ NODE Feet Gpm Feet Feet Pei CR % DROP--CE ---- ------ ------ ------ ------ ------ -- ------ -- 216 9 -1064.80 -38.7 -47.7 -20 LO 141 218 5 -776.00 -43.5 -48.5 -21 LO 140 220 5 -626.00 -43.6 -48.6 -21 LO 140 222 26 -1278.40 89.5 63.5 27 LO 35 224 21 -829.60 74.9 53.9 23 LO 47 226 23 -320.80 72.7 49.7 21 LO 50 228 20 -712.00 53.4 33.4 14 LO 67 230 12 -526.80 50.5 38.5 16 LO 65 232 10 -1088.00 50.5 40.5 17 LO 64 234 12 -264.80 24.7 12.7 5 LO 88 236 15 -940.00 -4.1 -19.1 -8 LO 117 Scenario 238 5 -926.40 -37.4 -42.4 -18 LO 135 240 21 -612.40 53.7 32.7 14 LO 68 242 15 -751.60 55.6 40.6 17 LO 62 244 16 -806.40 63.7 47.7 20 LO 55 246 14 -1176.80 25.9 11.9 5 LO 89 248 14 .00 20.1 6.1 2 LO 94 250 13 -349.20 9.0 -4.0 -1 LO 103 252 22 -659.20 65.0 43.0 18 LO 57 254 18 -507.20 81.1 63.1 27 LO 40 256 17 -1358.00 26.3 9.3 4 LO 91 258 17 -1034.80 11.0 -6.0 -2 LO 105 260 23 -802.80 103.7 80.7 34 LO 20 262SP 34 19342.1OU 104.2 70.2 30 LO 21 PRCR RES. 2648P 18 4747.12U 115.2 97.2 42 8 WELL 7 266 . 23 .00 103.9 80.9 35 LO 19 270SP 27 4118.83U 123.9 96.9 42 0 WELL 5 272 25 .00 79.7 54.7 23 LO 44 274SP 19 3982.74U 86.3 67.3 29 LO 35 WELL 6 276SP 17 1045.20U 82.8 65.8 28 LO 38 WELL 1 278 19 .00 79.4 60.4 26 LO 42 284SP 27 4221.36U 108.0 81.0 35 LO 16 WELL 9 286SP 19 4342.96U 110.6 91.6 39 LO 12 WELL 10 288 22 .00 100.6 78.6 34 LO 22 290SP 44 675.56U 105.2 61.2 26 LO 23 DYER WELL 292 48 .00 46.9 -1.1 0 LO 101 294 12 6700.00 -12.1 -24.1 -10 LO 121 OC44,Adams 300 25 4500.00 98.0 73.0 31 LO 26 OC9 301SP 65 27758.48U 50.0 -15.0 -6 LO 125 Overmyer Res. 302 5 .00 -39.3 -44.3 -19 LO 137 304 25 9000.00 103.9 78.9 34 LO 20 OC35 Maximum Unbalanced Head = .00298 190 CITY OF HUNTINGTON BEACH FBI, SEP 4, 1987, 2:35 AN RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH HGL LIFT PUMP NODE Gpm Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 262SP 19342 20.0 104.2 84.2 30 PECK RES. 301SP 27758 50.0 50.0 .0 20 Overmyer Res. 2909P 676 -34.0 105.2 139.2 11 DYKE WELL 276SP 1045 -98.0 82.8 180.8 1 WELL 1 2708P 4119 -62.0 123.9 185.9 5 WELL 5 2749P 3983 -59.0 86.3 145.3 6 WELL 6 264SP 4747 -89.0 115.2 204.2 7 WELL 7 284SP 4221 -64.0 108.0 172.0 9 WELL 9 286SP 4343 -55.0 110.6 165.6 10 WELL 10 SOURCE PUMPS Node Pump# 262 30 Read 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000, 15800. 16100, 16250. 16500. 16750. 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000. 10650. 21875. 22525. 22875, 23350. 23775. 290 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200. 400, 600, 800. 0. 0. 0. 276 1 Head 440 399 348 311 287 205 98 0 Flow 0. 200, 400. 600, 800. 1000. 1200, 0. 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012. 3765. 4518. 4894, 0. 274 6 Head 488 318 296 287 257 206 148 0 Flow 0. 1761. 2201, 2641. 3081. 3521. 3962. 0. 264 7 Head 397 299 291 268 238 208 174 0 Flow 0. 2817, 3286, 3756. 4225. 4695. 5164. 0. 284 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745, 4214. 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859. 2324. 2789. 3253, 3718. 0. 0. Iteration: 1, Flow Correction: 17799.070 Iteration: 2, Flow Correction: 10714.060 Iteration: 3, Flow Correction: 6106,484 Iteration: 4, Flow Correction: 1931.126 Iteration: 5, Flow Correction: 2475.059 Iteration: 6, Flow Correction: 974.242 Iteration: 7, Flow Correction: 478,990 Iteration: 8, Flow Correction: 419.476 Iteration: 9, Flow Correction: 398.918 Iteration: 11, viow correction: M.W Iteration: 12, Flow Correction: 353.302 Iteration: 13, Flow Correction: 342.797 Iteration: 14, Flow Correction: 333.006 Iteration: 15, Flow Correction: 133.736 Iteration: 16, Flow Correction: 85.058 Iteration: 19, Flow Correction: 54.096 Iteration: 18, Flow Correction: 34.406 Iteration: 19, Flow Correction: 21.883 Iteration: 20, Flow Correction: 13.918 Iteration: 21, Flow Correction: 8.853 Iteration: 22, Flow Correction: 5.631 Iteration: 23, Flow Correction: 3.581 Iteration: 24, Flow Correction: 2.278 Iteration: 25, Flow Correction: 1.449 Iteration: 26, Flow Correction: 1921 Iteration: 27, Flow Correction: .586 Iteration: 28, Flow Correction: .393 Iteration: 29, Flow Correction: .237 Iteration: 30, Flow Correction: .150 Iteration: 31, Flow Correction: .095 :ITY OF HUNTINGTON BEACH THU. SEP 3, 1987, 8:44 PM Existing System -- MAXIMUM DAY DEMAND & FIRE @ NODE 6 INPUT FILE NAME MDEXFR6 NUMBER OF PIPES 240 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK. VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 6pm MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC H6L ELEVATION 0. Feet SUM OF i-1 FIXED DEMANDS = .00 SUM OF l+1 FIXED DEMANDS = 20200.00 SUM OF PEAK.ABLE DEMANDS =-22354.59 SUM OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -54321.6B SUM OF ALL DEMANDS --------- -34121.68 Solution reached in 18 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH THU, SEP 3, 19B7, 8:45 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpe Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 24BO 16.0 130 1257 2.0 2.4 1.0 4 2 6 2000 12.0 130 795 2.3 3.3 1.7 6 4 6 1600 12.0 130 1200 3.4 5.7 3.6 8 8 6 2600 12.0 130 B82 2.5 5.2 2.0 IG 10 8 2900 12.0 130 11G .3 .1 .0 LO 12 12 10 970 10.0 130 1022 4.2 6.2 6.4 14 14 4 2900 16.0 130 2675 4.3 11.2 3.9 16 16 6 2620 12.0 130 1619 4.6 16.2 6.2 IB 18 8 2640 12.0 130 1318 3.7 11.2 4.2 20 20 12 2350 12.0 130 971 2.8 5.6 2.4 22 22 i2 22BO 12.0 130 339 1.0 .8 .3 24 14 16 2600 12.0 130 290 .8 .7 .3 26 18 16 2610 12.0 ITO 139 .4 .2 .1 LO 28 20 18 2510 12.0 130 329 .9 .8 .3 30 24 14 2620 16.0 130 3560 5.7 11.2 6.6 32 26 16 2700 12.0 130 1609 4.6 16.5 6.1 34 2B 1B 2700 12.0 130 1557 4.4 15.5 5.9 36 30 20 2570 12.0 130 1493 4.2 13.7 5.3 38 32 22 3430 8.0 130 517 3.3 18.5 5.4 40 24 26 2680 12.0 130 414 1.2 1.3 .5 42 26 28 2640 12.0 130 318 .9 .B .3 44 2B 30 2670 12.0 130 364 1.0 1.0 .4 46 30 32 2550 12.0 130 72 .2 .0 .0 LO 48 34 32 2800 12.0 130 1312 3.7 11.7 4.2 50 36 24 2640 16.0 130 4384 7.0 25.5 9.6 52 38 26 2600 12.D 130 1943 5.5 22.6 B.7 54 40 28 2580 12.0 130 1914 5.4 21.9 B.4 56 42 30 2640 12.0 130 1937 5.5 22.8 B.6 58 46 34 2320 12.0 130 1763 5.0 16.9 7.3 60 36 38 2640 12.0 130 781 2.2 4.2 1.6 62 38 40 2640 12.0 130 458 1.3 1.6 .6 64 40 42 2700 12.0 130 65 .2 .0 .0 LO 66 44 42 2550 12.0 130 393 1.1 1.1 .4 6B 48 46 700 12.0 130 639 1.8 .B 1.1 70 50 36 2550 16.0 130 5B13 9.3 41.5 16.3 HI 72 52 38 2640 12.0 130 21BO 6.2 29.4 10.7 HI 74 54 40 2650 12.0 130 2158 6.1 27.9 10.5 HI 76 56 42 2620 12.0 130 2188 6.2 28.3 10.8 HI 7B 58 44 2640 8.0 130 812 5.2 32.B 12.4 HI 80 62 46 2950 12.0 120 1687 4.8 22.9 7.8 B2 64 48 5300 12.0 130 1865 5.3 42.6 B.0 84 50 52 2700 12.0 130 1652 4.7 17.4 6.4 86 52 54 2600 12.0 130 527 1.5 2.0 .8 88 56 54 2640 12.0 130 20B .6 .4 .1 90 5B 56 2660 12.0 130 90B 2.6 5.6 2.1 92 60 58 1330 12.0 130 925 2.6 2.9 2.2 94 60 62 1130 8.0 130 611 3.9 8.3 7.3 8 k 12 96 66 52 2640 12.0 130 1704 4.8 18.0 6.8 97 68 54 2640 12.0 130 1873 5.3 21.4 8.1 98 70 56 2640 12.0 130 1976 5.6 23.6 9.0 99 72 58 2640 8.0 130 654 4.2 22.0 B.3 100 72 5B 2640 8.0 130 654 4.2 22.0 8.3 101 74 60 2640 12.0 130 189E 5.4 21.9 9.3 102 80 62 3200 12.0 120 1776 5.0 27.3 8.5 104 84 64 2850 12.0 70 606 1.7 9.0 3.2 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:45 PM PIPE. --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 2421 3.9 9.0 3.2 108 66 50 5250 30.0 120 194E .9 .6 .1 110 68 66 2640 30.0 120 4429 2.0 1.4 .5 112 70 68 2600 30.0 120 6121 2.8 2.6 1.0 114 70 68 2680 12.0 130 596 1.7 2.6 1.0 116 72 70 2600 12.0 130 762 2.2 4.0 1.5 118 72 70 2600 30.0 120 7833 3.6 4.0 1.5 120 74 72 1450 30.0 120 9003 4.1 2.9 2.0 122 76 74 600 30.0 120 1032E 4.7 1.5 2.6 124 76 7B 150 8.0 130 907 5.8 2.3 15.2 HI 12b 78 80 1050 12.0 130 907 2.6 2.2 2.1 129. 82 80 1150 12.0 130 869 2.5 2.2 2.0 129 92 82 1350 12.0 130 1116 3.2 4.2 3.1 130 84 62 1250 12.0 130 55 .2 .0 .0 LO 132 50 98 5300 12.0 130 333 .9 1.8 .3 134 66 100 2580 12.0 130 220 .6 .4 .2 136 102 68 2640 12.0 130 92 .3 .1 .0 LO 139 104 70 2630 12.0 130 5BO 1.6 2.4 .9 140 86 72 1320 12.0 130 1125 3.2 4.2 3.2 142 106 86 1320 12.0 130 203 .6 .2 .1 144 88 86 1450 14.0 120 1090 2.3 2.4 1.6 146 108 B8 1280 12.0 134 1026 IL 3.4 2.7 148 90 B8 650 14.0 120 1444 3.0 1.8 2.7 149 8B 74 1350 12.0 130 1034 2.9 3.6 2.7 150 90 92 1750 12.0 130 643 1.8 2.0 1.1 151 90 76 1300 30.0 120 11235 5.1 3.9 3.0 152 90 96 3150 42.0 120 406 .1 LO .0 .0 LO 154 90 94 2700 15.0 120 327 .6 .3 .1 15b 94 92 1100 12.0 130 746 2.1 1.6 1.5 158 100 9B 2680 12.0 130 513 1.5 2.0 .7 160 102 100 26BO 12.0 130 501 1.4 1.9 .7 . 162 104 102 2750 12.0 130 832 2.4 5.0 1.8 164 106 104 2590 12.0 130 945 2.7 5.9 2.3 166 108 106 1500 12.0 130 1231 3.5 5.6 3.7 168 110 109 700 12.0 130 2389 6.9 8.9 12.7 HI 170 112 90 950 21.0 120 9188 8.5 11.1 11.7 HI 171 112 90 950 16.0 130 4B68 7.8 11.1 11.7 HI 172 112 110 350 21.0 120 3253 3.0 .6 1.7 174 110 116 750 21.0 120 B64 .8 .1 .1 176 114 96 3400 42.0 120 3433 .8 .2 .1 LO 178 118 104 2640 12.0 130 B15 2.3 4.6 1.7 179 120 106 2640 8.0 130 435 2.8 10.3 3.9 180 120 106 2640 6.0 130 204 2.3 10.3 3.9 1B2 116 120 2550 12.0 130 776 2.2 4.0 1.6 194 116 122 1900 21.0 120 16 .0 LO .0 .0 LO !Bb 126 94 3300 14.0 70 461 1.0 3.0 .9 180 128 114 4000 42.0 120 5209 1.2 .6 .1 190 120 11B 2550 8.0 130 473 3.0 11.6 4.6 192 122 120 2150 8.0 130 293 1.9 4.0 1.9 194 122 124 600 B.0 130 273 1.7 1.0 1.7 196 131 118 2640 B.0 130 623 4.0 20.1 7.6 197 132 130 800 B.0 130 365 2.3 2.3 2.8 198 130 129 850 6.0 130 79 .9 .6 .7 199 129 120 1250 9.0 130 79 .5 .2 .2 200 132 120 2750 8.0 130 220 1.4 3.0 1.1 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:45 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C 6pm Fps CK ft ft11000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 201 134 122 2640 21.0 120 957 .9 .5 .2 202 124 136 3250 12.0 130 164 .5 .3 .1 LO 204 138 126 880 14.0 60 60B 1.3 1.8 2.0 206 140 12B 700 12.0 130 148 .4 .1 .1 LD 208 142 12B 1BOD 12.0 130 117 .3 .1 .0 LD 210 144 142 1150 12.0 130 382 1.1 .5 .4 212 292 132 1950 B.0 130 364 2.3 5.5 2.8 214 134 132 2000 12.0 50 92 1.5 1.5 .7 216 134 136 1200 12.0 130 742 2.1 1.8 1.5 218 26 28 2050 12.0 130 954 2.7 4.8 2.3 220 164 146 2200 12.0 130 232 .7 .4 .2 222 142 140 1800 12.0 130 72 .2 .0 .0 LD 224 146 120 4200 42.0 120 5290 1a .6 .1 226 146 144 650 24.0 120 598 .4 .0 .0 LO 22B 152 131 2700 8.0 130 553 3.5 16.5 6.1 230 154 132 3150 8.0 130 271 1A 5.1 1.6 232 156 134 264D 21.0 120 2442 13 17 1.0 234 15B 136 2640 12.0 130 206 .6 .4 .1 236 150 160 1400 12.0 130 35 .1 LD .0 .0 LD 238 14B 150 700 14.0 130 35 .1 LO .0 .0 LD 240 138 148 500 12.0 130 346 1.0 .2 .4 242 162 140 2640 12.0 130 400 1.1 1.2 .5 244 164 146 2120 42.0 120 5894 1.4 .4 .2 246 152 154 2640 B.0 130 565 3.6 16.7 6.3 248 154 156 2640 B.0 130 124 .8 1.0 .4 250 156 158 1300 12.0 130 1117 3.2 4.0 3.1 252 158 160 2000 12.0 130 1025 2.9 5.3 2.7 254 160 162 2660 12.0 130 537 1.5 2.1 .8 256 162 164 2660 12.0 130 18B .5 .3 .1 257 100 164 2700 12.0 130 284 .8 .7 .2 258 164 166 2640 12.0 130 929 2.6 5.8 2.2 260 16B 152 2550 12.0 130 1624 4.6 15.9 6.2 261 16B 170 2330 21.0 120 6937 6.4 16.2 7.0 262 170 154 3050 8.0 130 517 3.3 16.4 5.4 263 170 172 2000 21.0 120 6342 5.9 11.8 5.9 264 172 156 2650 21.0 120 3650 3.4 5.6 2.1 265 172 174 1350 16.0 130 2029 3.2 3.1 2.3 266 174 15B 2650. 8.0 130 339 2.2 6.5 2.5 267 174 176 1950 16.0 130 2174 3.5 5.1 2.6 269 176 178 2640 16.0 130 2106 3.4 6.6 2.5 270 178 162 2700 12.0 130 .553 1.6 2.3 .8 271 17B 180 2700 16.0 120 991 1.6 1.9 .7 272 180 164 2700 42.0 120 7092 1.6 .7 .2 273 180 182 1150 16.0 120 2051 3.3 3.2 2.7 274 166 184 26BO 12.0 130 575 1A 14 .9 275 182 184 1550 16.0 125 2526 4.0 5.8 3.7 277 184 1B6 2650 16.0 125 2524 4.0 9.9 3.7 279 186 190 2750 16.0 125 1843 2.9 5.7 2.1 280 190 192 1340 16.0 125 U 84 1.9 1.2 .9 282 192 194 3200 14.0 130 1099 2.3 4.6 1.4 284 194 218 5300 14.0 130 502 1.0 1.8 .3 286 196 170 2660 B.0 130 305 1.9 5.4 2.0 288 19B 174 2640 12.0 130 778 2.2 4.2 1.6 290 200 176 2500 12.0 130 222 .6 .4 .2 292 202 204 2700 8.0 130 221 1.4 3.0 1.1 CITY OF HUNTINGTON BEACH THU, SEP 31 1987, 8045 PM PIPE --NDDES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet inches H-W C GPM Fps CK ft ft/1000 CK. ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 294 179 204 800 12.0 130 32 .1 LO .0 .0 LD 296 206 1BO 2700 36.0 120 8753 2.8 2.1 .8 299 206 182 3800 12.0 130 720 2.0 5.2 1.4 300 184 208 2640 12.0 130 282 .8 .6 .2 301 186 210 2640 8.0 130 75 .5 .4 .2 302 190 212 2640 12.D 130 303 .9 .7 .1 304 196 198 3300 8.0 130 490 3.1 16.1 4.9 306 198 200 2700 12.0 130 1155 3.3 8.9 3.3 308 200 202 264D 12.0 130 751 2.1 3.9 1.5 310 202 206 2640 12.0 130 629 1.8 2.8 1.1 312 206 208 2640 12.0 130 1351 3.0 11.7 4.4 314 208 210 2640 12.0 130 1218 3.5 9.6 3.7 316 21D 212 264D 12.0 130 94B 2.7 6.1 2.3 31B 212 214 1300 12.0 130 924 2.6 2.9 2.2 320 222 196 2700 12.0 130 1216 3.4 18 3.6 322 272 224 1320 12.0 130 906 2.6 2.8 2.1 324 228 200 2640 12.0 130 505 1A 1.9 .7 326 230 202 3000 12.0 130 433 1.2 1.6 .5 327 232 206 2640 12.0 130 603 1.7 2.6 1.0 328 232 206 2640 36.0 120 10003 3.2 16 1.0 330 236 210 2700 12.0 130 539 1.5 2.2 .8 332 214 216 1000 10.0 130 559 2.3 2.1 2.1 334 23B 216 2100 8.0 130 88 .6 .4 .2 336 302 220 4500 12.0 130 349 1.0 1.6 .4 338 218 220 1250 8.0 130 31 .2 .0 .0 LD 340 28B 224 1700 12.0 130 2207 6.3 18.7 11.0 HI 342 224 228 2000 12.0 130 1954 5.5 17.5 8.9 344 228 230 2640 12.0 130 779 2.2 4.2 1.6 346 230 232 2640 12.0 130 496 1.4 1.8 .7 34B 232 234 ::40 12.0 130 1305 3.7 11.0 4.1 350 234 236 2640 12.0 130- 1295 3.7 10.8 4.1 352 236 238 5030 12.0 130 1000 2.8 12.8 2.5 354 224 226 1300 12.0 130 655 1.9 1.5 1.2 356 228 240 2700 12.0 130 238 .7 .5 :2 . 358 242 230 2700 12.0 130 470 1.3 1.7 .6 360 244 232 2700 36.0 120 12076 3.8 3.8 1.4 362 246 234 2700 12.0 130 152 .4 .2 .1 LD 364 250 236 2680 12.0 130 815 2.3 4.7 1.7 366 226 240 3B00 B.0 130 460 2.9 16.5 4.3 368 240 242 2640 10.0 130 326 1.3 2.0 .8 370 244 242 2660 10.0 130 111 .5 .3 .1 372 244 246 2550 12.0 130 1549 4.4 14.5 5.7 374 246 248 1500 12.0 130 737 2.1 2.2 1.4 376 248 250 1200 10.0 130 737 3.0 4.2 3.5 378 252 242 2540 12.0 130 489 1.4 1.7 .7 380 254 244 2640 36.0 120 14226 4.5 5.0 1.9 382 256 246 2540 12.0 130 55 .2 .0 .0 LO 384 25B 250 2640 12.0 130 290 .B .7 .3 386 278 252 1750 12.0 130 B90 2.5 3.6 2.0 3BB 254 256 2600 12.0 130 179E 5.1 19.5 7.5 390 256 258 2640 12.0 130 919 2.6 5.7 2.2 392 260 254 2600 36.0 120 16417 5.2 6.5 2.5 394 262 260 150 36.0 130 4527 1.4 .0 .2 PECK RES. 395 266 260 100 36.0 130 12377 3.9 .1 1.3 396 264 266 250 12.0 130 3377 9.6 6.0 24.2 HI WELL 7 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, B:45 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK, ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 400 270 168 970 12.0 130 2941 8.3 18.1 18.7 HI WELL 5 402 274 272 200 12.0 130 2960 8.4 3.8 18.9 HI WELL 6 404 272 198 1380 12.0 130 2054 5.8 13.3 9.6 406 276 278 170 8.0 130 B05 5.1 2.1 12.2 HI WELL 1 408 254 278 900 12.0 130 85 .2 .0 .0 LO 414 284 169 1990 16.0 130 3150 5.0 10.4 5.2 WELL 9 A 6 H8 K2 1600 12.0 130 881 2.5 3.2 2.0 41 286 HB 1050 16.0 130 3OBB 4.9 5.3 5.0 WELL 10 420 290 292 1400 6.0 120 433 4.9 250 113 HI DYKE WELL 422 292 131 750 8.0 130 69 .4 .1 .1 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1111 3.2 B.B 3.1 452 300 16B 5300 22.0 120 3389 2.9 7.8 1.5 OC9 500 301 112 100 36.8 120 17335 5.2 .2 2.5 Overmyer Res. 501 238 302 2000 12.0 130 349 1.0 .7 .4 502 95 84 1000 16.0 130 3305 %3 17 17 503 96 95 452 24.0 120 3305 2.3 .4 .9 504 304 266 10 36.0 130 9000 2.8 .0 .7 DC35 516 114 115 3490 12.0 130 749 2.1 5.2 1.5 517 115 64 6850 12.0 130 749 2.1 10.2 1.5 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:45 PM GROUND ELY FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK 2 5 -462.43 54.3 49.3 21 LO 78 4 5 -219.21 56.7 51.7 22 LO 77 6 5 -4495.22U 51.OF 46.0 19 LO 79 Banning 8 5 -547.24 56.2 51.2 22 LO 77 10 4 -911.49 56.3 52.3 22 LO 77 12 4 -2B7.71 62.6 58.6 25 LO 74 14 6 -594.14 67.9 61.9 26 LO 72 16 7 -419.66 67.2 60.2 26 LO 73 18 4 -428.90 67.4 63.4 27 LO 72 20 2 -192.94 68.2 66.2 28 LO 71 22 4 -17B.36 63.3 59.3 25 LO 74 24 6 -410.91 85.1 79.1 34 LO 65 26 8 -428.90 83.7 75.7 32 LO 66 2B 4 -311.2E 82.9 78.9 34 LO 65 30 4 -736.53 81.9 77.9 33 LO 66 32 6 -866.54 81.9 75.9 32 LO 66 34 30 -451.49 93.6 63.6 27 LO 68 36 8 -647.60 110.5 102.5 44 54 38 9 -560.36 106.3 97.3 42 56 40 6 -636.42 104.7 98.7 42 56 42 6 -708.B3 104.7 98.7 42 56 44 18 -419.66 105.8 87.B 38 LO 59 46 36 -563.03 110.4 74.4 32 LO 62 48 36 -1225.69 111.2 75.2 32 LO 62 50 12 -848.90 152.0 140.0 60 36 52 10 -649.05 134.7 124.7 54 44 54 7 -450.52 132.6 125.6 54 44 56 10 -487.94 133.0 123.0 53 45 58 25 -512.24 13B.7 113.7 49 45 60 35 -361.34 141.6 106.6 46 46 62 40 699.60 133.3 93.3 40 51 64 75 -1910.47 153.E 7B.8 34 LO 50 66 10 -557.20 152.6 142.6 61 36 68 8 -506.17 154.0 146.0 63 35 70 10 -483.81 156.6 146.6 63 34 72 55 -224.05 160.6 105.6 45 41 74 50 -461.94 163.5 113.5 49 38 76 50 .00 165.0 115.0 49 37 78 50 .00 162.8 112.8 48 3B 80 50 .00 160.5 110.5 47 40 82 75 -301.81 162.9 87.8 38 LO 44 84 75 -223.56 162.8 87.8 38 LO 44 B6 57 -16B.40 164.8 107.8 46 39 B8 50 -346.03 167.2 117.2 50 36 90 60 .00 16B.9 108.9 47 37 92 70 -272.B9 167.0 97.0 42 40 94 115 -42.2B 168.6 53.6 23 LO 55 95 103 .00 168.5 65.5 28 LO 50 Reservoir Hill 96 95 -534.60 168.9 73.9 32 LO 46 98 16 -846.37 150.3 134.3 58 38 100 15 -208.01 152.2 137.2 59 37 Flounder 102 12 -239.36 154.1 142.1 61 36 104 14 -347.49 159.1 145.1 62 34 106 58 -722.44 165.0 107.0 46 39 108 55 -131.46 170.6 115.6 50 35 CITY OF HUNTINGTON BEACH THU, SEP 31 1987. 8:45 PM GROUND ELV FLOW HBL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 110 60 .00 179.5 119.5 51 31 112 60 -26.97 1B0.1 120.1 52 31 114 93 -1027.40 169.2 76.2 33 LO 46 115 35 .00 164.0 129.0 55 35 116 60 -71.93 179.4 119.4 51 31 118 12, -280.67 163.7 150.7 65 31 120 55 -256.37 175.3 120.3 52 32 122 35 -407.03 179..4 144.4 62 27 124 25 -109.84 178.4 153.4 66 26 126 40 -147.50 171.6 131.6 57 32 128 5 -335.10 169.7 164.7 71 28 129 45 .00 175.5 130.5 56 31 130 45 -285.52 176.1 131.1 56 30 131 45 .00 183.7 138.7 60 26 132 55 -561.57 178.4 123.4 53 31 134 50 -230.61 179.8 129.B 56 29 136 50 -158.19 170.1 12B.1 55 30 13B 40 .00 173.3 133.3 57 31 140 2 -324.65 169.8 167.E 72 27 142 2 -192.94 169.8 167.B 72 27 144 2 -215.54 170.3 16B.3 72 27 146 2 -249.32 170.3 168.3 72 27 148 40 -310.80 173.1 133.1 57 31 150 40 .00 173.1 133.1 57 31 152 28 -505.44 200.2 172.2 74 16 154 25 -6B6.23 183.5 158.5 68 24 156 25 -215.30 182.5 157.5 6B 24 158 30 -225.02 179.4 14B.4 64 27 160 5 -522.69 173.1 16B.1 72 26 162 3 -501.80 171.0 168.0 72 27 164 2 -499.12 170.7 168.7 73 27 166 2 -354.29 164.8 162.B 70 29 169 27 -918.54 216.1 189.1 81 HI B 170 26 -3B3.45 199.9 173.9 75 16 172 25 -662.90 1BB.1 163.1 70 22 174 25 -293.54 185.0 160.0 69 23 176 12 -290.39 179.B 167.8 72 24 178 5 -529.50 173.3 168.3 72 26 1B0 5 -326.35 171.4 166.4 72 27 1B2 5 -245.19 168.2 163.2 70 28 184 5 -294.76 162.4 157.4 68 31 186 34 -605.80 152.5 118.5 51 40 190 35 -356.24 146.8 111.E 48 43 192 55 -B4.32 145.6 90.6 39 LO 49 194 5 -596.81 141.0 136.0 58 40 196 25 -420.15 205.3 180.3 78 13 198 17 -611.39 189.2 172.2 74 20 200 14 -686.96 180.2 166.2 72 24 Heil 202 10 -334.37 176.3 166.3 72 25 204 10 -252.72 173.3 163.3 70 27 206 9 -411.16 173.5 164.5 71 26 208 14 -414.80 161.8 147.8 64 32 210 15 -884.2B 152.1 137.1 59 37 212 9 -326.59 146.1 137.1 59 39 214 9 -365.71 143.2 134.2 58 40 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:45 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 216 9 -646.87 141.1 132.1 57 41 21B 5 -471.42 139.2 134.2 58 41 220 5 -3BO.30 139.2 134.2 5B 41 222 26 -776.63 215.1 189.1 81 HI 9 224 21 -503.98 199.7 178.7 77 16 226 23 -194.99 198.1 175.1 75 17 228 20 -432.54 1B2.1 162.1 70 24 230 12 -320.03 177.9 165.9 71 25 272 10 -660.96 176.1 166.1 71 25 234 12 -160.87 165.1 153.1 66 31 236 15 -571.05 154.3 139.3 60 36 Scenario 238 5 -562.79 141.5 136.5 59 40 240 21 -372.03 181.6 160.6 69 24 242 15 -456.60 179.6 164.6 71 24 244 16 -489.89 179.9 163.9 71 24 246 14 -714.91 165.3 151.3 65 31 248 14 .00 163.2 149.2 64 32 250 13 -212.14 159.0 146.0 63 34 252 22 -400.46 1B1.3 159.3 69 24 254 18 -30B.12 184.9 166.9 72 22 256 17 -824.99 165.4 14B.4 64 31 258 17 -628.64 159.6 142.6 61 34 260 23 -4B7.70 191.4 168.4 72 20 262SP 34 4527.45U 191.4 157.4 68 21 PECK RES. 264SP 18 3377.29U 197.5 179.5 77 16 WELL 7 266 23 .00 191.5 16B.5 73 20 270SP 27 2941.000 234.2 207.2 89 HI 0 WELL 5 272 25 .00 202.4 177.4 76 15 2746P 19 2960.31U 206.2 187.2 81 HI 13 WELL 6 276SP 17 804.97U 1B7.0 170.0 73 21 WELL 1 278 19 .00 184.9 165.9 71 22 284SP 27 3149.90U 226.5 199.5 86 HI 3 WELL 9 2B6SP 19 j'087.57U 223.6 204.6 BB HI 4 WELL 10 288 22 .00 212.3 196.3 85 HI 7 290SP 44 433.12U 209.4 165.4 71 13 DYKE WELL 292 48 .00 1B3.8 135.E 58 27 294 12 6700.00 154.5 142.5 61 35 OC44,Adams 300 25 4500.00 223.9 19B.9 86 HI 4 OC9 301SP 65 17335.35U iBO.3 115.3 49 31 Overmyer Res, 302 5 .00 140.8 135.8 5B 40 304 25 9000.00 191.5 166.5 72 20 OC35 Maximum Unbalanced Head = .00002 192 CITY OF HUNTINGTON BEACH THU, SEP 31 19B71 8:45 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH HGL LIFT PUMP NODE GPM Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 301SP 17335 50.0 180.3 130.3 20 Overmyer Res. 262SP 4527 20.0 191.4 171.4 30 PECK RES. 290SP 433 -34.0 209.4 243.4 11 DYKE WELL 276SP 905 -9B.0 167.0 2B5.0 1 WELL 1 270SP 2941 -62.0 234.2 296.2 5 WELL 5 2745P 2960 -59.0 206.2 265.2 6 WELL 6 2646P 3377 -99.0 197.5 2B6.5 7 WELL 7 284SP 3150 -64.0 226.5 290.5 9 WELL 9 286SP 3088 -55.0 223.6 27B.6 10 WELL 10 6 -4495 51.0 Banning SOURCE PUMPS Node Pump4 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000, 20650. 21B75, 22525. 22B75. 23350. 23775. 262 30 Head 172 171 16Y 157 151 146 141 136 Flow 0. 7500. 15000. 15800, 16100. 16250. 16500. 16750. 290 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200. 400. 600. 800. 0. 0. 0. 276 1 Head 440 399 348 311 287 205 98 0 Flow 0. 200. 400. 600. SO. 1000. 1200. 0. 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012. 3765. 4518. 4894. 0. 274 6 Head 488 310 296 287 257 206 148 0 Flow 0. 1761. 2201. 2641. 3081. 3521. 3962. 0. 264 7 Head 397 299 291 268 23B 20B 174 0 Flow 0. 2817, 3286. 3756. 4225. 4695. 5164. 0. 2B4 9 Head 544 424 . 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745. 4214. 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1B59. 2324. 27B9. 3253. 3718. 0. 0. Iteration= 1, Flow Correction= 242423.500 Iteration= 2, Flow Correction= 109059.200 Iteration= 3, Flow Correction= 74078.770 Iteration= 4, Flow Correction= 29819.130 Iteration= 5, Flow Correction= 13847.400 Iteration= 6, Flow Correction= 12173.780 Iteration= 7, Flow Correction= 10217.040 Iteration= 8, Flow Correction= 9965.066 Iteration= 9, Flow Correction= 6343.4B2 Iteration= 11, Flow Correction= 5568.646 Iteration= 12, Flow Correction= 3365.450 Iteration= 13, Flow Correction= 561,915 Iteration= 14, Flow Correction= 2191.487 Iteration= 15, Flow Correction= 80.244 Iteration= 16, Flow Correction= 2.103 Iteration= 17, Flow Correction= .011 Iteration= 18, Flow Correction= .000 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:54 PM Existing System -- MAXIMUM DAY DEMAND & FIRE @ NODE 190 INPUT FILE NAME MDXFR190 NUMBER OF PIPES 240 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gp® MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW ,1 Fps - HIGH 10.0 Fps HEADLOSS CHECK— LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-1 FIXED DEMANDS = .00 SUM OF (+1 FIXED DEMANDS = 20200.00 SUM OF PEAKABLE DEMANDS =-22366.39 SUM OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -54350.36 SUM OF ALL DEMANDS --------- -34150.36 Solution reached in 12 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:55 PM PIPE --NODES-- LENGTH D1AM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Bps Fps CK ft ft/1000 CK ---- ---- ---- ------ -----= ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 532 .8 .5 .2 4 2 6 2000 12.0 130 69 .2 .0 .0 LO 6 4 6 1600 12.0 130 329 .9 .5 .3 8 6 8 2600 12.0 130 475 1.3 1.7 .6 10 8 10 2900 12.0 130 489 1.4 2.0 .7 12 12 10 970 10.0 130 423 1.7 1.2 1.3 14 14 4 2900 16.0 130 1079 1.7 2.1 .7 16 16 6 2620 12.0 130 462 1.3 1.6 .6 18 18 8 2640 12.0 130 561 1.6 2.3 .9 20 20 12 2350 12.0 130 657 1.9 2.7 1.2 22 22 12 KOO 12.0 130 53 .2 .0 .0 LO 24 14 16 2600 12.0 130 363 1.0 1.0 .4 26 16 18 2610 12.0 130 353 1.0 1.0 .4 28 18 20 2510 12.0 130 191 .5 .3 .1 30 24 14 2620 16.0 130 2035 3.2 6.1 2.3 32 26 16 2700 12.0 130 B73 2.5 5.3 2.0 34 28 18 2700 12.0 130 B27 2.3 4.8 1.8 36 30 20 2570 12.0 130 659 1.9 3.0 1.2 38 32 22 3430 8.0 130 232 1.5 4.2 .1.2 40 24 26 2680 12.0 130 4B6 1.4 1.8 .7 42 26 2B 2640 12.0 130 440 1.2 1.5 .6 44 28 30 2670 12.0 130 532 1.5 2.1 .8 . 46 30 32 2550 12.0 130 461 1.3 1.5 .6 48 34 32 2800 12.0 130 637 1.8 3.1 1.1 50 36 24 2640 16.0 130 2932 4.7 12.1 4.6 52 3B 26 2600 12.0 130 1256 3.6 10.1 3.9 54 40 28 2580 12.0 130 1231 3.5 9.6 3.7 56 42 30 2640 12.0 130 1324 3.8 11.3 4.3 58 46 34 2320 12.0 130 1089 '3.1 6.9 3.0 60 36 38 2640 12.0 130 739 2.1 3.8 1.4 62 38 40 2640 12.0 130 509 1.4 1.9 .7 64 40 42 2700 12.0 130 231 .7 .5 .2 66 44 42 2550 12.0 130 177 .5 .3 .1 68 48 46 700 12.0 130 283 .8 .2 ..2 70 50 36 2550 16.0 130 4319 6.9 23.9 9.4 72 52 3B 2640 12.0 130 1586 4.5 15.7 6.0 74 54 40 2650 12.0 130 1590 4.5 15.9 6.0 76 56 42 2620 12.0 130 1625 4.6 16.3 6.2 78 5B 44 2640_ 8.0 130 597 3.8 1B.5 7.0 80 62 46 2950 12.0 120 1369 3.9 15.5 5.3 B2 64 48 5300 12.0 130 1508 4.3 28.8 5.4 84 50 52 270D 12.0 130 1356 3.B 12.0 4.5 B6 52 54 2600 12.0 130 494 1.4 1.8 .7 88 56 54 2640 12.0 130 41 .1 .0 .0 LO 90 58 56 2660 12.0 130 591 1.6 2.5 .9 92 60 58 1330 12.0 130 621 1.8 1,4 1.1 94 60 62 1130 B.0 130 579 3.7 7.5 6.6 8 & 12 96 66 52 2640 12.0 130 1373 3.9 12.0 4.6 97 68 54 2640 12.0 130 1506 4.3 14.3 5.4 98 70 56 2640 12.0 130 1573 4.5 15.5 5.9 99 72 58 2640 B.0 130 534 3.4 15.1 5.7 100 72 58 2640 0.0 130 534 3.4 15.1 5.7 101 74 60 2640 12.0 130 1562 4.4 15.3 5.8 102 80 62 3200 12.0 120 1490 4.2 19.7 6.2 104 84 64 2850 12.0 70 551 1.6 7.5 2.6 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:55 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ----- -- --- ------- -- 106 84 64 2B00 16.0 130 2200 3.5 7.5 2.7 108 66 50 5250 30.0 120 20B .1 LO .0 .0 LO 110 6B 66 2640 30.0 120 2429 1.1 .5 .2 112 70 68 2680 30.0 120 4062 1.8 1.2 .5 114 70 68 2680 12.0 130 395 1.1 1.2 .5 116 72 70 2600 12.0 130 53B 1.5 1.1 .8 118 72 70 2600 30.0 120 5530 2.5 2.1 .8 120 74 72 1450 30.0 120 6493 2.9 1.6 1.1 122 76 74 600 30.0 120 7698 3.5 .9 1.5 124 76 78 150 8.0 130 B49 5.4 2.0 13.5 H] 126 78 80 1050 12.0 130 849 2.4 2.0 1.9 128 82 80 1150 12.0 130 641 1.0 129 92 82 1350 12.0 130 994 2.8 3.4 2.5 130 82 B4 1250 12.0 130 51 .1 .0 .0 LO 132 50 9B 5300 12.0 130 384 1.1 2.3 .4 134 66 100 2580 12.0 130 291 .8 .7 .3 136 68 102 2640 12.0 130 17 .0 LO .0 .0 LO 13B 104 70 2630 12.0 130 446 1.3 1.5 .6 140 86 72 1320 12.0 130 B6B 2.5 2.6 2.0 142 106 86 1320 12.0 130 227 .6 .2 .2 144 88 86 1450 14.0 120 809 1.7 1.4 .9 146 108 B8 1280 12.0 130 992 2.8 3.2 2.5 14B 90 88 650 14.0 120 981 2.0 .9 1.3 149 88 74 1350 12.0 130 819 2.3 2.4 1.0 150 90 92 1750 12.0 130 588 1.7 1.7 .9 151 90 76 1300 30.0 ' 120 8546 3.9 2.3 1.B 152 90 96 3150 42.0 120 3189 .7 .2 .1 LD 154 90 94 2700 15.0 120 307 .6 .3 .1 156 94 92 1100 12.0 130 679 1.9 1.4 1.2 158 100 90 26BO 12.0 130 462 1.3 1.6 .6 160 102 100 26BO 12.0 130 379 1.1 1.1 .4 162 104 102 2750 12.0 130 601 1.7 2.7 1.0 164 106 104 2580 12.0 130 701 2.0 3.4 1.3 166 108 106 1500 12.0 130 1074 3.0 4.3 2.9 168 110 108 700 12.0 130 2198 6.2 7.6 10.9 HI 170 112 90 950 21.0 120 B898 8.2 10.5 11.0 HI 171 112 90 950 16.0 130 4715 7.5 10.5 11.0 HI 172 112 110 350 21.0 120 3008 2.8 .5 1.5 174 110 116 750 21.0 120 810 .7 .1 .1 176 114 96 3400 42.0 120 268 .1 LO .0 .0 LD 178 11B 104 2640 12.0 130 694 2.0 3.4 1.3 179 120 106 2640 8.0 130 392 2.5 0.5 3.2 180 120 106 2640 6.0 130 184 2.1 8.5 3.2 182 116 120 255D 12.0 130 702 2.0 3.4 1.3 184 116 122 1900 21.0 120 36 .0 LO .0 .0 LO 186 126 94 3300 14.0 70 414 .9 2.4 .7 188 12B 114 4000 42.0 120 1964 .5 .1 .0 LO 190 120 11B 2550 8.0 130 399 2.5 B.5 3.3 192 122 120 2150 B.0 130 265 1.7 3.4 1.6 194 122 124 600 B.0 130 2B4 1.8 1.1 1.0 196 131 118 2640 8.0 130 .575 3.7 17.3 6.6 197 132 130 BOO 8.0 130 349 2.2 2.1 2.6 198 130 129 850 6.0 130 63 .7 .4 .4 199 129 120 1250 8.0 130 63 .4 .1 .1 200 132 120 2750 B.0 130 202 1.3 2.6 .9 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:55 PM PIPE --NODES-- LENGTH OIAM -FLOW- -VELOCITY- ---HEAOLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 201 134 122 2640 21.0 120 921 .9 .4 .2 202 124 136 3250 12.0 130 175 .5 .3 .1 204 138 126 880 14.0 60 562 1.2 1.5 1.7 206 128 140 700 12.0 130 7 .0 LO' .0 .0 LO 208 128 142 1800 12.0 130 B .0 LO .0 .0 LO 210 144 142 1150 12.0 130 178 .5 .1 .1 212 292 132 1950 8.0 130 390 2.5 6.2 3.2 214 134 132 2000 12.0 130 460 1.3 1.2 .6 216 134 136 1200 12.0 130 760 2.2 1.8 i:5 218 136 138 2050 12.0 130 961 2.7 4.8 2.4 220 164 146 2200 12.0 130 112 .3 .1 .0 LO 222 140 142 1B00 12.0 130 7 .0 LO .0 .0 LO 224 146 129 4200 42.0 120 2314 .5 .1 .0 LO 226 1.46 144 650 24.0 120 394 .3 .0 .0 LO 226 152 131 2700 8.0 130 534 3.4 15.5 5.7 23U 154 132 3150 8.0 130 262 1.7 4.9 1.5 232 156 134 2640 21.0 120 2371 2.2 2.5 1.0 234 15B 136 2640 12.0 130 185 .5 .3 .1 236 150 160 1400 12.0 130 88 .3 .0 .0 LO 238 148 150 700 14.0 130 Be .2 .0 .0 LO 240 138 148 500 12.0 130 399 1.1 .2 .5 242 162 140 2640 12.0 130 324 .9 .8 .3 244 164 146 2120 42.0 120 2845 .7 .1 .0 LO 246 152 154 2640 8.6 130 566 3.6 16.8 6.4 24B 154 156 2640 8.0 130 130 .B 1.1 .4 250 156 15B 1300 12.0 130 ills 3.2 4.1 3.1 252 15B 160 2000 12.0 130 1034 2.9 5.4 2.7 254 lb0 162 26b0 12.0 130 600 1.7 2.6 1.0 256 162 164 2660 12.0 130 272 .8 .6 .2 257 180 164 2700 12.0 130 1B3 .5 .3 .1 258 164 166 2640 12.0 130 1545 4.4 15.0 5.7 260 168 152 2550 12.0 130 1606 4.6 15.6 6.1 261 16B 170 2330 21.0 120 6947 6.4 16.3 7.0 262 170 154 3050 B.0 130 512 3.3 16.1 5.3 263 170 172 2000 21.0 120 6351 5.9 11.8 5.9 264 172 156 2650 21.0 120 3574 3.3 5.4 2.0 265 172 174 1350 16.0 130 2114 3.4 3.4 2.5 266 174 15B 2650 B.0 130 326 2.1 6.1 2.3 267 174 176 1950 16.0 130 2253 3.6 5.5 2.8 269 176 17B 2640 16.0 130 213E 3.4 6.7 2.6 270 17B 162 2700 12.0 130 498 1.4 1.9 .7 271 17B iBO 2700 16.0 120 1063 1.7 2.2 .8 272 IBO 164 2700 42.0 120 4547 1.1 .3 .1 273 180 1B2 1150 16.0 120 3564 5.7 8.8 7.6 274 166 184 2680 12.0 130 1191 3.4 9.4 3.5 275 182 1B4 1550 16.0 125 435E 7.0 15.9 10.3 HI 277 104 186 2650 16.0 125 4874 7.8 33.4 12.6 HI 279 196 190 2750 16.0 125 4585 7.3 31.0 11.3 HI 2BO 190 192 1340 16.0 125 744 1.2 .5 .4 282 192 194 3200 14.0 130 660 1.4 1.8 .6 284 194 218 5300 14.0 130 63 .1 .0 .0 LO 286 196 170 2660 B.0 130 300 1.9 5.2 2.0 2BB 198 174 2640 12.0 130 759 2.2 4.0 1.5 290 200 176 2500 12.0 . 130 175 .5 .3 .1 292 202 204 2700 8.0 130 205 1.3 2.6 1.0 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:55 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Bpm Fps CK ft ftl1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 294 178 204 BOO 12.0 130 47 .1 .0 .0 LO 296 206 1BO 2700 36.0 120 7556 2.4 1.6 .6 298 206 IB2 3800 12.0 130 1040 2.9 10.4 2.7 300 184 20B 2640 12.0 130 3B1 1.1 1.1 .4 301 210 196 2640 8.0 130 317 2.0 5.7 2.2 302 212 190 2640 12.0 130 1174 3.3 9.0 3.4 304 196 198 3300 9.0 130 495 3.2 16.4 5.0 306 19B 200 2700 12.0 130 1176 3.3 9.3 3.4 308 200 202 2640 12.0 130 794 2.3 4.4 1.7 310 202 206 2640 12.0 130 673 1.9 3.2 1.2 312 206 208 2640 12.0 130 2139 6.1 27.4 10.4 HI 314 208 210 2640 12.0 130 2105 6.0 26.6 10.1 HI 316 210 212 2640 12.0 130 2154 6.1 27.7 10.5 HI 318 212 214 1300 12.0 130 654 1.9 1.5 1.2 320 222 196 2700 12.0 130 1215 3.4 9.8 3.6 322 272 224 1320 12.0 130 91B 20 19 2.2 324 228 200 2640 12.0 130 479 1.4 1.7 .6 326 230 202 3000 12.0 130 419 1.2 1.5 .5 327 232 206 2640 12.0 130 595 1.7 2.6 1.0 328 232 20b 2640 36.0 120 9B7B 3.1 2.6 1.0 330 236 210 2700 12.0 130 1250 3.5 10.4 3.8 332 214 216 1000 10.0 130 288 1.2 .6 .6 334 238 216 2100 8.0 130 359 2.3 5.7 2.7 336 302 220 4500 12.0 130 789 2.2 7.4 1.6 338 220 218 1250 8.0 130 408 2.6 4.3 3.5 340 288 224 1700 12.0 130 2225 6.3 19.0 11.1 HI 342 224 228 2000 12.0 130 1977 5.6 17.9 9.0 344 22B 230 2640 12.0 130 812 2.3 4.6 1.7 346 230 232 2640 12.0 130 546 1.5 2.2 .8 34B 232 234 2640 12.0 130 1840 5.2 20.7 7.8 350 234 236 2640 12.0 130 2057 5.8 25.5 9.6 352 236 238 5030 12.0 130 1710 4.9, 34.5 6.9 354 224 226 1300 12.0 130 662 1.9 1.5 1.2 356 22B 240 2700 12.0 130 253 .7 .5 .2 35B 242 230 2700 12.0 130 473 1.3 1.7 .6 360 244 232 2700 36.0 120 12428 3.9 4.0 1.5 362 246 234 2700 12.0 130 378 1.1 1.1 .4 364 250 236 26BO 12.0 130 1474 4.2 13.9 5.2 366 226 240 3B00 8.0 130 467 3.0 16.9 4.5 368 240 242 2640 10.0 130 348 1.4 2.3 .9 370 244 242 2660 10.0 130 6B .3 .1 .0 LO 372 244 246 2550 12.0 130 2011 5.7 23.6 9.2 374 246 240 1500 12.0 130 1068 3.0 4.3 2.9 376 24B 250 1200 10.0 130 106B 4.4 8.3 7.0 378 252 242 2540 12.0 130 513 1.5 1.9 .7 380 254 244 2640 36.0 120 14997 4.7 5.5 2.1 382 256 246 2540 12.0 130 150 .4 .2 .1 LO 3B4 25B 250 2640 12.0 130 619 1.9 23 1.0 38b 278 252 1750 12.0 130 914 2.6 3.8 2.1 3BB 254 256 2600 12.0 130 2222 6.3 2B.9 11.1 HI 390 256 258 2640 12.0 130 1247 3.5 10.1 3.8 392 260 254 2600 36.D 120 17634 5.6 7.4 2.8 394 262 260 150 36.0 130 5741 1.8 .0 .3 PECK RES. 395 266 260 100 36.0 130 12381 3.9 .1 1.3 396 264 266 250 12.0 130 3381 9.6 6.1 24.2 HI WELL 7 CITY OF HUNTINGTON BEACH, THU, SEP 3, 1987, 8:55 PM PIPE --NODES-- LENGTH DIAM -FLOW- VELOCITY- ---HEA➢LOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ftl1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 400 270 168 970 12.0_ 130 2943 8.3 18.2 10.7 HI WELL 5 402 274 272 200 12.0 130 2970 8.4 3.8 19.0 HI WELL 6 404 272 198 13BO 12.0 130 2052 1 B 112 h 6 406 276 278 170 810 130 BOB 5.2 2.1 12.3 H1 WELL I 40B 254 278 900 12.0 130 106 .3 .0 .0 LO 414 294 168 1990 16.0 130 3152 5.0 10.4 5.2 WELL 9 4A 28B 2Y2 1600 12.0 130 960 2.5 3.1 2.0 41B 286 2BB 1050 16.0 130 3093 4.9 5.3 5.1 WELL 10 420 290 292 1400 6,0 120 431 4.9 25.3 18.1 HI DYKE WELL 422 292 131 750 8.0 130 41 .3 ,0 .0 LO 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1124 3.2 9.0 3.1 452 300 169 5300 22,0 120 3376 2.8 7.8 1.5 OC9 500 301 112 100 363 120 16647 5.0 .2 2.3 Overmyer Res. 501 238 302 2000 12,0 130 789 2.2 3.3 1.6 502 95 84 1000 16.0 130 2923 4.7 4.6 4.6 503 96 95 452 24.0 120 2923 2.1 .3 .7 504 304 266 10 36.0 130 9000 2.8 .0 .7 OC35 516 114 115 3490 12.0 130 66B 1.9 4.2 1.2 517 115 64 6850 12.0 130 668 1.9 8.2 1.2 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 8:55 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -462.43 116.4 111.4 48 51 4 5 -218.21 116.9 111.9 4B 51 6 5 -384.91 116.3 111.3 4B 51 Banning 8 5 -547.24 114.7 109.7 47 52 10 4 -911.49 112.7 10B.7 47 52 12 4 -287.71 113.9 109.9 47 52 14 6 -594.14 118.9 112.9 48 50 16 7 -419.66 117.9 110.9 48 51 18 4 -428.90 117.0 113.0 4B 50 20 2 -192.94 116.7 114.7 49 50 22 4 -178.36 114.0 110.0 47 52 24 6 -410.91 125.0 119.0 51 47 26 8 -42B.90 123.3 115.3 49 49 28 4 -311.28 121.8 117.8 51 48 30 4 -736.53 119.7 115.7 50 49 32 6 -866.54 11B.1 112.1 48 50 34 30 -451.49 121.2 91.2 39 LD 55 36 8 -647.60 137.1 129.1 55 42 38 9 -560.36 133.3 124.3 53 44 40 6 -636.42 131.4 125.4 54 45 42 6 -708.83 130.9 124.9 54 45 44 18 -419.66 131.2 113.2 49 47 46 36 -563.03 12B.1 92.1 39 LO 53 48 36 -1225.69 128.3 92.3 40 53 50 12 -B48.80 161.1 149.1 64 32 52 10 -649.05 149.0 139.0 60 37 54 7 -450.52 147.3 140.3 60 3B 56 10 -487.94 147.3 137.3 59 38 58 25 -512.24 149.7 124.7 54 40 60 35 -361.34 151.1 116.1 50 41 62 40 -699.60 143.6 103.6 44 46 64 75 -1910.47 157.1 B2.1 35 LO 48 66 10 -557.20 161.1 151.1 65 32 6B 8 -506.17 161.5 153.5 66 32 70 10 -483.91 162.8 152.8 66 31 72 55 -224.05 164.9 109.9 47 38 74 50 -461.94 166.4 116.4 50 36 76 50 .00 167.3 117.3 50 36 78 50 .00 165.3 115.3 49 37 80 50 .00 163.3 113.3 49 38 82 75 -301.81 164.6 89.6 38 LO 43 B4 75 -223.56 164.6 89.6 38 LO 43 86 57 -168.40 167.4 110.4 47 37 BB 50 -346.03 168.8 118.B 51 35 90 60 .00 169.7 109.7 47 37 92 70 -272.89 168.0 98.0 42 40 94 115 -42.2B 169.4 54.4 23 LO 54 95 103 .00 169.2 66.2 2B LO 49 Reservoir Hill 96 95 -534.60 169.5 74.5 32 LO 46 9B 16 -846.37 158.8 142.9 61 34 100 15 -208.01 160.4 145.4 63 33 Flounder 102 12 -239.36 161.5 149.5 64 32 104 14 -347.49 164.3 150.3 65 31 106 58 -722.44 167.6 109.6 47 37 108 55 -131.46 172.0 117.0 50 34 CITY OF HUNTINGTON BEACH THU, 5EP 3, 1987, 8:55 PM GROUND ELV FLOW HBL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 110 60 .00 179.6 119.6 51 31 112 60 -26.97 1BO.1 120.1 52 31 114 93 -1027.40 169.5 76.5 33 LO 45 115 35 .00 165.3 130.3 56 34 116 60 -71.93 179.5 119.5 51 31 118 13 -280.67 167.7 154.7 67 30 120 55 -256.37 176.2 121.2 52 32 122 m 35 -407.03 179.5 144.5 62 27 124 25 -109.84 178.5 153.5 66 26 126 40 -147.50 171.8 131.8 57 32 129 5 -335.10 169.6 164.6 71 28 129 45 .00 176.3 131.3 56 30 130 45 -285.52 176.7 131.7 57 30 131 45 .00 1B5.0 140.0 60 25 132 55 -561.57 17B.8 123.8 53 30 134 50 -230.61 180.0 130.0 56 29 136. 50 -158.19 178.1 12B.1 55 30 138 40 .1110 173.3 133.3 57 31 140 2 -324.65 169.6 167.6 72 27 142 2 -192.94 169.6 167.6 72 27 144 2 -215.54 169.7 167.7 72 27 146 2 -249.32 169.7 167.7 72 27 148 40 -310.80 173.1 133.1 57 31 150 40 .00 173.1 133.1 57 31 152 28 -505.44 200.4 172.4 74 16 154 25 -6B6.23 183.6 158.6 6B 24 156 25 -215.30 182.5 157.5 6B 24 158 30 -225.02 178.4 148.4 64 27 160 5 -522.69 173.0 168.0 72 26 162 3 -501.80 170.4 167.4 72 27 164 2 -499.12 169.8 167.E 72 27 166 2 -354.29 154.8 152.8 66 34 168 27 -918.54 216.0 199.0 81 HI 8 170 26 -3B3.45 199.7 173.7 75 16 172 25 -662.90 187.9 162.9 70 22 174 25 -293.54 184.5 159.5 69 23 176 12 -290.39 179.0 167.0 72 24 178 5 -529.50 172.3 167.3 72 26 180 5 -326.35 170.1 165.1 71 27 182 5 -245.19 161.3 156.3 67 31 184 5 -294.76 145.4 140.4 60 38 186 34 -605.80 112.0 78.0 33 LO 61 190 35 -5014.06U B1.0F 46.0 19 LO 76 192 55 -84.32 BO.5 25.5 11 LO 85 194 5 -596.81 78.7 73.7 31 LO 67 196 25 -420.15 204.9 179.9 77 13 19B 17 -611.39 1BB.5 171.5 74 21 200 14 -686.96 179.3 165.3 71 24 Heil 202 10 -334.37 174.9 164.9 71 26 204 10 -252.72 172.3 162.3 70 27 206 9 -411.16 171.7 162.7 70 27 208 14 -414.80 144.3 130.3 56 40 210 15 -BB4.28 117.7 102.7 44 53 212 9 -326.59 90.0 81.0 35 LO 64 214 9 -365.71 B8.5 79.5 34 LO 64 CITY OF HUNTINGTON BEACH THU, SEP 31 1967, 8:55 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 216 9 -646.87 B7.9 78.9 34 LO 64 218 5 -471.42 78.7 73.7 31 LO 67 220 5 -380.30 63.0 78.0 33 LO 65 222 26 -776.63 214.7 18B.7 81 HI 9 224 21 -503.9B 198.9 177.9 77 16 226 23 -194.89 197.4 174.4 75 17 22B 20 -432.54 181.0 161.0 69 24 230 12 -320.03 176.4 164.4 71 25 232 10 -660.96 174.3 164.3 71 26 234 12 160.97 153.6 141.6 61 36 236 15 -571.05 128.1 113.1 49 48 Scenario 238 5 -562.79 93.6 88.6 38 LO 61 240 21 -372.03 180.5 159.5 69 25 242 15 -456.60 178.1 163.1 70 25 244 16 -4B9.B9 179.3 162.3 70 25 246 14 -714.91 154.7 140.7 60 36 248 14 .00 150.4 136.4 59 38 250 13 -212.14 142.0 129.0 55 41 252 22 -400.46 180.0 158.0 68 25 254 18 -308.12 183.8 165.8 71 23 256 17 -924.99 154.9 137.9 59 36 258 17 -628.64 144.8 127.8 55 41 260 23 -487.70 191.2 168.2 72 20 262SP 34 5740.79U . 191.2 157.2 68 21 PECK RES. 264SP 18 3380.69U 197.4 179.4 77 17 WELL 7 266 23 .00 191.3 168.3 72 20 270SP 27 2942.96U 234.1 207.1 89 HI 0 WELL 5 272 25 '.00 201.8 176.B 76 15 2746P 19 2969.79U 205.6 186.6 80 HI 13 WELL 6 276SP 17 807.64U 185.9 168.9 73 22 WELL I 27B 19 .00 1B3.8 164.8 71 23 284SP 27 3152.04U 226.4 199.4 86 HI 3 WELL 9 2B6SP 19 3092.54U 223.2 204.2 88 HI 5 WELL 10 288 22 .00 217.9 195.9 84 HI 7 290SP 44 430.74U 210.3 166.3 72 12 DYKE WELL 292 48 .00 185.0 137.0 59 26 294 12 6700.00 163.6 151.6 65 31 OC44,Adams 300 25 4500.00 223.7 19B.7 86 HI 4 OC9 3015P 65 16647.23U 180.4 115.4 50 31 Overmyer Res. 302 5 .00 90.4 85.4 37 LO 62 304 25 9000.00 191.3 166.3 72 20 OC35 Maximum Unbalanced Head = .00001 192 CITY OF HUNTINGTON BEACH THU, SEP 3, 19871 B:55 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH HGL LIFT PUMP NODE GPM Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 301SP 16647 50.0 180.4 130.4 20 Overmyer Res. 2623P 5741 20.0 191.2 171.2 30 PECK RES. 290SP 431 -34.6 210.3 244.3 11 DYKE WELL 276SP BOB -98.0 185.9 283.9 1 WELL 1 270SP 2943 -62.0 234.1 296.1 5 WELL 5 274SP 2970 -59.0 205.6 264.6 6 WELL 6 264SP 33B1 -89.0 197.4 286.4 7 WELL 7 2B4SP 3152 -64.0 226.4 290.4 9 WELL 9 286SP 3093 -55.0 223.2 278.2 lip WELL 10 190 -5014 81.0 SOURCE PUMPS Node Puwp4 301 20 Head 132 131 130 114 106 100 93 B2 Flow 0. 10000. 20650. 21975. 22525. 22875. 23350. 23775. 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000. 15800. 16100. 16250. 16500. 16750. 270 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200. 400. 600. 800. 0. 0. 0. 276 1 Head 440 399 348 311 287 205 98 0 Flow 0. 200. 400. 600. 800. 1000. 1200. 0. 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1BB2. 2259. 3012. 3765. 4518. 4894. 0. 274 6 Head 488 319 296 2B7 257 206 148 0 Flow 0. 1761. 2201. 2641. 3OB1. 3521. 3962. 0. 264 7 Head 397 299 291 269 238 208 174 0 Flow 0. 2B17. 3286. 3756. 4225. 4695. 5164. 0. 284 9 Head 544 424 366 2B3 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745. 4214. 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1B59. 2324. 2789. 3253. 3718, 0. 0. Iteration= 1, Flow Correction= 26653.040 Iteration= 2, Flow Correction= 12074.020 Iteration= 3, Flow Correction= 4902,024 Iteration= 4, Flow Correction= 2340.593 Iteration= 5, Flow Correction= 899.193 Iteration= 6, Flow Correction= 1004.730 Iteration= 7, Flow Correction= 386.909 Iteration= 8, Flow Correction= 142.443 Iteration= 9, Flow Correction= 35.536 Iteration= 11, Flow Correction= .299 Iteration= 12, Flow Correction= .002 C1. �F HUNTINGTON BEACH THU, SEP 3, 1987, 9:03 PM Existing System -- MAXIMUM DAY DEMAND & FIRE @ NODE 220 INPUT FILE NAME MDXFR220 NUMBER OF PIPES 240 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN 100 Gpm MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-) FIXED DEMANDS = .00 SUM OF (+1 FIXED DEMANDS = 20200.00 SUM OF PEAKABLE DEMANDS =-22356.49 SUM OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -54326.30 SUM OF ALL DEMANDS --------- -34126.30 Solution reached in 16 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH THU, 5EP 3, 1987, 9.03 PM PIPE --NODES-- LENGTH D1AM -FLOW- -VELOCITY- ---HEADL055--- NO FROM TO Feet Inches H-N C GPM Fps CK it ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 532 .8 .5 .2 4 2 6 2000 12.0 130 69 .2 .0 .0 LD 6 4 6 1600 12.0 130 329 .9 .5 .3 8 6 8 200 12.0 130 475 1.3 1.7 .6 10 B 10 2900 12.0 130 489 1.4 2.0 .7 12 12 10 970 10.0 130 423 1.7 1.2 1.3 14 14 4 2900 16.0 130 1078 1.7 2.1 .7 16 16 6 2620 12.0 130 462 1.3 1.6 .6 18 18 B 2640 12.0 130 561 1.6 2.3 .9 20 20 12 2350 12.0 130 657 1.9 2.7 1.2 22 22 12 2280 12.0 130 54 .2 .0 .0 LO 24 14 16 2600 12.0 130 362 1.0 1.0 .4 26 16 18 2610 12.0 130 353 1.0 1.0 .4 28 18 20 2510 12.0 130 191 .5 .3 .1 30 24 14 2620 16.0 130 2035 3.2 6.1 2.3 32 26 16 2700 12.0 130 873 2.5 5.3 2.0 34 29 18 2700 12.0 130 B27 2.3 4.9 1.8 36 30 20 2570 12.0 130 b59 1.9 3.0 1.2 3B 32 22 3430 8.0 130 232 1.5 4.2 1,2 40 24 26 2680 12.0 130 486 1.4 1.8 .7 42 26 28 2640 12.0 130 440 1.2 1.5 .6 44 28 30 2670 12.0 130 532 1.5 2.1 .8 46 30 32 2550 12.0 130 460 1.3 1.5 .6 48 34 32 2800 12.0 130 639 1.8 3.1 1.1 50 36 24 2640 16.0 130 2932 4.7 12.1 4.6 52 3B 26 2b00 12.0 130 1256 3.6 10.1 3.9 54 40 2B 2580 12.0 130 1230 3.5 9.6 3.7 56 42 30 2640 12.0 130 1324 3.8 11.3 4.3 5B 46 34 2320 12.0 130 1090 3.1 6.9 3.0 60 36 38 2640 12.0 130 739 2.1 3.8 1.4 62 38 40 2640 12.0 130 50B 1.4 1.9 .7 64 40 42 2700 12.0 130 231 .7 .5 .2 66 44 42 2550 12.0 130 177 .5 .3 .1 68 48 46 700 12.0 130 284 .8 .2 .2 70 50 36 2550 16.0 130 4318 6.9 23.9 9.4 72 52 38 2640 12.0 130 1585 4.5 15.7 6.0 74 54 40 2650 12.0 130 1589 4.5 15.9 6.0 76 56 42 2620 12.0 130 1625 4.6 16.3 6.2 7B 5B 44 2640 8.0 130 597 3.8 1B.5 7.0 80 62 46 2950 12.0 120 1369 3.9 15.5 5.3 82 64 .46 5300 12.0 130 1510 4.3 28.0 5.4 84 50 52 2700 -12.0 130 1355 3.8 12.0 4.5 B6 52 54 2600 12.0 130 493 1.4 1.8 .7 BB 56 54 2640 12.0 130 42 .1 .0 .0 LO % 58 56 2660 12.0 130 583 1.7 2.5 .9 92 60 58 . 1330 12.0 130 623 1.8 1.4 1.1 94 60 b2 1130 B.0 130 577 3A A 5 b.6 8 h 12 96 66 52 2640 12.0 130 1372 3.9 12.0 4.6 97 68 54 2640 12.0 130 1505 4.3 14.3 5.4 98 70 56 2640 12.0 130 1572 4.5 15.5 5.9 99 72 5B 2640 8.0 130 534 3.4 15.1 5.7 100 72 58 2640 8.0 130 534 3.4 15.1 5.7 101 74 60 2640 12.0 130 1562 4.4 15.3 5.8 102 80 62 3200 12.0 120 1491 4.2 19.7 6.2 104 84 64 2850 12.0 70 551 1.6 7.5 2.b CITY OF HUNTINGTON BEACH THU, SEP 39 1987, 9:03 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 2200 3.5 7.5 2.7 109 66 50 5250 30.0 120 206 .1 LO .0 .0 LO 110 68 66 2640 30.0 120 2428 1.1 .5 .2 112 70 66 2680 30.0 120 4070 1.0 1.2 .5 114 70 68 2680 12.0 130 396 1.1 1.2 .5 116 72 70 2600 12.0 130 540 1.5 2.1 .8 118 72 70 2600 30.0 120 5552 2.5 2.1 .8 120 74 72 1450 30.0 120 6539 3.0 1.6 1.1 122 76 74 600 30.0 120 7759 3.5 .9 1.5 124 76 78 150 8.0 130 B43 5.4 2.0 13.3 HI 126 78 80 1050 12.0 130 843 2.4 1.9 1.8 _ 128 82 80 1150 12.0 130 648 LB 1.3 1.1 129 92 82 1350 12.0 00 98B 2.8 3.3 2.5 130 82 B4 1250 12.0 130 38 .1 .0 .0 LO 132 50 98 5300 12.0 130 384 1.1 2.3 .4 134 66 100 25BO 12.0 130 292 .8 .7 .3 136 68 102 2640 12.0 130 27 .1 LO .0 .0 LO 138 104 70 2630 12.0 130 42Y 1.2 1.4 .5 140 86 72 1320 12.0 130 845 2.4 2.5 1.9 142 106 86 1320 12.0 130 184 .5 .1 .1 144 8B 86 1450 14.0 120 830 1.7 1.4 1.0 146 108 BB 12BO 12.0 130 930 2.6 2.8 2.2 14B 90 BB 650 14.0 120 1051 2.2 1.0 1.5 149 B8 74 1350 12.0 130 804 2.3 2.3 1.7 150 90 92 1750 12.0 130 588 1.7 1.7 .9 151 90 76 1300 30.0 120 B602 3.9 2.4 1.8 152 90 96 3150 42.0 120 2214 .5 .1 .0 LO 154 90 94 2700 15.0 120 320 .6 .3 .1 156 94 92 1100 12.0 130 672 1.9 1.3 1.2 158 100 98 26BO 12.0 130 462 1.3 1.6 .6 160 102 100 2680 12.0 130 37B 1.1 1.1 .4 162 104 102 2750 12.0 130 590 1.7 2.6 1.0 164 106 104 2580 12.0 130 692 2A 3.3 1.3 166 108 106 1500 12.0 130 1044 3.0 4.1 2.7 168 110 108 700 12.0 130 2105 6.0 7.0 10.1 HI 170 112 90 950 21.0 120 8351 7.7 9.3 9.8 171 112 90 950 16.0 130 4425 7.1 9.3 9.8 172 112 110 350 21.0 120 2725 2.5 .4 1.2 174 110 116 750 21.0 120 620 .6 .1 .1 LO 176 114 96 3400 42.0 120 1256 .3 .0 .0 LD 178 11B 104 2640 12.0 130 675 1.9 3.2 1.2 179 120 106 2640 B.0 130 379 2.4 7.9 3.0 1BO 120 106 2640 6.0 130 177 2.0 7.9 3.0 182 116 120 2550 12.0 130 679 1.9 3.2 1.2 184 122 116 1900 21.0 120 130 .1 .0 .0 LO 186 126 94 3300 14.0 70 395 .8 2.2 .7 1BB 128 114 4000 42.0 120 2954 .7 .2 .0 LO 190 120 118 2550 8.0 130 387 2.5 B.0 3.1 192 122 120 2150 8.0 130 257 1.6 3.2 1.5 194 122 124 600 8.0 130 254 1.6 .9 1.4 196 131 118 2640 8.0 130 56B 3.6 17.0 6.4 197 132 130 800 8.0 130 348 2.2 2.1 2.6 190 130 129 B50 6.0 130 62 .7 .4 .4 199 127 120 1250 8.0 130 62 .4 .1 .1 200 132 120 2750 8.0 130 201 1.3 2.6 .9 CITY OF HUNTINGTON BEACH THU, 5EP 31 1987, 9.03 PM PIPE --NO➢E5-- LENGTH ➢IAM -FLOW- -VELOCITY- ---HEADLO55--- NO FROM TO Feet Inches H-W C Gpe Fps CK it ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 201 134 122 2640 21.0 120 1048 1.0 .6 .2 202 124 136 3250 12.0 130 144 .4 .2 .1 LD 2014 lab 1,26 800 14.0 60 542 1.1 1.4 1.6 206 140 128 700 12.0 130 22 .1 LD .0 .0 LO 208 142 128 IB00 12.0 130 30 .1 LO .0 .0 LO 210 144 142 1150 12.0 130 24B .7 .2 .2 212 292 132 1950 8.0 130 395 2.5 6.4 3.3 214 134 132 2000 12.0 130 450 1.3 1.2 .6 216 134 136 1200 12.0 130 71B 2.0 1.6 1.4 218 136 08 2050 12.0 130 917 2.6 4.4 2.2 220 164 146 2200 12.0 130 150 .4 .2 .1 LD 222 142 140 1800 12.0 130 26 .1 LO .0 .0 LO 224 146 12B 4200 42.0 120 323B .7 .2 .1 LD 226 146 144 650 24.0 120 464 .3 .0 .0 LD 228 152 131 2700 8.0 130 534 3.4 15.4 5.7 230 154 132 3150 8.0 130 265 l.1 4.9 " 1.6 232 156 134 2640 21.0 120 2446 2.3 2.7 1.0 234 15B 136 2640 12.0 130 212 .6 .4 .1 236 150 160 1400 12.0 130 64 .2 .0 .0 LO 238 1,48 150 700. 14.0 130 64 .1 .0 .0 LO 240 138 148 500 12.0 130 374 1.1 .2 .4 242 162 140 2640 12.0 130 320 .9 .B .3 244 164 146 2120 42.0 120 3801 .9 .2 .1 LD 246 152 154 200 8.0 130 567 3.6 16.9 6.4 248 154 156 2640 8.0 130 130 .8 1.1 .4 250 156 15B 1300 12.0 130 1100 3.1 3.9 3.0 252 158 160 2000 12.0 130 996 2.8 5.0 2.5 254 .160 162 2660 12.0 130 537 1.5 2.1 .8 256 162 164 2660 12.0 130 219 .6 .4 .2 257 IBO 164 2700 12.0 130 212 .6 .4 .1 258 164 166 2640 12.0 130 1251 3.5 10.1 3.8 260 16B 152 2550 12.0 130 1607 4.6 15.6 6.1 261 160 170 2330 21.0 120 6934 6.4 16.2 7.0 262 170 154 3050 B.0 130 514 3.3 16.2 5.3 263 170 172 2000 21.0 120 6339 5.9 11.8 5.9 264 172 156 2650 21.0 120 3632 3.4 5.6 2.1 265 172 174 1350 16.0 130 2044. 3.3 3.2 2.3 266 174 158 2650 8.0 130 333 2.1 6.3 2.4 267 174 176 1950 16.0 130 2185 15 5.2 2.7 269 176 178 2640 16.0 130 2079 3.3 6.4 2.4 270 178 162 2700 12.0 130 504 1.4 1.9 .7 271 178 180 2700 16.0 120 997 1.6 1.9 .7 272 180 164 2700 42.0 120 5270 1.2 .4 .1 273 180 182 1150 16.0 120 2835 4.5 5.7 5.0 274 166 184 2680 12.0 130 B97 2.5 5.6 2.1 275 182 1B4 1550 16.0 125 555 15 113 6.7 277 184 18b 2650 16.0 125 3657 5.8 19.6 7.4 279 186 190 2750 16.0 125 2997 4.8 14.1 5.1 2BO 190 192 1340 16.0 125 B62 3.8 4.4 3.3 282 192 194 3200 14.0 130 2277 4.7 17.6 5.5 2B4 194 218 5300 14.0 130 16BO 3.5 16.6 3.1 286 196 170 2660 8.0 130 302 1.9 5.3 2.0 288 198 174 2640 12.0 130 767 2.2 4.1 1.6 290 200 176 2500 12.0 130 185 .5 .3 .1 292 202 204 2700 8.0 130 204 1.3 2.6 1.0 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 9:03 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Bpm Fps CK ft ft/1000 CK. ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 294 178 204 800 12.0 130 49 .1 .0 .0 LO 296 206 180 2700 36.0 120 7647 2.4 1.6 .6 29B 206 1B2 3BU0 12.0 130 865 2.5 7.4 1.9 300 184 208 2640 12.0 130 400 1.1 1.2 .5 3011 196 210 2640 8.0 130 54 .3 .2 .1 LO 302 190 212 2640 12.0 130 290 .8 .6 .2 304 196 19B 3300 8.0 130 491 3.1 16.2 4.9 306 198 200 2700 12.0 130 1159 3.3 9.0 3.3 308 200 202 2640 12.0 130 767 2.2 4.1 1.6 310 202 206 2640 12.0 130 636 1.8 2.9 1.1 312 206 208 2640 12.0 130 1753 5.0 1B.9 7.2 314 20B 210 2640 12.0 130 113E 4.9 18.6 7.1 316 210 212 2640 12.0 130 1519 4.3 14.5 5.5 318 212 214 1300 12.0 130 1472 4.2 6.7 5.2 320 222 196 2700 12.0 130 1214 3.4 9.8 3.6 322 272 224 1320 12.0 130 911 2.6 23 2.1 324 228 200 2640 12.0 130 48D 1.4 1.7 .7 326 230 202 3000 12.0 130 407 1.2 1.4' .5 327 232 206 2640 12.0 130 571 1.6 2.4 .9 32B 232 206 2640 36.0 120 9470 3.0 2.4 .9 330 236 210 2700 12.0 130 611 1.7 2.8 1.0 332 214 216 1000 10.0 130 1106 4.5 7.4 7.4 334 21b 23B 2100 8.0 130 459 2.9 9.1 4.3 336 302 220 4500 12.0 130 1764 5.0 32.6 7.3 338 218 NO 1250 8.0 130 1209 7.7 32.5 &0 HI 340 288 224 1700 12.0 130 2212 6.3 18.7 11.0 HI 342 224 228 2000 12.0 130 1961 5.6 17.6 B.8 344 228 230 2640 12.0 130 794 2.3 4.4 1.7 346 230 232 2640 12.0 130 516 1.5 2.0 .7 34B 232 234 2640 12.0 130 1671 4.7 17.3 6.6 350 234 236 2640 12.0 130 1799 5.1 19.9 7.5 352 236 238 5030 12.0 130 1867 5.3 40.5 8.1 354 224 226 1300 12.0 130 65B 1.9 1.5 1.2 356 22B 240 2700 12.0 130 254 .7 .5 .2 359 242 230 2700 12.0 130 449 1.3 1.6 .6 360 244 232 2700 36.0 120 11B56 3.7 3.7 1.4 362 246 234 2700 12.0 130 290 .8 .7 .3 364 250 236 2680 12.0 130 1250 3.5 10.3 3.8 366 226 240 3800 8.0 130 463 3.0 16.7 4.4 36B 240 242 2640 10.0 130 345 1.4 2.3 .9 370 244 242 2660 10.0 130 7B .3 .1 .1 LO 372 244 246 2550 12.0 130 1B55 5.3 20.3 8.0 374 246 248 1500 12.0 130 955 17 3.5 2.3 376 246 250 1200 10.0 130 955 3.9 6.8 5.7 378 252 242 2540 12.0 130 482 1.4 1.7 .7 380 254 244 2640 36.0 120 14279 4.5 5.1 1.9 3B2 256 246 2540 12.0 130 105 .3 .1 .0 LO 3B4 258 250 2640 12.0 130 507 1.4 1.9 .7 386 278 252 1750 12.0 130 883 2.5 . 3.5 2.0 3BB 254 256 2600 12.0 130 2066 5.9 25.3 9.7 390 256 258 2640 12.0 130 1136 3.2 8.5 3.2 392 260 254 2600 36.0 120 16730 5.3 6.7 2.6 394 262 260 150 36.0 130 4B39 1.5 .0 .2 PECK RES. 395 266 260 100 36.0 130 12378 3.9 .1 1.3 396 264 266 250 12.0 130 337E 9.6 6.0 24.2 HI WELL 7 CITY OF HUNTINGTON BEACH THU, SEP 3, 1997, 9:03 PM PIPE --NO➢ES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 400 270 168 970 12.0 130 2934 8.3 18.1 18.6 HI WELL 5 402 274 272 200 12.0 130 2957 8.4 3.8 18.9 HI WELL 6 404 272 198 1380 12.0 130 2046 18 112 16 406 276 278 170 8.0 130 B06 5.1 2.1 12.2 HI WELL 1 409 254 278 900 12.0 130 77 .2 .0 .0 LO 414 284 168 1990 16.0 130 3143 5.0 10.4 12 WELL 9 416 288 222 1600 12.0 130 813 21 12 2.0 418 296 2B8 1050 16.0 130 3084 4.9 5.3 5.0 WELL 10 420 290 292 1400 6.0 120 430 4.9 25.2 18.0 HI DYKE WELL 422 292 131 750 8.0 130 34 .2 .0 .0 LO 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1117 3.2 8.9 3.1 452 300 160 5300 22.0 120 3383 2.9 7.8 1.5 OC9 500 301 112 100 36.6 120 15528 4.7 .2 2.0 Overmyer Res. 501 238 302 2000 12.0 130 1764 5.0 14.5 7.3 502 95 B4 1000 16.0 130 2936 4.7 4.6 4.6 503 96 95 452 24.0 120 2936 2.1 .3 .7 504 304 266 10 36.0 130 9000 2.8 .0 .7 OC35 516 114 115 3490 12.0 130 670 1.9 4.2 1.2 517 115 64 6850 12.0 130 670 1.9 8.3 1.2 i CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 9:03 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK I DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -462.43 117.6 112.6 48 5U 4 5 -218.21 118.1 113.1 49 50 6 5 -384.91 117.6 112.6 48 50 Banning 8 5 -547.24 115.9 110.9 48 51 10 4 -911.49 114.0 110.0 47 52 12 4 -287.71 115.2 111.2 48 51 14 6 -594.14 120.2 114.2 49 50 16 7 -419.66 119.2 112.2 48 50 1B 4 -428.90 118.2 114.2 49 50 2U -192.94 117.9 115.9 50 50 22 4 -178.36 115.2 111.2 48 51 24 6 -410.91 126.3 120.3 52 47 26 8 -428.90 124.5 116.5 50 48 28 4 -311.2E 123.0 119.0 51 48 30 4 -736.53 120.9 116.9 50 49 32 6 -866.54 119.4 113.4 49 50 34 30 -451.49 122.5 92,5 40 54 36 8 -647.60 138.4 130.4 56 42 38 9 -560.36 134.5 125.5 54 44 40 6 -636.42 132.6 126.6 54 44 42 6 -708.83 132.2 126.2 54 44 44 IB -419.66 132.4 114.4 49 47 46 36 563.03 129.4 93.4 40 52 48 36 -1225.69 129.6 93.6 40 52 50 12 -846.80 162.3 150.3 65 32 52 10 -649.05 150.3 140.3 60 37 54 7 -450.52 148.5 141.5 61 37 56 10 -4B7.94 148.5 138.5 60 38 58 25 -512.24 151.0 126.0 54 39 60 35 361.34 152.4 117.4 50 41 62 40 -699.60 144.9 104.9 45 46 64 75 -1910.47 158.4 83.4 36 LO 47 66 10 -557.20 162.3 152.3 66 32 68 8 -506.17 162.8 154.8 67 31 70 10 -4B3.81 164.0 154.0 66 31 72 55 -224.05 166.1 111.1 48 38 74 50 -461.94 167.7 117.7 51 36 76 50 .00 168.6 118.6 51 35 7B 50 .00 166.6 116.6 50 36 80 50 .00 164.6 114.6 49 37 82 75 -301.81 165.9 90.9 39 LO 43 84 75 -223.56 165.9 90.9 39 LO 43 86 57 -168.40 168.5 111.5 4B 37 88 50 -346.03 170.0 120.0 52 35 90 60 .00 171.0 111.0 4B 36 92 70 -272.89 169.3 99.3 43 39 94 115 -42.28 170.6 55.6 24 LO 53 95 103 .00 170.5 67.5 29 LO 48 Reservoir Hill 96 95 -534.60 170.9 75.9 32 LO 45 96 16 -846.37 160.0 144.0 62 34 100 15 -208.01 161.6 146.6 63 33 Flounder 102 12 -239.36 162.7 150.7 65 32 104 14 -347.49 165.4 151.4 65 31 106 58 -722.44 168.7 110.7 47 37 108 55 -131.46 172.E 1173 51 34 CITY OF HUNTINGTON BEACH THU, SEP 3, 19871 9:03 PM GROUND ELV FLOW H6L EL HEAD ------ PRESSURE ------ NODE Feet Gp® Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 110 60 .00 179.8 119.8 51 31 112 60 -26.97 1BO.3 120.3 52 31 114 93 -1027.40 170.9 77.9 33 LO 44 115 35 .00 166.7 131.7 57 34 116 60 -71.93 179.8 119.E 51 31 118 13 -2BO.67 168.6 155.6 67 29 120 55 -256.37 176.6 121.6 52 32 122 35 -407.03 179.8 144.E 62 27 124 25 -109.84 179.9 153.9 66 26 126 40 -147.50 172.9 132.9 57 31 126 5 -335.10 171.1 166.1 72 27 129 45 .00 176.8 131.8 57 30 130 45 -285.52 177.1 132.1 57 30 l3l 45 .00 1B5.6 140.6 60 25 132 55 -561.57 179.2 124.2 53 30 134 50 -230.61 1B0.4 130.4 56 29 136 50 -15B.19 178.7 128.7 55 30 138 40 .00 174.3 134.3 58 31 140 2 -324.65 171.1 169.1 73 27 142 2 -192.94 171.1 169.1 73 27 144 2 -215.54 171.3 169.3 73 27 146 2 -249.32 171.3 169.3 73 27 148 40 -310.80 174.1 134.1 58 31 150 40 .00 174.1 134.1 58 31 152 28 -505.44 201.0 173.0 74 16 154 25 -686.23 1B4.1 159.1 68 24 156 25 -215.36 183.0 15B.0 6B 24 158 30 -225.02 179.1 149.1 64 27 160 5 -522.69 174.0 169.0 73 26 162 3 501.80 171.9 169.9 73 27 164 2 -499.12 171.5 169.5 73 27 166 2 -354.29 161.4 159.4 69 31 168 27 -918.54 216.6 189.6 82 HI 8 170 26 -3B3.45 200.4 174.4 75 16 172 25 -662.90 18B.6 163.6 70 21 174 25 -293.54 1B5.4 160.4 69 23 176 12 -290.39 180.2 168.2 72 24 178 5 -529.50 173.8 16B.B 73 26 1B0 5 -326.35 171.9 166.9 72 27 182 5 -245.19 166.2 161.2 69 29 184 5 -294.76 155.8 150.8 65 34 1B6 34 -605.80 136.2 102.2 44 49 190 35 -356.24 122.1 87.1 37 LO 56 192 55 -84.32 117.6 62.6 27 LO 65 194 5 -596.91 100.1 95.1 41 58 196 25 -420.15 205.7 180.7 78 13 19B 17 -611.39 1B9.5 172.5 74 20 200 14 -686.96 180.5 166.5 72 24 Heil 202 10 -334.37 176.4 166.4 72 25 204 10 -252.72 173.8 163.8 71 27 206 9 -411.16 173.5 164.5 71 27 20B 14 -414.80 154.6 146.6 60 36 210 15 -BB4.2B 135.9 120.9 52 44 212 9 -326.59 121.4 112.4 48 50 214 9 -365.71 114.7 105.7 45 53 CITY OF HUNTINGTON BEACH THU, SEP _3, 1987, 9:03 PM GROUND ELY FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK I DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 216 9 -646.B7 107.2 98.2 42 56 218 5 -471.42 B3.5 78.5 34 LO 65 220 5 -2972.77U 51.OF 46.0 19 LO 79 222 26 -776.63 215.5 189.5 82 HI 9 224 21 -503.98 199.9 178.9 77 16 226 23 -194.89 198.4 175.4 76 17 22B 20 -432.54 1B2.2 162.2 70 24 230 12 -320.03 177.9 165.9 71 25 232 I0 -660.96 175.9 165.9 71 26 234 12 -160.B7 158.6 146.6 63 34 236 15 -571.05 13B.7 123.7 53 43 Scenario 23B 5 -562.79 98.2 93.2 40 59 240 21 -372.03 181.7 160.7 69 24 242 15 -456.60 179.4 164.4 71 25 244 16 -489.B9 179.6 163.6 70 25 246 14 -714.91 159.3 145.3 62 34 248 14 .00 155.8 141.9 61 35 250 13 -212.14 149.0 136.0 58 38 252 22 -400.46 181.1 159.1 6B 25 254 18 -308.12 184.6 166.6 72 23 256 17 -824.99 159.4 142.4 61 34 258 17 -628.64 150.9 133.9 5B 38 260 23 -487.70 191.3 16B.3 72 20 262SP 34 4839.32U 191.4 157.4 68 21 PECK RES, 264SP 18 3378.16U 197.5 179.5 77 17 WELL 7 266 23 .00 191.4 168.4 73 20 2706P 27 2934.48U 234.6 207.6 90 HI 0 WELL 5 272 25 .00 202.7 177.7 77 15 274SP 19 2956.B3U 206.5 187.5 81 HI 13 WELL 6 276SP 17 805.63U 186.7 169.7 73 22 WELL 1 278 19 .00 1B4.6 165.6 71 23 284SP 27 3142.BOU 226.9 199.9 86 HI 3 WELL 9 286SP 19 30B4.32U 223.9 204.9 88 HI 4 WELL 10 2B8 22 .00 218.6 196.6 85 HI 7 290SP 44 429.55U 210.8 166.8 72 12 DYKE WELL 292 48 .00 185.6 137.6 59 26 294 12 6700.00 164.E 152.8 66 31 OC44,Adams 300 25 4500.00 224.3 199.3 86 HI 4 OC9 301SP 65 15527.9BU 180.5 115.5 50 31 Overmyer Res. 302 5 .00 B3.6 7B.6 34 LO 65 304 25 9000.00 191.5 166.5 72 20 OC35 Maximum Unbalanced Head = .00002 192 CITY OF HUNTINGTON BEACH THU, SEP 3, 1987, 9:03 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION H6L DISCH HGL LIFT PUMP NODE GPM Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 301SP 15528 50.0 180.5 130.5 20 Overmyer Res. 262SP 4839 20.0 191.4 171.4 30 PECK RES. 290SP 430 -34.0 210.8 244.9 11 DYKE WELL 276SP 806 -98.0 186.7 2B4.7 1 WELL 1 270SP 2934 -62.0 234.6 296.6 5 WELL 5 274SP 2957 -59.0 20b.5 265.5 6 WELL 6 2645P 3378 -89.4 197.5 286.5 7 WELL 7 284SP 3143 -64.0 226.9 290.9 9 WELL 9 2865P 3084 -55.0 223.9 27B.9 10 WELL 10 220 -2973 51.0 SOURCE PUMPS Node Pump# 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000. 20650. 21875. 22525. 22875. 23350. 23775. 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500, 15000. 15800. 16100. 16250. 16500. 16750. 290 11 • Head 330 306 256 iBO 72 0 0 0 Flow 0. 200. 400. 600. 800. 0. 0. 0. 276 1 Head 440 399 34B 311 287 205 98 0 Flow 0. 200. 400.' 600. 800. 1000. 1200. 0. 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012. 3765. 4518. 4894. 0. 274 6 Head 488 310 296 2B7 257 206 14B 0 Flow 0. 1761. 2201. 2641. 30B1. 3521. 3962. 0. 264 1 Head 397 299 291 268 23B 208 174 0 Flow 0. 2817. 3286. 3756. 4225. 4695. 5164. 0. 284 9 Head 544 424 366 2B3 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745. 4214, 0. 0. 2B6 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859. 2324. 2789. 3253. 3718. 0. 0. ERROR encountered iteration 1 -.305021E-08 0 Iteration= 2, Flow Correction= 5987.751 Iteration= 3, Flow Correction= 2744.623 Iteration= 4, Flaw Correction= 1680.519 Iteration= 5, Flow Correction= 887.348 Iteration= 6, Flow Correction= 617.073 Iteration= 7, Flow Correction=. 576.4B4 Iteration= 8, Flow Correction= 362.BB6 Iteration= 9, Flow Correction= 190.463 Iteration= 11, Flow Correction= 54.823 Iteration= 12, Flow Correction= 41.463 Iteration= 13, Flow Correction= 151.464 Iteration= 14, Flow Correction= .616 Iteration= 15, Flow Correction= .001 Iteration= 16, Flow Correction= .001 I HUNTINGTON BEACH WATER MASTER PLAN PROJECTED WATER USE -FOR BOLSA CHICA DEVELOPMENT 1. DETERMINE AVERAGE DENSITY 5700 Units = 17 Units Per Acre 343 Acres From H. B. General Plan (Land Use Element) , 15 - 35 Units/Acre HIGH DENSITY RESIDENTIAL (HDR) 2. MEASURE ACREAGE (refer to 5/11/87 Map from The Taylor Group) WATER NODE HDR COMM PARR TOTAL USE (ACRES) (GPM) 309 168.2 22.2 5.2 195.6 488.7 311 67.3 0 0 67 .3 181.7 312 107.8 33.7 13.9 155.4 350.7 Total 343.3 55.9 19.1 418.3 1,020.6 Land Use Coefficients (Refer to Spread Sheet 11198611) High Density Residential - HDR: 2.7 Commercial - COMM. 1.3 Open space/park - PARR: 1.1 NOTES: 1) Bolsa Chica also includes 114 Acres of Marina Waters, 418.3 + 114 = 532.3 Acres. 2) Area does not include streets. 3) Node 309 is Phase I of the Development. OC-H10-300-00 NEW WORKFILE TITLE CITY OF HUNTINGTON BEACH Existing System -- MAXIMUM DAY DEMAND & FIRE @ NODE 6 W/BOLSA CHICA ********FILENAME=DXFR6B UNITS 0 0 0 0 0 0 0 FACTORS 2 . 43 1 . 0 LIMITS 50 . 1 . 1 10 . 1 10 40 80 UNKNOWNS 301 50 20 *Overmyer Res . 262 20 30 *Peck Res . 290 -34 11 276 -98 1 270 -62 5 274 -59 6 264 -89 7 284 -64 9 286 -55 10 6 51 *FIRE FLOW PIPES 2 2 4 2480 16 130 4 6 2 2000 12 130 6 6 4 1600 12 130 8 8 6 2600 12 130 10 8 10 2900 12 130 12 12 10 970 10 130 14 14 4 2900 16 130 16 16 6 2620 12 130 18 18 8 2640 12 130 20 20 12 2350 12 130 22 22 12 2280 12 130 24 16 14 2600 12 130 26 16 18 2610 12 130 28 20 18 2510 12 130 30 24 14 2620 16 130 32 26 16 2700 12 130 34 28 18 2700 12 130 36 30 20 2570 12 130 38 22 32 3430 8 130 40 26 24 2680 12 130 42 26 28 2640 12 130. 44 30 28 2670 12 130 46 30 32 2550 12 130 48 32 34 2800 12 130 50 36 24 2640 16 130 52 .38 26 2600 12 130 54 40 28 2580 12 130 56 42 30 2640 12 130 58 46 34 2320 12 130 60 36 38 2640 12 130 62 38 40 2640 12 130 64 40 42 2700 12 130 66 44 42 2550 12 130 68 46 48 700 12 130 70 50 36 2550 16 130 72 52 38 2640 12 130 74 54 40 2650 12 130 76 56 42 2620 12 130 78 58 44 2640 8 130 80 62 46 2950 12 120 82 64 48 5300 12 130 84 50 52 2700 12 130 86 52 54 2600 12 130 88 54 56 2640 12 130 90 56 58 2660 12 130 92 58 60 1330 12 130 94 60 62 1130 8 130*8 & 12 96 66 52 2640 12 130 97 68 54 2640 12 130 98 70 56 2640 12 130 99 58 72 2640 8 130 100 58 72 2640 8 130 101 74 60 2640 12 130 102 80 62 3200 12 120 104 64 84 2850 12 70 106 64 84 2800 16 130 108 50 66 5250 30 120 110 68 66 2640 30 120 112 68 70 2680 30 120 114 68 70 2680 12 130 116 70 72 2600 12 130 118 70 72 2600 30 120 120 74 72 1450 30 120 122 74 76 600 30 120 124 76 78 150 8 130 126 80 78 1050 12 130 128 82 80 1150 12 130 129 92 82 1350 12 130 130 82 84 1250 12 130 132 50 98 5300 12 130 134 66 100 2580 12 130 136 102 68 2640 12 130 138 104 70 2630 12 130 140 86 72 1320 12 130 142 106 86 1320 12 130 144 86 88 1450 14 120 146 108 88 1280 12 130 148 88 90 650 14 120 149 88 74 1350 12 130 150 90 92 1750 12 130 151 76 90 1300 30 120 152 90 96 3150 42 120 154 90 94 2700 15 120 156 92 94 1100 12 130 158 98 100 2680 12 130 160 100 102 2680 12 130 162 . 102 104 2750 12 130 164 104 106 2580 12 130 166 106 108 1500 12 130 168 108 110 700 12 130 170 112 90 950 21 120 171 112 90 950 16 130 172 110 112 350 21 120 174 116 110 750 21 120 176 96 114 3400 42 120 178 118 104 2640 12 130 179 106 120 2640 8 130 180 120 106 2640 6 130 182 120 116 2550 12 130 184 122 116 1900 21 120 186 126 94 3300 14 70 188 128 114 4000 42 120 190 118 120 2550 8 130 192 120 122 2150 8 130 194 122 124 600 8 130 196 131 118 2640 8 130 197 132 130 800 8 130 198 130 129 850 6 130 199 129 120 1250 8 130 200 132 120 2750 8 130 201 134 122 2640 21 120 202 136 124 3250 12 130 -204 138 126 880 14 60 206 140 128 700 12 130 208 128 142 1800 12 130 210 142 144 1150 12 130 212 292 - 132 1950 8 130 214 132 134 2000 12 130 216 134 136 1200 12 130 218' 136 138 2050 12 130 220 146 164 2200 12 130 222 140 142 1800 12 130 224 128 146 4200 42 120 226 146 144 650 24 120 228 131 152 2700 8 130 230 154 132 3150 8 130 232 156 134 2640 21 120 234 158 136 2640 12 130 236 160 150 1400 12 130 238 150 148 700 14 130 240 148 138 500 12 130 242 162 140 2640 12 130 244 164 146 2120 42 120 246 152 154 2640 8 130 248 156 154 2640 8 130 250 156 158 1300 12 130 252 158 160 2000 12 130 254 160 162 2660 12 130 256 162 164 2660 12 130 257 180 164 2700 12 130 258 164 166 2640 12 130 260 168 152 2550 12 130 261 168 170 2330 21 120 262 170 154 3050 8 130 263 172 170 2000 21 120 264 172 156 2650 21 120 265 172 174 1350 16 130 266 174 158 2650 8 130 267 174 176 1950 16 130 269 176 178 2640 16 130 270 178 162 2700 12 130 271 178 180 2700 16 120 272 180 164 2700 42 120 273 180 182 1150 16 120 274 166 184 2680 12 130 275 182 184 1550 16 125 277 186 184 2650 16 125 279 190 186 2750 16 125 280 . 190 192 1340 16 125 282 194 192 3200 14 130 284 194 218 5300 14 130 286 196 170 2c60 8 130 288 198 174 2o40 12 130 290 200 176 2500 12 130 292 202 204 2700 8 130 294 204 178 800 12 130 296 206 180 2700 36 120 298 206 182 3800 12 130 300 208 184 2640 12 130 301 186 210 2640 8 130 302 212 190 2640 12 130 304 196 198 3300 8 130 306 198 200 2700 12 130 308 200 202 2640 12 130 310 202 206 2640 12 130 312 206 208 2640 12 130 314 208 210 2640 12 130 316 212 210 2640 12 130 318 212 214 1300 12 130 320 196 222 2700 12 130 322 224 272 1320 12 130 324 228 200 2640 12 130 326 230 202 3000 12 130 328 232 206 2640 36 120 330 236 210 2700 12 130 332 216 214 1000 10 130 334 238 216 2100 8 130 336 302 220 4500 12 130 338 220 218 1250 8 130 340 288 224 1700 12 130 342 224 228 2000 12 130 344 228 230 2640 12 130 346 230 232 2640 12 130 348 232 234 2640 12 130 350 234 236 2640 12 130 352 236 238 5030 12 130 354 226 224 1300 12 130 356 240 228 2700 12 130 358 242 230 2700 12 130 360 244 232 2700 36 120 362 246 234 2700 12 130 364 250 236 2680 12 130 366 226 240 3800 8 130 368 240 242 2640 10 130 370 242 244 2660 10 130 372 244 246 2550 12 130 374 246 248 1500 12 130 .376 248 250 1200 10 130 378 242 252 2540 12 130 380 254 244 2640 36 120 382 256 246 2540 12 130 384 258 250 2640 12 130 386 252 278 1750 12 130 388 254 256 2600 12 130 390 256 258 2640 12 130 392 254 260 2600 36 120 327 232 206 2640 12 130 408 278 254 900 12 130 406 278 276 170 8 130*WELL 1 400 270 168 970 12 130*WELL 5 414 284 168 1990 16 130*WELL 9 396 264 266 250 12 130*WELL 7 395 266 260 100 36 130 394 262 260 150 36 130*PECK RES. 418 286 288 1050 16 130*WELL 10 416 288 222 1600 12 130 402 272 274 200 12 130*WELL 6 404 272 198 1380 12 130 420 292 290 1400 6 120*DYKE WELL 422 292 131 750 8 130 424 294 50 2200 30 120*OC44 450 222 300 2850 12 130 452 168 300 5300 22 120*OC9 500 301 112 100 36 . 8 120*Overmyer Res . 501 238 302 2000 12 130 502 84 95 1000 16 130 503 95 96 452 24 120 504 304 266 10 36 130*OC35 516 114 115 3490 12 130 517 115 64 6850 12 130 NODES 2 0 5 0 51600 8020 4 0 5 0 53160 10000 6 0 5 0 51600 10000*Banning 8 0 5 0 48920 10000 10 0 4 C) 46570 10000 12 0 4 0 45820 10500 14 0 6 0 54240 12640 16 0 7 0 51600 12640 18 0 4 0 48960 12640 20 0 2 0 46320 12640 22 0 4 0 43720 12050 24 0 6 0 54240 15280 26 0 8 0 51600 15280 28 0 4 0 48960 15280 30 0 4 0 46320 15280 32 0 6 0 43720 15280 34 0 30 0 41300 15280 36 0 8 0 54240 17920 38 0 9 0 51600 17920 40 0 6 0 48960 17920 42 0 6 0 46320 17920 44 0 18 0 43720 17920 46 0 36 0 41300 17630 48 0 36 0 40600 17630 50 0 12 0 54240 20560 52 0 10 0 51600 20560 54 0 7 0 48960 20560 56 0 10 0 46320 20560 58 0 25 0 43720 20560 60 0 35 0 42400 20560 62 0 40 0 41300 20560 64 0 75 0 36640 21100 66 0 10 0 51600 23200 68 0 8 0 48920 23200 70 0 10 0 46320 23200 72 0 55 0 43720 23200 74 0 50 0 42400 23300 76 0 50 0 41700 23300 78 0 50 0 41700 23000 80 0 50 0 40870 23000 82 0 75 0 39970 23200 84 0 75 0 38480 23200 86 0 57 0 43720 .24490 88 0 50 0 42400 24490 90 0 60 0 41700 24490 92 0 70 0 40070 24340 94 0 115 0 38920 24340 96 0 95 0 38340 24840 98 0 16 0 54240 25840 100 0 15 0 51600 25840*Flounder 102 0 12 0 48960 25840 104 0 14 0 46320 25840 106 0 58 0 43720 25840 108 0 55 0 42400 25840 110 0 60 0 41700 25840 112 0 60 0 41700 25500 114 0 93 0 35840 25840 116 0 60 0 41700 26640 118 0 13 0 46320 28480 120 0 55 0 43720 28480 122 0 35 0 41700 28480 124 0 25 0 41120 28340 126 0 40 0 38480 30070 128 0 5 0 35840 29920 129 0 45 0 44000 29680 130 0 45 0 44000 30420 131 0 45 0 46320 31120 132 0 55 0 43720 31120 134 0 50 0 41700 31120 136 0 50 0 40420 31120 138 0 40 0 38480 31120 140 0 2 0 35840 31120 142 0 2 0 34190 30820 144 0 2 0 33200 31120 146 0 2 0 33200 31570 148 0 40 0 38480 31620 150 0 40 0 38480 32120 152 0 28 0 46320 33720 154 0 25 0 43720 33720 156 0 25 0 41700 33720 158 0 30 0 40420 33720 160 0 5 0 38480 33720 162 0 3 0 35840 33720 164 0 2 0 33200 33720 166 0 2 0 30560 33720 168 0 27 0 46320 36320 170 0 26 0 43720 36320 172 0 25 0 41700 36320 174 0 25 0 40420 36320 176 0 12 0 38480 36320 178 0 5 0 35840 36320 180 0 5 0 33200 36320 182 0 5 0 31910 36320 184 0 5 0 30560 36320 186 0 34 0 27920 36320 190 0 35 0 25280 36320 192 0 55 0 25280 34970 194 0 5 0 22350 34970 196 0 25 0 43720 38960 198 0 17 0 40420 38960 200 0 14 0 38480 38960*Heil 202 0 10 0 35840 38960 204 0 10 0 35840 37320 206 0 9 0 33200 38960 208 0 14 0 30560 38960 210 0 15 0 27920 38960 212 0 9 0 25280 38960 214 0 9 0 24180 38960 216 0 9 0 24130 40050 218 0 5 0 18200 38270 220 0 5 0 17250 39500 222 0 26 0 43720 41600 224 0 21 0 40420 41600 226 0 2.3 0 40420 42800 228 0 20 0 38480 41600 230 0 12 0 35840 41600 232 0 10 0 33200 41600 234 0 12 0 30560 41600 236 0 15 0 27920 41600*Scenario 238 0 5 0 23080 41600 240 0 21 0 38480 44240 242 0 15 0 35840 44240 244 0 16 0 33200 44240 246 0 14 0 30560 44240 248 0 14 0 29160 44240 250 0 13 0 27920 44240 252 0 22 0 35840 46880 254 0 18 0 33200 46880 256 0 17 0 30560 46880 258 0 17 0 27920 46880 260 0 23 0 33200 49200 276 0 17 0 34100 46200*WELL 1 264 0 18 0 32600 50000*WELL 7 266 0 23 0 33200 50000 262 0 34 0 32400 49200*PECK RES. 270 0 27 0 47300 36320*WELL 5 284 0 27 0 48300 36700*WELL 9 286 0 19 0 42120 40200*WELL 10 288 0 22 0 42120 41600 290 0 44 0 45570 29720*DYKE WELL 278 0 19 0 34100 46880 292 0 48 0 45570 31120 294 0 12 0 56440 20560*OC44,Adams 300 0 25 0 46320 41600*OC9 274 0 19 0 40000 40340*WELL 6 272 0 25 0 40420 40340 301 0 65 0 41200 25500*Overmyer Res . 302 0 5 0 21080 41600 95 0 103 0 38480 24200*Reservoir Hill 304 0 25 0 33200 50400*OC35 115 0 35 0 32600 24640 COORDINATE PIPES 112 48720 23000 46520 23000 114 48720 23400 46520 23400 116 46120 23000 43920 23000 118 46120 23400 43920 23400 102 40700 22560 40700 21760 41300 21760 104 38480 22600 176 38340 25740 186 38340 25800 152 41000 25100 154 41300 24800 39200 24800 208 34960 30220 222 34300 31120 224 35500 31000 34300 31000 34300 31570 202 40420 28420 284 21400 34920 18800 37720 336 19800 41600 366 40700 43240 40700 44240 334 23530 40600 24130 40450 298 32840 38520 32840 37320 31910 36970 327 33700 41000 33700 39300 257 33700 36000 33700 34000 108 53800 21000 53800 23200 276 27920 35120 10 48320 8950 14 54100 11550 53800 10700 20 46320 11050 126 41300 22900 128 40470 23200 220 33700 32000 33700 33000 414 46520 36700 171 41900 25300 41900 24600 99 44000 20760 44000 23000 179 44000 26040 44000 28280 197 44000 30920 199 44000 28680 516 34200 25840 517 32600 23340 34640 21190 PUMP CURVES 11 0 330 200 306 400 256 600 180 800 72 1 0 440 200 399 400 348 600 311 800 287 1000 205 1200 98 5 0 471 1882 359 2259 337 3012 292 3765 224 4518 143 4894 98 6 0 488 1761 318 2201 296 2641 287 3081 257 3521 206 3962 148 7 0 397 2817 299 3286 291 3756 268 4225 238 4695 208 5164 174 9 0 544 1170 424 1873 366 3277 283 3745 237 4214 173 10 0 562 1859 369 2324 341 2789 305 3253 264 3718 222 20 0 132 10000 131 20650 130 21875 114 22525 106 22875 100 23350 93 23775 82 30 0 172 7500 171 15000 169 15800 157 16100 151 16250 146 16500 141 16750 13E FIXED DEMAND 294 6700 *OC44 300 4500 *OC9 304 9000 *OC35 DEMANDS 2 -190 . 3 4 -89 . 8 6 -158 . 4 8 -225 . 2 10 -375 . 1 12 -118 . 4 14 -244. 5 16 -172 . 7 18 -176 . 5 20 -79 . 4 22 -73 . 4 24 -169 . 1 26 -176 . 5 28 -128 . 1 30 -303 . 1 32 -356 . 6 34 -185 . 8 36 -266 . 5 38 -230 . 6 40 -261 . 9 42 -291 . 7 44 -172 . 7 46 -231 . 7 48 -504 . 4 50 -349 . 3 52 -267 . 1 54 -185 . 4 56 -200 . 8 58 -210 . 8 60 -148 . 7 62 -287 . 9 64 -786 . 2 66 -229 . 3 68 -208 . 3 70 -199 . 1 72 -92 . 2 74 -190 . 1 76 . 0 78 . 0 80 . 0 82 -124 . 2 84 -92 . 0 86 -69 . 3 88 -142 . 4 90 . 0 92 -112 . 3 94 -17 . 4 95 -95 . 6 96 -220 . 0 98 -348 . 3 100 -85 . 6 102 -98 . 5 104 -143 . 0 106 -297 . 3 108 -54 . 1 110 . 0 112 -11 . 1 114 -422 . 8 116 -29 . 6 118 -115 . 5 120 -105 . 5 122 -167 . 5 124 -45 . 2 126 -60 . 7 128 -137 . 9 130 -117 . 5 132 -231 . 1 134 -94 . 9 136 -65 . 1 138 , 0 140 -133 . 6 142 -79 . 4 144 -88 . 7 146 -102 . 6 148 -127 . 9 150 0 152 -208 . 0 154 -282 . 4 156 -88 . 6 158 -92 . 6 160 -215 . 1 162 -206 . 5 164 -205 . 4 166 -145 . 8 168 -378 . 0 170 -157 . 8 172 -272 . 8 174 -120 . 8 176 -119 . 5 178 -217 . 9 180 -134 . 3 182 -100 . 9 184 -121 . 3 186 -459 . 3 190 -146 . 6 192 -34 . 7 194 -245 . 6 196 -172 . 9 198 -251 . 6 200 -282 . 7 202 -137 . 6 204 -104. 0 206 -169 . 2 208 -170 . 7 210 -363 . 9 212 -134 . 4 214 -150 . 5 216 -266 . 2 218 -194 . 0 220 -156 . 5 222 -319 . 6 224 -207 . 4 226 --80 . 2 228 -178 . 0 230 -131 . 7 232 -272 . 0 234 -66 . 2 236 -235 . 0 238 -231 . 6 240 -153 . 1 242 -187 . 9 244 -201 . 6 246 -294. 2 248 . 0 250 -87 . 3 252 -164 . 8 254 -126 . 8 256 -339 . 5 258 -258 . 7 260 -200. 7 run end CITY OF HUNTINGTON BEACH FRI, SIP 4, 1987, 4:04 AM Existing System -- MAXIMUM DAY DEMAND d FIRE I NODE 6 W/BOLSA CHICA INPUT FILE NAME DXFR6B NUMBER OF PIPES 240 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gpm MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HRADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40, Psi - HIGH 80, Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pet STATIC HGL ELEVATION 0. Feet SUM OF (-) FIXED DEMANDS = .00 SUM OF FIXED DEMANDS : 20200.00 SUN OF PEAKABLE DEMANDS =-22660.19 SUN OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -55064.29 SUM OF ALL DEMANDS --------- -34864.29 Solution reached in 16 iterations Last flow correction was 00 CITY OF HUNTINGTON BIACH FBI, SIP 4, 1987,' 4:04 AN PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HIADLOSS--- NO FBON TO Feet Inches H-W C Gps Fps CE ft ft/1000 CI ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 1253 2.0 2.4 .9 4 2 6 2000 12.0 130 790 2.2 3.3 1.6 6 4 6 1600 12.0 130 1194 3.4 5.6 3.5 8 8 6 2600 12.0 130 874 2.5 5.1 2.0 10 10 8 2900 12.0 130 107 .3 .1 .0 LO 12 12 10 970 10.0 130 1018 4.2 6.2 6.4 14 14 4 2900 16.0 130 2665 4.3 11.1 3.8 16 16 6 2620 12.0 130 1612 4.6 16.1 6.1 18 18 8 2640 12.0 130 1315 3.7 I1.1 4.2 20 20 12 2350 12.0 130 968 2.7 5.6 2.4 22 22 12 2280 12.0 130 338 1.0 .8 .3 24 14 16 2600 12.0 130 291 .8 .7 .3 26 18 16 2610 12.0 130 136 .4 .2 .1 LO 28 20 18 2510 12.0 130 327 .9 .8 .3 30 24 14 2620 16.0 130 3550 5.7 17.1 6.5 32 26 16 2700 12.0 130 1605 4.6 16.4 6.1 34 28 18 2700 12.0 130 1553 4.4 15.5 5.7 36 30 20 2570 12.0 130 1488 4.2 13.6 5.3 38 32 22 3430 8.0 130 516 3.3 18.4 5.4 40 24 26 2680 12.0 130 415 1.2 1.3 .5 42 26 28 2640 12.0 130 320 .9 .8 .3 44 28 30 2670 12.0 130 366 1.0 1.1 .4 46 30 32 2550 12.0 130 75 .2 .1 .0 LO 48 34 32 2800 12.0 130 1307 3.7 11.7 4.2 50 36 24 2640 16.0 '130 4376 7.0 25.4 9.6 52 38 26 2600 12.0 130 1939 5.5 22.5 8.6 54 40 28 2580 12.0 130 1910 5.4 21.7 8.4 56 42 30 2640 12.0 130 1934 5.5 22.7 8.6 58 46 34 2320 12.0 130 1759 5.0 16.7 7.2 60 36 38 2640 12.0 130 781 2.2 4.2 1.6 62 38 40 2640 12.0 130 459 1.3 1.6 .6 64 40 42 2700 12.0 130 66 .2 .0 .0 LO 66 44 42 2550 12.0 130 391 1.1 1.1 .4 68 48 46 700 12.0 130 636 1.8 .8 1.1 70 50 36 2550 16.0 130 5805 9.3 41.4 16.2 HI 72 52 38 2640 12.0 130 2177 6.2 28.3 10.7 HI 74 54 40 2650 12.0 130 2154 6.1 27.8 10.5 HI 76 56 42 2620 12.0 130 2185 6.2 28.3 10.8 HI 78 58 44 2640 8.0 130 811 5.2 32.7 12:4 HI 80 62 46 2950 12.0 120 1686 4.8 22.8 7.7 82 64 48 5300 12.0 130 1862 5.3 42.5 8.0 84 50 52 2700 12.0 130 1651 4.7 17.3 6.4 86 52 54 2600 12.0 130 527 1.5 2.0 .8 88 56 54 2640 12.0 130 207 .6 .4 .1 90 58 56 2660 12.0 130 906 2.6 5.6 2.1 92 60 58 1330 12.0 130 923 2.6 2.9 2.2 94 60 62 1130 8.0 130 612 3.9 8.3 7.4 8 A 12 96 66 52 2640 12.0 130 1702 4.8 17.9 6.8 97 68 54 2640 12.0 130 1871 5.3 21.4 8.1 98 70 56 2640 12.0 130 1974 5.6 23.6 8.9 99 72 58 2640 8.0 130 653 4.2 21.9 8.3 100 72 58 2640 8.0 130 653 4.2 21.9 8.3 101 74 60 2640 12.0 130 1896 5.4 21.9 8.3 102 80 62 3200 12.0 120 1773 5.0 27.2 8.5 104:, 84 64 2850 12.0 70 605 1.7 9.0 3.2 CITY OF HUNTINGTON BEACH FEI, SEP 4, 1987, 4:04 AN PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gps Fps CE ft ft/1000 CE ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 2419 3.9 9.0 3.2 108 66 50 5250 30.0 120 1938 .9 .6 .1 110 68 66 2640 30.0 120 4418 2.0 1.4 .5 112 70 68 2680 30.0 120 6106 2.8 2.6 1.0 114 70 68 2680 12.0 130 594 1.7 2.6 1.0 116 72 70 2600 12.0 130 760 2.2 4.0 1.5 118 72 70 2600 30.0 120 7812 3.5 4.0 1.5 120 74 72 1450 30.0 120 8972 4.1 2.9 2.0 122 76 74 600 30.0 120 10291 4.7 1.5 2.5 124 76 78 150 8.0 130 909 5.8 2.3 15.3 HI 126 78 80 1050 12.0 130 909 2.6 2.2 2.1 128 82 80 1150 12.0 130 864 2.5 2.2 1.9 129 92 82 1350 12.0 130 1119 3.2 4.2 3.1 130 84 82 1250 12..0 130 47 .1 .0 .0 LO 132 50 98 5300 12.0 130 334 .9 1.8 .3 134 66 100 2580 12.0 130 220 .6 .4 .2 136 102 68 2640 12.0 130 94 .3 .1 .0 LO 138 104 70 2630 12.0 130 585 1.7 2.5 .9 140 86 72 1320 12.0 130 1131 3.2 4.2 3.2 142 106 86 1320 12.0 130 219 .6 .2 .2 144 88 86 1450 14.0 120 1081 2.3 2.3 1.6 146 108 88 1280 12.0 130 1049 3.0 3.5 2.8 148 90 88 650 14.0 120 1417 3.0 1.7 2.6 149 88 74 1350 12.0 130 1039 2.9 3.7 2.7 150 90 92 1750 12.0 130 643 1.8 2.0 1.1 151 90 76 1300 30.0 120 11201 5.1 3.9 3.0 152 90 96 3150 42.0 120 781 .2 .0 .0 LO 154 90 94 2700 15.0 120 322 .6 .3 .1 156 94 92 1100 12.0 130 748 2.1 1.6 1.5 158 100 98 2680 12.0 130 513 1.5 2.0 .7 160 102 100 2680 12.0 130 500 1.4 1.9 .7 162 104 102 2750 12.0 130 834 2.4 5.0 1.8 164 106 104 2580 12.0 130 946 2.7 5.9 2.3 166 108 106 1500 12.0 130 1240 3.5 5.7 3.8 168 110 108 700 12.0 130 2421 6.9 9.1 13.0 HI 170 112 90 950 21.0 120 9389 8.7 11.6 12.2 HI 111 112 90 950 16.0 130 4975 7.9 11.6 12.2 HI 172 112 110 350 21.0 120 3350 3.1 .6 1,8 174 110 116 750 21.0 120 929 .9 .1 .2 176 114 96 3400 42.0 120 3280 .8 .2 ,1 LO 178 118 104 2640 12.0 130 821 2.3 4.6 1.8 179 120 106 2640 8.0 130 440 2.8 10.6 4.0 180 120 106 2640 6.0 130 207 2.3 10.6 4.0 182 116 120 2550 12.0 130 784 2.2 4.1 1.6 184 116 122 1900 21.0 120 74 .1 LO .0 .0 LO 186 126 94 3300 14.0 70 468 1.0 3.0 .9 188 128 114 4000 42.0 120 5056 1,2 .5 .1 190 120 118 2550 8.0 130 477 3.0 11.8 4.6 192 122 120 2150 8.0 130 296 1.9 4.1 1.9 194 122 124 600 8.0 130 284 1.8 1.1 1.8 196 131 118 2640 8.0 130 625 4.0 2012 7.7 197 132 130 800 8.0 130 365 2.3 2.3 2.8 198 130 129 850 6.0 130 80 .9 .6 .7 199 129 120 1250 8.0 130 80 .5 .2 .2 200r 132 120 2750 8.0 130 221 1.4 3.1 1.1 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 4:04 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpm Fps CK ft ft/1000 CB ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 201 134 122 2640 21.0 120 913 .8 .4 .2 202 124 136 3250 12.0 130 174 .5 .3 .1 LO 204 138 126 880 14.0 60 616 1.3 1.8 2.0 206 140 128 700 12.0 130 145 .4 .0 .1 LO 208 142 128 1800 12.0 130 113 .3 .1 .0 LO 210 144 142 1150 12.0 130 372 1.1 .5 .4 212 292 132 1950 8.0 130 362 2.3 5.4 2.8 214 134 132 2000 12.0 130 515 1.5 1.5 .7 216 134 136 1200 12.0 130 757 2.1 1.8 1.5 218 136 138 2050 12.0 130 970 2.8 4.9 2.4 220 164 146 2200 12.0 130 226 .6 .4 .2 222 142 140 1800 12.0 130 67 .2 .0 .0 LO 224 146 128 4200 42.0 120 5133 1.2 .6 .1 226 146 144 650 24.0 120 588 .4 .0 .0 LO 228 152 131 2700 8.0 130 554 3.5 16.5 6.1 230 154 132 3150 8.0 130 270 1.7 5.1 1.6 232 156 134 2640 21.0 120 2416 2.2 2.6 1.0 234 158 136 2640 12.0 130 197 .6 .3 .1 236 150 160 1400 12.0 130 44 .1 .0 .0 LO 238 148 150 700 14.0 130 44 .1 LO .0 .0 LO 240 138 148 500 12.0 130 354 1.0 .2 .4 242 162 140 2640 12.0 130 403 1.1 1.2 .5 244 164 146 2120 42.0 120 5744 1.3 .4 .2 246 152 154 2640 8.0 130 564 3.6 16.7 6.3 248 154 156 2640 8.0 130 124 .8 1.0 .4 250 156 158 1300 12.0 130 1124 3.2 4.1 3.1 252 158 160 2000 12.0 130 1039 2.9 5.4 2.7 254 160 162 2660 12.0 130 560 1.6 2.3 .9 256 162 164 2660 12.0 130 208 .6 .4 .1 257 180 164 2700 12.0 130 280 .8 .7 .2 258 164 166 9640 12.0 130 1001 2.8 6.7 2.5 260 168 152 2550 12.0 130 1623 4.6 15.9 6.2 261 168 170 2330 21.0 120 6942 6.4 16.2 7.0 262 170 154 3050 8.0 130 516 3.3 16.4 5.4 263 170 172 2000 21.0 120 6347 5.9 11.8 5.9 264 172 156 2650 21.0 120 3631 3.4 5.6 2.1 265 172 174 1350 16.0 130 2053 3.3 3.2 2.4 266 174 158 2650 8.0 130 337 2.2 6.5 2.4 267 174 176 1950 16.0 130- 2198 3.5 5.2 2.7 269 176 178 2640 16.0 130 2128 3.4 6.7 2.5 270 178 162 2700 12.0 130 554 1.6 2.3 .8 271 178 180 2700 16.0 120 1014 1.6 2.0 .7 272 180 164 2700 42.0 120 6981 1.6 .7 .2 273 180 182 1150 16.0 120 2224 3.5 3.7 3.2 274 166 184 2680 12.0 130 646 1.8 3.0 1.1 275 182 184 1550 16.0 125 2737 4.4 6.7 4.3 277 184 186 2650 16.0 125 2809 4.5 12.1 4.6 279 186 190 2750 16.0 125 1779 2.8 5.4 2.0 280 190 192 1340 16.0 125 1165 1.9 1.2 .9 282 192 194 3200 14.0 130 1081 2.3 4.4 1.4 284 194 218 5300 14.0 130 484 1.0 1.7 .3 286 196 170 2660 8.0 130 304 1.9 5.4 2.0 288 198 174 2640 12.0 130 775 2.2 4.2 1.6 290 200 176 2500 12.0 130 221 .6 .4 .2 292` 202 204 2700 8.0 130 222 1.4 3.0 1.1 CITY OF HUNTINGTON BEACH FBI, SEP 4, 1987, 4:04 AN PIPI --NODBS-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps Cl ft ft/1000 CB ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 294 178 204 800 12.0 130 31 .1 LO .0 .0 LO 296 206 180 2700 36.0 120 8797 2.8 2.1 .8 298 206 182 3800 12.0 130 758 2.2 5.8 1.5 300 184 208 2640 12.0 130 279 .8 .6 .2 301 210 186 2640 8.0 130 85 .5 .5 .2 302 190 212 2640 12.0 130 257 .7 .5 .2 304 196 198 3300 8.0 130 492 3.1 16.2 4.9 306 198 200 2700 12.0 130 1161 3.3 9.0 3.3 308 200 202 2640 12.0 130 759 2.2 4.0 1.5 316 202 206 2640 12.0 130 641 1.8 2.9 1.1 312 206 208 2640 12.0 130 1438 4.1 13.1 5.0 314 208 210 2640 12.0 130 1302 3.7 10.9 4.1 316 210 212 2640 12.0 130 977 2;8 6.4 2.4 318 212 214 1300 12.0 130 908 2.6 2.8 2.1 320 222 196 2700 12.0 130 1216 3.5 9.8 3.6 322 272 224 1320 12.0 130 909 2.6 2.8 2.1 324 228 200 2640 12.0 130 506 1.4 1.9 .7 326 230 202 3000 12.0 130 438 1.2 1.6 .5 327 232 206 2640 12.0 130 612 1.7 2.7 1.0 328 232 206 2640 36.0 120 10153 3.2 2.7 1.0 330 236 210 2700 12.0 130 644 1.8 3.0 1.1 332 214 216 1000 10.0 130 542 2.2 2.0 2.0 334 238 216 2100 8.0 130 105 .7 .6 .3 336 302 220 4500 12.0 130 368 1.0 1.8 .4 338 218 220 1250 8.0 130 13 .1 LO .0 .0 LO 340 288 224 1700 12.0 130 2211 6.3 18.7 11.0 HI 342 224 22B 2000 12.0 130 1959 5.6 17.6 8.9 344 228 230 2640 12.0 130 784 2.2 4.3 1.6 346 230 232 2640 12.0 130 505 1.4 1.9 .7 348 232 234 2640 12.0 130 1353 3.8 11.7 4.4 350 234 236 2640 12.0 130 1370 3.9 12.0 4.5 352 236 238 5030 12.0 130 1035 2.9 13.6 2.7 354 224 226 1300 12.0 130 656 1.9 1.5 1.2 356 228 240 2700 12.0 130 237 .7 .5 .2 358 242 230 2700 12.0 130 479 1.4 1.8 .6 360 244 232 2700 36.0 120 12273 3.9 3.9 1.5 362 246 234 2700 12.0 130 178 .5 .3 .1 364 250 236 2680 12.0 130 881 2.5 5.4 2.0 366 226 240 3800 8.0 130 462 2.9 16.6 4.4 368 240 242 2640 10.0 130 326 1.3 2.0 .8 370 244 242 2660 10.0 130 110 .4 .3 .1 372 244 246 2550 12.0 130 1595 4.5 15.3 6.0 374 246 248 1500 12.0 130 770 2.2 2.3 1.6 376 248 250 1200 10.0 130 770 3.1 4.6 3.8 378 252 242 2540 12.0 130 500 1.4 1.8 .7 380 254 244 2640 36.0 120 14467 4.6 5.2 2.0 382 256 246 2540 12.0 130 68 .2 .0 .0 LO 384 258 250 2640 12.0 130 323 .9 .8 .3 386 278 252 1750 12.0 130 900 2.6 3.7 2.1 388 254 256 2600 12.0 130 1845 5.2 20.5 7.9 390 256 258 2640 12.0 130 952 2.7 6.1 2.3 392 260 254 2600 36.0 120 16714 5.3 6.7 2.6 394 262 260 150 36.0 130 4824 1.5 .0 .2 PECK HBO. 395 266 260 100 36.0 130 12378 3.9 .1 1.3 39V 264 266 250 12.0 130 3378 9.6 6.0 24.2 HI WILL 7 CITY OF HUNTINGTON BEACH FRI, SHP 4, 1987, 4:04 AN PIPE --NODBS-- LENGTH DIAN -FLOW- -VELOCITY- ---HBADLOSS--- NO FROM TO Feet Inches H-W C Gpm Fps CB ft ft/1000 CB ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 400 270 168 970 12.0 130 2944 8.4 18.2 18.7 HI WELL 5 402 274 272 200 12.0 130 2965 8.4 3.8 19.0 HI WELL 6 404 272 198 1380 12.0 130 2056 5.8 13.3 9.6 406 276 278 170 8.0 130 806 5.1 2.1 12.2 HI WELL 1 408 254 278 900 12.0 130 95 .3 .0 .0 LO 414 284 168 1990 16.0 130 3153 5.0 10.4 5.2 WELL 9 416 288 222 1600 12.0 130 879 2.5 3.2 2.0 418 286 288 1050 16.0 130 3090 4.9 5.3 5.0 WELL 10 420 290 292 1400 6.0 120 434 4.9 25.6 18.3 HI DYKE WELL 422 292 131 750 8.0 130 71 .5 .1 .1 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1113 3.2 8.8 3.1 452 300 168 5300 22.0 120 3387 2.9 7.8 1.5 OC9 500 301 112 100 36.8 120 17742 5.4 .3 2.6 Overmyer Res, 501 238 302 2000 12.0 130 368 1.0 .8 .4 502 95 84 1000 16.0 130 3294 5.3 5.7 5.7 503 96 95 452 24.0 120 3527 2.5 .5 1.0 504 304 266 10 36.0 130 9000 2.8 .0 .7 OC35 516 114 115 3490 12.0 130 748 2.1 5.2 1.5 517 115 64 6850 12.0 130 748 2.1 10.2 1.5 CITY OF HUNTINGTON BEACH FBI, SBP 4, 1987, 4:04 AN GROUND HLV FLOW HGL HL HEAD ------- PRESSURE ------ NODE Feet Gps Feet Feet Pei CH % DROP--CH ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -462.43 54.3 49.3 21 LO 78 4 5 -218.21 56.6 51.6 22 LO 77 6 5 -4470.77U 51.OF 46.0 19 LO 79 Banning 8 5 -547.24 56.1 51.1 22 LO 77 10 4 -911.49 56.3 52.3 22 LO 77 12 4 -287.71 62.4 58.4 25 LO 74 14 6 -594.14 67.8 61.8 26 LO 72 16 7 -419.66 67.1 60.1 26 LO 73 18 4 -428.90 67.3 63.3 27 LO 72 20 2 -192.94 68.1 66.1 28 LO 71 22 4 -178.36 63.2 59.2 25 LO 74 24 6 -410.91 84.9 78.9 34 LO 65 26 8 -428.90 83.5 75.5 32 LO 66 28 4 -311.28 82.7 78.7 34 LO 65 30 4 -736.53 81.7 77.7 33 LO 66 32 6 -866.54 81.6 75.6 32 LO 66 34 30 -451.49 93.3 63.3 27 LO 68 36 8 -647.60 110.2 102.2 44 54 38 9 -560.36 106.0 97.0 42 56 40 6 -636.42 104.4 98.4 42 56 42 6 -708.83 104.4 98.4 42 56 44 18 -419.66 105.5 87.5 37 LO 59 46 36 -563.03 110.0 74.0 32 LO 62 48 36 -1225.69 110.8 74.8 32 LO 62 50 12 -848.80 151.6 139.6 60 37 52 10 -649.05 134.3 124.3 53 44 54 7 -450.52 132.3 125.3 54 44 56 10 -487.94 132.6 122.6 53 45 58 25 -512.24 138.2 113.2 49 45 60 35 -361.34 141.2 106.2 46 46 62 40 -699.60 132.8 92.8 40 52 64 75 -1910.47 153.3 78.3 33 LO 50 66 10 -557.20 152.2 142.2 61 36 68 8 -506.17 153.6 145.6 63 35 70 10 -483.81 156.2 146.2 63 34 72 55 -224.05 160.2 105.2 45 41 74 50 -461.94 163.0 113.0 49 38 76 50 .00 164.6 114.6 49 37 78 50 .00 162.3 112.3 48 39 80 50 .00 160.0 110.0 47 40 82 75 301.81 162.3 87.3 37 LO 45 84 75 -223.56 162.3 87.3 37 LO 45 86 57 -168.40 164.4 107.4 46 39 88 50 -346.03 166.7 116.7 50 36 90 60 .00 168.4 108.4 47 37 92 70 -272.89 166.5 96.5 41 41 94 115 -42.28 168.1 53.1 23 LO 55 95 103 -232.31 168.0 65.0 28 LO 50 Reservoir Hill 96 95 -534.60 168.4 73.4 31 LO 47 98 16 -846.37 149.8 133.8 58 38 100 15 -208.01 151.8 136.8 59 37 Flounder 102 12 -239.36 153.7 141.7 61 36 104 14 -347.49 158.7 144.7 62 34 106 58 -722.44 164.6 106.6 46 39 108i- 55 -131.46 170.3 115.3 49 35 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 4:04 AN GROUND BLV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet Gpe Feet Feet Psi CE % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 110 60 .00 179.4 119.4 51 31 112 60 -26.97 180.0 120.0 52 31 114 93 -1027.40 168.6 75.6 32 LO 46 115 35 .00 163.4 128.4 55 35 116 60 -71.93 179.3 119.3 51 31 118 13 -280.67 163.3 150.3 65 31 120 55 -256.37 175.1 120.1 52 32 122 35 -407.03 179.3 144.3 62 27 124 25 -109.84 178.2 153.2 66 26 126 40 -.147.50 171.2 131.2 56 32 128 5 -335.10 169.2 164.2 71 28 129 45 .00 175.4 130.4 56 31 130 45 -285.52 175.9 130.9 56 30 131 45 .00 183.5 138.5 60 26 132 55 -561.57 178.2 123.2 53 31 134 50 -230.61 179.7 129.7 56 29 136 50 -158.19 177.9 127.9 55 30 138 40 .00 172.9 132.9 57 31 140 2 -324.65 169.2 167.2 72 27 142 2 192.94 169.2 167.2 72 27 144 2 415.54 169.7 167.7 72 27 146 2 -249.32 169.7 167.7 72 27 148 40 -310.80 172.8 132.8 57 31 150 40 .00 172.8 132.8 57 31 152 28 -505.44 200.0 172.0 74 16 154 25 -686.23 183.3 158.3 68 24 156 25 415.30 182.3 157.3 68 24 158 30 -225.02 178.2 148.2 64 27 160 5 -522.69 172.8 167.8 72 26 162 3 -501.80 170.4 167.4 72 27 164 2 -499.12 170.1 168.1 72 27 166 2 -354.29 163.4 161.4 69 30 168 27 -918.54 215.9 188.9 81 HI 8 170 26 -383.45 199.7 173.7 75 16 172 25 -662.90 187.8 162.8 70 22 174 25 -293.54 184.7 159.7 69 23 176 12 -290.39 179.4 167.4 72 24 178 5 -529.50 172.7 167.7 72 26 180 5 -326.35 170.7 165.7 71 27 182 5 -245.19 167.1 162.1 70 29 184 5 -294.76 160.3 155.3 67 32 186 34 -1116.10 148.3 114.3 49 42 190 35 -356.24 142.9 107.9 46 45 192 55 -84.32 141.7 86.7 37 LO 51 194 5 -596-81 137.3 132.3 57 42 196 25 -420.15 205.0 180.0 78 13 198 17 -611.39 188.8 171.8 74 20 200 14 -686.96 179.8 165.8 71 24 Heil 202 10 -334.37 175.8 165.8 71 26 204 10 -252.72 172.7 162.7 70 27 206 9 -411.16 172.8 163.8 71 27 208 14 -414.80 159.7 145.7 63 33 210 15 -884.28 148.8 133.8 58 38 212 9 -326.59 142.4 133.4 57 40 21V 9 -365.71 139.6 130.6 56 41 CITY OF HUNTINGTON BEACH FBI, SEP 4, 1987, 4:04 AN GROUND BLV FLOW HOL EL HEAD ------- PRESSURE ------ NODE Feet Gpm Feet Feet Psi CE % DROP--CE ---- ------ ------ ------ ------ ------ -- ------ -- 216 9 -646.87 137.6 128.6 55 42 218 5 -471.42 135.1 130.7 56 42 220 5 -380.30 135.6 130.6 56 42 222 26 -776.63 214.9 188.9 81 HI 9 224 21 -503.98 199.3 178.3 77 16 226 23 -194.89 197.8 174.8 75 17 228 20 -432.54 181.7 161.7 70 24 230 12 -320.03 177.4 165.4 71 25 232 10 -660.96 175.5 165.5 71 26 234 12 -160.87 163.8 151.8 65 31 236 15 -571.05 151.8 136.8 59 37 Scenario 238 5 -562.79 138.2 133.2 57 41 240 21 -372.03 181.2 160.2 69 24 242 15 -456.60 179.2 164.2 71 25 244 16 -489.89 179.5 163.5 70 25 246 14 -714.91 164.1 150.1 65 31 248 14 .00 161.8 147.8 64 32 250 13 -212.14 157.2 144.2 62 34 252 22 -400.46 181.0 159.0 68 25 254 18 -308.12 184.6 166.6 72 22 256 17 -824.99 164.1 147.1 63 32 258 17 -628.64 158.0 141.0 61 35 260 23 -487.70 191.3 168.3 72 20 262SP 34 4823.91U 191.4 157.4 68 21 PICK RES. 264SP 18 3378.11U 197.5 179.5 77 16 WELL 7 266 23 .00 191.5 168.6 73 20 270SP 27 2943.99U 234.1 207.1 89 HI 0 WELL 5 272 25 .00 202.1 177.1 76 15 2748P 19 2964.77U 205.9 186.9 81 HI 13 WELL 6 276SP 17 805.62U 186.7 169.7 73 21 WELL 1 278 19 .00 184.6 165.6 71 22 284SP 27 3153.17U 226.3 199.3 86 HI 3 WELL 9 286SP 19 3090.41U 223.4 204.4 88 HI 4 WELL 10 288 22 .00 218.1 196.1 84 HI 7 290SP 44 433.54U 209.3 165.3 71 13 DYKE WELL 292 48 .00 183.6 135.6 58 27 294 12 6700.00 154.1 142.1 61 35 OC44,Adams 300 25 4500.00 223.7 198.7 86 BI 4 OC9 301SP 65 17741.54U 180.3 115.3 49 31 Overmyer Res. 302 5 .00 137.4 132.4 57 42 304 25 9000.00 191.5 166.5 72 20 OC35 Maximum Unbalanced Head = .00002 192 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 4:04 AM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HOL DISCS HOL LIFT PUMP NODE Opm Feet Feet Feet NUMBER ---- ------ ------ - ------ ------ ---- 301SP 17742 50.0 180.3 130.3 20 Overmyer Res, 2628P 4824 20.0 191.4 171.4 30 PECK RES. 290SP 434 -34.0 209.3 243.3 11 DYKE WELL 276SP 806 -98.0 - 186.7 284.7 1 WELL 1 270SP 2944 -62.0 234.1 296.1 5 WELL 5 274SP 2965 -59.0 205.9 264.9 6 WELL 6 264SP 3378 -89.0 191.5 286.5 7 WELL 7 284SP 3153 -64.0 226.3 290.3 9 WELL 9 286SP 3090 -55.0 223.4 278.4 10 WELL 10 6 -4471 51.0 Banning SOURCE PUMPS Node Pump# 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000. 20650. 21875. 22525. 22875. 23350. 23775. 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000. 15800, 16100. 16250. 16500, 16750. 290 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200, 400, 600, 800, 0. 0. 0. 276 1 Head 440 399_ 348 311 287 205 98 0 Flow 0. 200. 400. 600,. 800. 1000. 1200. 0. 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012. 3765. 4518. 4894. 0. 274 6 Head 488 318 296 287 257 206 148 0 Flow 0. 1761. 2201. 2641. 3081. 3521, 3962, 0. 264 7 Head 397 299 291 268 238 208 174 0 Flow 0. 2817. 3286. 3756. 4225. 4695. 5164. 0, 284 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745. 4214. 0. 0. 286 10 Read 562 369 341 305 264 222 0 0 Flow 0. 1859. 2324. 2789. 3253. 3718. 0. 0. ERROR encountered iteration 1 -.834540E-08 0 Iteration= 2, Flow Correction: 4159,578 Iteration= 3, Flow Correction: 2610.930 Iteration= 4, Flow Correction: 1571.036 Iteration= 5, Flow Correction: 851.092 Iteration: 6, Flow Correction: 570.643 Iteration= 7, Flow Correction: 365.602 Iteration= 8, Flow Correction: 282.569 Ttarntinn= 4. Rlnw r.nrrPr.tinn= 231.?31 LUCL6 4L Vl1- LV, CLVN VV4L6V41V21- L4V.410 Iteration: 11, Flow Correction: 170.895 Iteration: 12, Flow Correction: 147,770 Iteration: 13, Flow Correction: 998.368 Iteration: 14, Flow Correction: 47.388 Iteration: 15, Flow Correction: .117 Iteration: 16, Flow Correction: .001 CITY OF HUNTINGTON BEACH FRI, SBP 4, 1987, 4:18 AN Existing System -- MAXIMUM DAY DEMAND A FIRE 8 NODE 220 W/BOLSA CHICA INPUT FILE NAME DIFR220B NUMBER OF PIPES 240 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING, FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Cpm MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HICH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HICH 10. Feet /1000 PRESSURE CHECK - LOW 40. Psi - HICH 80, Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HOL ELEVATION 0. Feet SUM OF (-J FIXED DEMANDS : .00 SUM OF (+) FIXED DEMANDS = 20200.00 SUM OF PEAKABLE DEMANDS =-22662.09 SUN OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -55068,91 SUM OF ALL DEMANDS --------- -34868.91 Solution reached in 16 iterations Last flow correction was .00 C CITY OF HUNTINGTON BEACH FEI. SBP 4, 1987, 4:19 AN PIPE --NODBS-- LBNGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpm Fps CB ft ft/1000 CB ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 532 .8 .5 .2 4 2 6 2000 12.0 130 69 .2 .0 .0 LO 6 4 6 1600 12.0 130 329 .9 .5 .3 8. 6 8 2600 12.0 130 475 1.3 1.7 .6 10 8 10 2900 12.0 130 489 1.4 2.0 .7 12 12 10 970 10.0 130 423 1.7 1.2 1.3 14 14 4 2900 16.0 130 1078 1.7 2.1 .7 16 16 6 2620 12.0 130 462 1.3 1.6 .6 18 18 8 2640 12.0 130 561 1.6 2.3 .9 20 20 12 2350 12.0 130 657 1.9 2.7 1.2 22 22 12 2280 12.0 130 54 .2 .0 .0 LO 24 14 16 2600 12.0 130 363 1.0 1.0 .4 26 16 18 2610 12.0 130 353 1.0 1.0 .4 28 18 20 2510 12.0 130 191 .5 .3 .1 30 24 14 2620 16.0 130 2035 3.2 6.1 2.3 32 26 16 2700 12.0 130 873 2.5 5.3 2.0 34 28 18 2700 12.0 130 827 2.3 4.8 1.8 36 30 20 2570 12.0 130 659 1.9 3.0 1.2 38 32 22 3430 8.0 130 232 1.5 4.2 1.2 40 24 26 2680 12.0 130 486 1.4 1.8 .7 42 26 28 2640 12.0 130 440 1.2 1.5 .6 44 28 30 2670 12.0 130 532 1.5 2.1 .8 46 30 32 2550 12.0 130 460 1.3 1.5 .6 48 34 32 2800 12.0 130 638 1.8 3.1 1.1 50 36 24 2640 16.0 130 2932 4.7 12.1 4.6 52 38 26 2600 12.0 130 1256 3.6 10.1 3.9 54 40 28 2580 12.0 130 1230 3.5 9.6 3.7 56 42 30 2640 12.0 130 1324 3.8 11.3 4.3 58 46 34 2320 12.0 130 1090 3.1 6.9 3.0 60 36 38 2640 12.0 130 739 2.1 3.8 1.4 62 38 40 2640 12.0 130 508 1.4 1.9 .7 64 40 42 2700 12.0 130 231 .7 .5 .2 66 44 42 2550 12.0 130 177 .5 .3 .1 68 48 46 700 12.0 130 284 .8 .2 .2 70 50 36 2550 16.0 130 4319 6.9 23.9 9.4 72 52 38 2640 12.0 130 1586 4.5 15.7 6.0 74 54 40 2650 12.0 130 1589 4.5 15.9 6.0 76 56 42 2620 12.0 130 1625 4.6 16.3 6.2 78 58 44 2640 8.0 130 597 3.8 18.5 7.0 80 62 46 2950 12.0 120 1369 3.9 15.5 5.3 82 64 48 5300 12.0 130 1509 4.3 28.8 5.4 84 50 52 2700 12.0 130 1355 3.8 12.0 4.5 86 52 54 2600 12.0 130 493 1.4 1.8 .7 88 56 54 2640 12.0 130 42 .1 .0 .0 LO 90 58 56 2660 12.0 130 582 1.7 2.5 .9 92 60 58 1330 12.0 130 622 1.8 1.4 1.1 94 60 62 1130 8.0 130 578 3.7 7.5 6.6 8 A 12 96 66 52 2640 12.0 130 1372 3.9 12.0 4.6 97 68 54 2640 12.0 130 1505 4.3 14.3 5.4 98 70 56 2640 12.0 130 1572 4.5 15.5 5.9 99 72 58 2640 8.0 130 534 3.4 15.1 5.7 100 72 58 2640 8.0 130 534 3.4 15.1 5.7 101 74 60 2640 12.0 130 1562 4.4 15.3 5.8 102 80 62 3200 12.0 120 1490 4.2 19.7 6.2 104,- 84 64 2850 12.0 70 550 1.6 7.5 2.6 CITY OF HUNTINGTON BEACH FEI, 8EP 4, 1987, 4:19 AN PIPE --NODES-- LENGTH DIAN -FLOW- -VHLOCITY- ---HEADLOEB--- NO FROM TO Feet Inches H-W C Gpn Fps CE ft ft11000 CE ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 2199 3.5 7.5 2.7 108 66 50 5250 30.0 120 207 .1 LO .0 .0 LO 110 68 66 2640 30.0 120 2428 1.1 .5 .2 112 70 68 2680 30.0 120 4068 1.8 1.2 .5 114 70 68 2680 12.0 130 396 1.1 1.2 .5 116 72 70 2600 12.0 130 540 1.5 2.1 .8 118 72 70 2600 30.0 120 5545 2.5 2.1 .8 120 74 72 1450 30.0 120 6523 3.0 1.6 1.1 122 76 74 600 30.0 120 7737 3.5 .9 1.5 124 76 78 150 8.0 130 847 5.4 2.0 13.4 HI 126 78 80 1050 12.0 130 847 2.4 2.0 1.9 128 82 80 1150 12.0 130 643 1.8 1.3 1.1 129 92 82 1350 12.0 130 993 2.8 3.4 2.5 130 82 84 1250 12.0 130 48 .1 .0 .0 LO 132 50 98 5300 12.0 130 384 1.1 2.3 .4 134 66 100 2580 12.0 130 292 .8 .7 .3 136 68 102 2640 12.0 130 24 .1 LO .0 .0 LO 138 104 70 2630 12.0 130 435 1.2 1.4 .5 140 86 72 1320 12.0 130 854 2.4 2.5 1.9 142 106 86 1320 12.0 130 199 .6 .2 .1 144 88 86 1450 14.0 120 823 1.7 1.4 1.0 146 108 88 1280 12.0 130 952 2.7 3.0 2.3 148 90 88 650 14.0 120 1026 2.1 .9 1.5 149 88 74 1350 12.0 130 810 2.3 2.3 1.7 150 90 92 1750 12.0 130 590 1.7 1.7 1.0 151 90 76 1300 30.0 120 8584 3.9 2.4 1.8 152 90 96 3150 42.0 120 2558 .6 .1 .0 LO 154 90 94 2700 15.0 120 316 .6 .3 .1 156 94 92 1100 12.0 130 676 1.9 1.4 1.2 158 100 98 2680 12.0 130 462 1.3 1.6 .6 160 102 100 2680 12.0 130 379 1.1 1.1 .4 162 104 102 2750 12.0 130 594 1.7 2.7 1.0 164 106 104 2580 12.0 130 695 2.0 3.3 1.3 166 108 106 1500 12.0 130 1055 3.0 4.2 2.8 168 110 108 700 12.0 130 2138 6.1 7.3 10.4 HI 170 112 90 950 21.0 120 8546 7.9 9.7 10.2 HI 171 112 90 950 16.0 130 4528 7.2 9.7 10.2 HI 172 112 110 350 21.0 120 2819 2.6 .5 1.3 174 110 116 750 21.0 120 681 .6 .1 .1 LO 176 114 96 3400 42.0 120 1134 .3 .0 .0 LO 178 118 104 2640 12.0 130 682 1.9 3.3 1.2 179 120 106 2640 8.0 130 383 2.4 8.2 3.1 180 120 106 2640 6.0 130 180 2.0 8.2 3.1 182 116 120 9550 12.0 130 687 1.9 3.2 1.3 184 122 116 1900 21.0 120 78 .1 LO .0 .0 LO 186 126 94 3300 14.0 70 403 .8 2.3 .7 188 128 114 4000 42.0 120 2831 .7 .2 .0 LO 190 120 118 2550 8.0 130 391 2.5 8.2 3.2 192 122 120 2150 . 8.0 130 260 1.7 3.2 1.5 194 122 124 600 8.0 130 264 1.7 .9 1.6 196 131 118 2640 8.0 130 571 3.6 17.1 6.5 197 132 130 800 8.0 130 348 2.2 2.1 2.6 198 130 129 850 6.0 130 63 .7 .4 .4 199 129 120 1250 8.0 130 63 .4 .1 .1 200_ 132 120 2750 8.0 130 201 1.3 2.6 .9 CITY OF HUNTINGTON BEACH FBI, 8EP 4, 1987, 4:19 AN PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADL089--- NO FROM TO Feet Inches H-V C Gpi Fps CE ft ft11000 CE ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 201 134 122 2640 21.0 120 1009 .9 .5 .2 202 124 136 3250 12.0 130 154 .4 .3 .1 LO 204 138 126 880 14.0 60 551 1.1 1.5 1.7 206 140 128 700 12.0 130 22 .1 LO .0 .0 LO 208 142 128 1800 12.0 130 26 .1 LO .0 .0 LO 210 144 142 1150 12.0 130 240 .7 .2 .2 212 292 132 1950 8.0 130 393 2.5 6.3 3.2 214 134 132 2000 12.0 130 453 1.3 1.2 .6 216 134 136 1200 12.0 130 732 2.1 1.7 1.4 218 136 138 2050 12.0 130 932 2.6 4.6 2.2 220 164 146 2200 12.0 130 145 .4 .2 .1 LO 222 142 140 1800 12.0 130 21 .1 LO .0 .0 LO 224 146 128 4200 42.0 120 3118 .7 .2 .1 LO . 226 146 144 650 24.0 120 455 .3 .0 .0 LO 228 152 131 2700 8.0 130 534 3.4 15.5 5.7 230 154 132 3150 8.0 130 264 1.7 4.9 1.6 232 156 134 2640 21.0 120 2424 2.2 2.6 1.0 234 158 136 2640 12.0 130 204 .6 .4 .1 236 150 160 1400 12.0 130 70 .2 .0 .0 LO 238 148 150 700 14.0 130 70 .1 .0 .0 LO 240 138 148 500 12.0 130 381 1.1 .2 .4 242 162 140 2640 12.0 130 326 .9 .8 .3 244 164 146 2120 42.0 120 3678 .9 .2 .1 LO 246 152 154 2640 8.0 130 567 3.6 16.9 6.4 248 154 156 2640 8.0 130 130 .8 1.1 .4 250 156 158 1300 12.0 130 1106 3.1 4.0 3.1 252 158 160 2000 12.0 130 1009 2.9 5.2 2.6 254 160 162 2660 12.0 130 556 1.6 2.3 .9 256 162 164 2660 12.0 130 234 .7 .5 .2 257 180 164 2700 12.0 130 208 .6 .4 .1 258 164 166 2640 12.0 130 1310 3.7 11.0 4.2 260 168 152 2550 12.0 130 1607 4.6 15.6 6.1 261 168 170 2330 21.0 120 6938 6.4 16.2 7.0 262 170 154 3050 8.0 130 513 3.3 16.2 5.3 263 170 172 2000 21.0 120 6343 5.9 11.8 5.9 264 172 156 2650 21.0 120 3616 3.3 5.5 2.1 265 172 174 1350 16.0 130 2064 3.3 3.2 2.4 266 174 158 2650 8.0 130 331 2.1 6.3 2.4 267 174 176 1950 16.0 130 2204 3.5 5.3 2.7 269 176 178 2640 16.0 130 2098 3.3 6.5 2.5 270 178 162 2700 12.0 130 505 1.4 1.9 .7 2?1 178 180 2700 16.0 120 1016 1.6 2.0 .7 272 180 164 2700 42.0 120 5190 1.2 .4 .1 273 180 182 1150 16.0 120 2980 4.8 6.3 5.5 274 166 184 2680 12.0 130 955 2.7 6.2 2.3 275 182 184 1550 16.0 125 3635 5.8 11.4 7.3 277 184 186 2650 16.0 125 3903 6.2 22.2 8.4 279 186 190 2750 16.0 125 2908 4.6 13.3 4.8 280 190 192 1340 16.0 125 2316 3.7 4.3 3.2 282 192 194 3200 14.0 130 2231 4.7 16.9 5.3 284 194 218 5300 14.0 130 1635 3.4 15.8 3.0 286 196 170 2660 8.0 130 302 1.9 5.3 2.0 288 198 174 2640 12.0 130 765 2.2 4.1 1.5 290 200 176 2500 12.0 130 184 .5 .3 .1 292, 202 204 2700 8.0 130 205 1.3 2.6 1.0 CITY OF HUNTINGTON BEACH FBI, 8EP 4, 1987, 4:19 AN PIPE --NODBB-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOEB--- NO FROM TO Feet Inches H-V C Gps Fps CE ft ft/1000 CE ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 294 178 204 800 12.0 130 48 .1 .0 .0 LO 296 206 180 2700 36.0 120 7688 2.4 1.6 .6 298 206 182 3800 12.0 130 901 2.6 7.9 2.1 300 184 208 2640 12.0 130 392 1.1 1.2 .4 301 210 186 2640 8.0 130 121 .8 1.0 .4 302 190 212 2640 12.0 130 236 .7 .5 .2 304 196 198 3300 8.0 130 492 3.1 16.2 4.9 306 198 200 2700 12.0 130 1164 3.3 9.1 3.4 308 200 202 2640 12.0 130 774 2.2 4.2 1.6 310 202 206 2640 12.0 130 646 1.8 3.0 1.1 312 206 208 2640 12.0 130 1829 5.2 20.5 7.8 314 208 210 2640 12.0 130 1807 5.1 20.0 7.6 316 210 212 2640 12.0 130 1532 4.3 14.8 5.6 318 212 214 1300 12.0 130 1442 4.1 6.5 5.0 320 222 196 2700 12.0 130 1214 3.4 9.8 3.6 322 272 224 1320 12.0 130 913 2.6 2.8 2.1 324 228 200 2640 12.0 130 481 1.4 1.7 .7 326 230 202 3000 12.0 130 412 1.2 1.5 .5 327 232 206 2640 12.0 130 579 1.6 2.4 .9 328 232 206 2640 36.0 120 9605 3.0 2.4 .9 330 236 210 2700 12.0 130 730 2.1 3.8 1.4 332 214 216 1000 10.0 130 1076 4.4 7.1 7.1 334 216 238 2100 8.0 130 429 2.7 8.0 3.8 336 302 220 4500 12.0 130 1723 4.9 31.3 6.9 338 218 220 1250 8.0 130 1163 7.4 30.2 24.2 HI 340 288 224 1700 12.0 130 2215 6.3 18.8 11.1 HI 342 224 228 2000 12.0 130 1965 5.6 17.7 8.9 344 228 230 2640 12.0 130 799 2.3 4.4 1.7 346 230 232 2640 12.0 130 524 1.5 2.0 .8 348 232 234 2640 12.0 130 1708 4.8 18.0 6.8 350 234 236 2640 12.0 130 1858 5.3 21.1 8.0 352 236 238 5030 12.0 1"30 1857 5.3 40.1 8.0 354 224 226 1300 12.0 130 659 1.9 1.5 1.2 356 228 240 2700 12.0 130 253 .7 .5 .2 358 242 230 2700 12.0 130 457 1.3 1.6 .6 360 244 232 2700 36.0 120 12028 3.8 3.8 1.4 362 246 234 2700 12.0 130 311 .9 .8 .3 364 250 236 2680 12.0 130 1301 3.7 11.1 4.1 366 226 240 3800 8.0 130 464 3.0 16.7 4.4 368 240 242 2640 10.0 130 345 1;4 2.3 .9 370 244 242 2660 10.0 130 77 .3 .1 .1 LO 372 244 246 2550 12.0 130 1890 5.4 21.0 8.2 374 246 248 1500 12.0 130 980 2.8 3.7 2.4 376 248 250 1200 10.0 130 980 4.0 7.1 5.9 378 252 242 2540 12.0 130 492 1.4 1.7 .7 380 254 244 2640 36.0 120 14485 4.6 5.2 2.0 382 256 246 2540 12.0 130 116 .3 .1 .0 LO 384 258 250 2640 12.0 130 533 1.5 2.1 .8 386 278 252 1750 12.0 130 892 2.5 3.6 2.1 388 254 256 2600 12.0 130 2102 6.0 26.1 10.0 HI 390 256 258 2640 12.0 130 1161 3.3 8.8 3.3 392 260 254 2600 36.0 120 16981 5.4 6.9 2.6 394 262 260 150 36.0 130 5090 1.6 .0 .2 PECK RES. 395 266 260 100 36.0 130 12379 3.9 .1 1.3 396� 264 266 250 12.0 130 3379 9.6 6.0 24.2 HI WELL 7 CITY OF HUNTINGTON BEACH FBI, 9EP 4, 1987, 4:19 AM PIPE --NODB9-- LENGTH DIAM -FLOW- -VRLOCITY- ---HBADL098--- NO FROM TO Feet Inches H-W C Gpm Fps CB ft ft/1000 Cl ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 400 270 168 970 12.0 130 2937 8.3 18.1 18.7 HI WELL 5 402 274 272 200 12.0 130 2961 8.4 3.8 18.9 HI WELL 6 404 272 198 1380 12.0 130 2048 5.8 13.2 9.6 406 276 278 170 8.0 130 806 5.1 2.1 12.3 HI WELL 1 408 254 278 900 12.0 130 86 .2 .0 .0 LO 414 284 168 1990 16.0 130 3146 5.0 10.4 5.2 WELL 9 416 288 222 1600 12.0 130 872 2.5 3.1 2.0 418 286 288 1050 16.0 130 3087 4.9 5.3 5.0 WELL 10 420 290 292 1400 6.0 120 430 4.9 25.2 18.0 HI DYER WELL 422 292 131 750 8.0 130 36 .2 .0 .0 LO 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1119 3.2 8.9 3.1 452 300 168 5300 22.0 120 3381 2.9 7.8 1.5 OC9 500 301 112 100 36.8 120 15920 4.8 .2 2.1 Overmyer Res. 501 238 302 2000 12.0 130 1723 4.9 13.9 6.9, 502 95 84 1000 16.0 130 2925 4.7 4.6 4.6 503 96 95 452 24.0 120 3157 2.2 .4 .8 504 304 266 10 36.0 130 9000 2.8 .0 .7 0035 516 114 115 3490 12.0 130 670 1.9 4.2 1.2 517 115 64 6850 12.0 130 670 1.9 8.3 1.2 CITY OF HUNTINGTON BEACH FBI, 8EP 4, 1987, 4:19 AN GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet Gpm Feet Feet Psi CE % DROP--CB ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -462.43 117.2 112.2 48 51 4 5 -218.21 117.7 112.7 48 50 6 5 -384.91 117.1 112.1 48 51 Banning 8 5 -547.24 115.5 110.5 47 51 10 4 -911.49 113.5 109.5 47 52 12 4 -287.71 114.7 110.7 48 51 14 6 -594.14 119.7 113.7 49 50 16 7 -419.66 118.7 111.7 48 50 18 4 -428.90 117.8 113.8 49 50 20 2 -192.94 117.5 115.5 50 50 22 4 -178.36 114.8 110.8 48 51 24 6 -410.91 125.8 119.8 51 47 26 8 -428.90 124.1 116.1 50 48 28 4 -311.28 122.6 118.6 51 48 30 4 -736.53 120.5 116.5 50 49 32 6 -866.54 118.9 112.9 48 50 34 30 -451.49 122.0 92.0 39 LO 54 36 8 -647.60 137.9 MA 56 42 38 9 -560.36 134.1 125.1 54 44 40 6 -636.42 132.2 126.2 54 44 42 6 -708.83 131.7 125.7 54 44 44 18 -419.66 132.0 114.0 49 47 46 36 -563.03 128.9 92.9 40 53 48 36 -1225.69 129.1 93.1 40 53 50 12 -848.80 161.9 149.9 64 32 52 10 -649.05 149.8 139.8 60 37 54 7 -450.52 148.1 141.1 61 37 56 10 -487.94 148.1 138.1 59 38 58 25 -512.24 150.5 125.5 54 40 60 35 -361.34 151.9 116.9 50 41 62 40 -699.60 144.5 104.5 45 46 64 75 -1910.47 157.9 82.9 35 LO 48 66 10 -557.20 161.9 151.9 65 32 68 8 -506.17 162.3 154.3 66 31 70 10 -483.81 163.6 153.6 66 31 72 55 -224.05 165.7 110.7 47 38 74 50 -461.94 167.2 117.2 50 36 76 50 .00 168.1 118.1 51 35 78 50 .00 166.1 116.1 50 37 80 50 .00 164.2 114.2 49 38 82 75 -301.81 165.5 90.5 39 LO 43 84 75 -223.56 165.4 90.4 39 LO 43 86 57 -168.40 168.2 111.2 48 37 88 50 -346.03 169.6 119.6 51 35 90 60 .00 170.5 110.5 47 36 92 70 -272.89 168.8 98.8 42 39 94 115 -42.28 170.2 55.2 23 LO 53 95 103 -232.31 170.0 67.0 29 LO 49 Reservoir Hill 96 95 -534.60 170.4 75.4 32 LO 45 98 16 -846.37 159.6 143.6 62 34 100 15 -208.01 161.2 146.2 63 33 Flounder 102 12 -239.36 162.3 150.3 65 32 104 14 -347.49 165.0 151.0 65 31 106 58 -722.44 168.3 110.3 47 37 108r 55 -131.46 172.5 117.5 50 34 CITY OF HUNTINGTON BEACH FRI, SBP 4, 1987, 4:19 AN GROUND ELY FLOW HGL BL HEAD ------- PRESSURE ------ NODE Feet Gpm Feet Feet Psi CE % DROP--CE ---- ------ ------ ------ ------ ------ -- ------ -- 110 60 .00 179.8 119.8 51 31 112 60 -26.97 180.2 120.2 52 31 114 93 -1027.40 170.4 77.4 33 LO 45 115 35 .00 166.2 131.2 56 34 116 60 -71.93 179.7 119.7 51 31 118 13 -280.67 168.3 155.3 67 29 120 55 -256.37 176.5 121.5 52 32 122 35 -407.03 179.7 144.7 62 27 124 25 -109.84 178.8 153.8 66 26 126 40 -147.50 172.5 132.5 57 31 128 5 -335.10 170.6 165.6 71 27 129 45 .00 176.6 131.6 57 30 130 45 -285.52 177.0 132.0 57 30 131 45 .00 185.4 140.4 60 25 132 55 -561.57 179.1 124.1 53 30 134 50 -230.61 180.2 130.2 56 29 136 50 -158.19 178.5 128.5 55 30 138 40 A 174.0 134.0 58 31 140 2 -324.65 170.6 168.6 73 27 142 2 -192.94 170.6 168.6 73 27 144 2 -215.54 170.8 168.8 73 27 146 2 -249.32 170.8 168.8 73 27 148 40 -310.80 173.7 133.7 57 31 150 40 .00 173.7 133.7 57 31 152 28 -505.44 200.8 172.8 74 16 154 25 -686.23 .183.9 158.9 68 24 156 25 -215.30 182.8 157.8 68 24 158 30 -225.02 178.9 148.9 64 27 160 5 -522.69 173.7 168.7 73 26 162 3 -501.80 171.4 168.4 73 27 164 2 -499.12 171.0 169.0 73 27 166 2 -354.29 159.9 157.9 68 32 168 27 -918.54 216.4 189.4 82 HI 8 170 26 -383.45 200.2 174.2 75 16 172 25 -662.90 188.4 163.4 70 22 174 25 -293.54 185.1 160.1 69 23 176 12 -290.39 179.9 167.9 72 24 178 5 -529.50 173.4 168.4 72 26 180 5 -326.35 171.4 166.4 72 27 182 5 -245.19 165.1 160.1 69 30 184 5 -294.76 153.7 148.7 64 35 186 34 -1116.10 131.5 97.5 42 51 190 35 -356.24 118.2 83.2 36 LO 58 192 55 -84.32 113.9 58.9 25 LO 67 194 5 -596.81 97.0 92.0 39 LO 59 196 25 -420.15 205.4 180.4 78 13 198 17 -611.39 189.2 172.2 74 20 200 14 -686.96 180.1 166.1 72 24 Heil 202 10 -334.37 176.0 166.0 71 26 204 10 -252.72 173.4 163.4 70 27 206 9 -411.16 173.0 164.0 71 27 208 14 -414.80 152.5 138.5 60 37 210 15 -884.28 132.5 117.5 50 46 212 9 -326.59 117.7 108.7 47 51 214, 9 -365.71 111.2 102.2 44 54 CITY OF HUNTINGTON BEACH FRI, SIP 4, 1987, 4:19 AN GROUND ILV FLOW HGL IL HEAD ------- PRESSURE ------ NODE Feet Gpm Feet Feet Psi CI % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 216 9 -646.87 104.2 95.2 41 57 218 5 -471.42 81.2 76.2 33 LO 66 220 5 -2886.61U 51.OF 46.0 19 LO 79 222 26 -776.63 215.3 189.3 82 HI 9 224 21 -503.98 199.6 178.6 77 16 226 23 -194.89 198.1 175.1 75 17 228 20 -432.54 181.9 161.9 70 24 230 12 -320.03 177.5 165.5 71 25 232 10 -660.96 175.4 165.4 71 26 234 12 -160.87 157.4 145.4 63 34 236 15 -571.05 136.3 121.3 52 44 Scenario 238 5 -562.79 96.2 91.2 39 LO 60 240 21 -372.03 181.3 160.3 69 24 242 15 -456.60 179.1 164.1 71 25 244 16 -489.89 179.2 163.2 70 25 246 14 -714.91 158.2 144.2 62 34 248 14 .00 154.5 140.5 60 36 250 13 -212.14 147.4 134.4 58 39 252 22 -400.46 180.8 158.8 68 25 254 18 -308.12 184.4 166.4 72 23 256 17 -824.99 158.3 141.3 61 35 258 17 -628.64 149.5 132.5 57 39 260 23 -487.70 191.3 168.3 72 20 262SP 34 5090.11U 191.3 157.3 68 21 PICK RES. 264SP 18 3378.86U 197.5 179.5 77 17 WELL 7 266 23 .00 191.4 168.4 13 20 270SP 21 2937.12U 23.1.5 207.5 89 HI 0 WILL 5 272 25 .00 202.4 177.4 76 15 274SP 19 2960.69U 206.2 187.2 81 HI 13 WILL 6 276SP 17 806.18U 186.5 169.5 73 22 WELL 1 278 19 .00 184.4 165.4 71 23 2848P 27 3145.68U 226.8 199.8 86 HI 3 WELL 9 286SP 19 3086.80U 223.7 204.7 88 HI 5 WELL 10 288 22 .00 218.4 196.4 85 HI 7 290SP 44 429.95U 210.6 166.6 72 12 DYER WELL 292 48 .00 185.4 137.4 59 26 294 12 6700.00 164.4 152.4 66 31 OC44,Adams 300 25 4500.00 224.2 199.2 86 HI 4 OC9 301SP 65 15920.14U 180.4 115.4 50 31 Overmyer Res. 302 5 .00 82.3 77.3 33 LO 66 304 25 9000.00 191.4 166.4 72 20 0C35 Naximum Unbalanced Head = .00002 192 CITY OF HUNTINGTON BEACH FBI, SBP 4, 1987, 4:19 AN RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION BGL DISCH HGL LIFT PUMP NODE Gpm Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 301SP 15920 50.0 180.4 130.4 20 Overmyer Res. 262SP 5090 20.0 191.3 171.3 30 PECK RES. 290SP 430 -34.0 210.6 244.6 11 DYKE WELL 2768P 806 -98.0 186.5 284.5 1 WELL 1 270SP 2937 -62.0 234.5 296.5 5 WELL 5 274SP 2961 -59.0 206.2 265.2 6 WELL 6 2648P 3379 -89.0 197.5 286.5 7 WELL 7 284SP 3146 -64.0 226.8 290.8 9 WELL 9 286SP 3087 -55.0 223.7 278.7 10 WELL 10 220 -2887 51.0 SOURCE PUMPS Node Pump# 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000, 20650, 21875. 22525. 22875. 23350, 23775, 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000. 15800. 16100. 16250. 16500, 16750, 290 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200. 400. 600. 800. 0. 0. 0. 276 1 Head 440 399 348 311 287 205 98 0 Flow 0. 200. 400. 600. 800, 1000, 1200. 0. 270 5 Head 471 359 W 292 224 143 98 0 Flow 0. 1882. 2259. 3012. 3765. 4518. 4894, 0. 274 6 Head 488 318 296 287 257 206 148 0 Flow 0. 1761, 2201. 2641. 3081. 3521. 3962. 0. 264 7 Head 397 299 291 268 238 208 174 0 Flow 0. 2817. 3286. 3756. 4225. 4695, 5164. 0. 284 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745. 4214. 0. 0. 286 10 Read 562 369 341 305 264 222 0 0 Flow 0. 1859. 2324. 2789, 3253. 3718. 0. 0. ERROR encountered iteration 1 -.732767E-08 0 Iteration: 2, Flow Correction: 6024.068 Iteration: 3, Flow Correction: 2774,996 Iteration: 4, Flow Correction: 1677.258 Iteration: 5, Flow Correction: 884,638 Iteration: 6, Flow Correction: 481,892 Iteration: 7, Flow Correction: 422.886 Iteration: 8, Flow Correction: 243,310 Iteration: 9, Flow Correction: 113.229 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1989, 4:43 AN Existing System -- MAXIMUM DAY DEMAND A FIRE 9 NODE 186 W/BOLSA PH. I INPUT FILB NAME DXFR186B NUMBER OF PIPES 240 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES .0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2,430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gpm MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW ,1 Fps - HICH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40, Pei - HIGH 80, Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50, Pet STATIC HGL ELEVATION, 0. Feet SUM OF FIXED DEMANDS = .00 SUN OF FIXED DEMANDS = 20200.00 SUM OF PBAKABLE DEMANDS =-22359.29 SUM OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -54333.11 SUM OF ALL DEMANDS --------- -34133.11 Solution reached in 16 iterations Last flow correction was ,00 r CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 4:44 AN PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpm Fps U fit ft/1000 CB ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 532 .8 .5 .2 4 2 6 2000 12.0 130 69 .2 .0 .0 LO 6 4 6 1600 12.0 130 329 .9 .5 .3 8 6 8 2600 12.0 130 476 1.3 1.7 .6 10 8 10 2900 12.0 130 489 1.4 2.0 .7 12 12 10 970 10.0 130 423 1.7 1.2 1.3 14 14 4 2900 16.0 130 1079 1.7 2.1 .7 16 16 6 2620 12.0 130 462 1.3 1.6 .6 18 18 8 2640 12.0 130 561 1.6 2.3 .9 20 20 12 2350 12.0 130 657 1.9 2.7 1.2 22 22 12 2280 12.0 130 53 .2 .0 .0 LO 24 14 16 2600 12.0 130 363 1.0 1.0 .4 26 16 18 2610 12.0 130 353 1.0 1.0 .4 28 18 20 2510 12.0 130 191 .5 .3 .1 30 24 14 2620 16.0 130 2035 3.2 6.1 2.3 32 26 16 2700 12.0 130 873 2.5 5.3 2.0 34 28 18 2700 12.0 130 827 2.3 4.8 1.8 36 30 20 2570 12.0. 130 659 1.9 3.0 1.2 38 32 22 3430 8.0 130 232 1.5 4.2 1.2 40 24 26 2680 12.0 130 486 1.4 1.8 .7 42 26 28 2640 12.0 130 441 1.2 1.5 .6 44 28 30 2670 12.0 130 533 1.5 2.1 .8 46 30 32 2550 12.0 130 462 1.3 1.5 .6 48 34 32 2800 12.0 130 637 118 3.1 1.1 50 36 24 2640 16.0 130 2933 4.7 12.1 4.6 52 38 26 2600 12.0 130 1256 3.6 10.1 3.9 54 40 28 2580 12.0 130 1231 3.5 9.6 3.7 56 42 30 2640 12.0 130 1324 3.8 11.3 4.3 58 46 34 2320 12.0 130 1088 3.1 6.9 3.0 60 36 38 2640 12.0 130 739 2.1 3.8 1.4 . 62 38 40 2640 12.0 130 509 1.4 1.9 17 64 40 42 2700 12.0 130 231 .7 .5 12 66 44 42 2550 12.0 130 177 .5 .3 .1 68 48 46 700 12.0 130 282 .8 .2 .2 70 50 36 2550 16.0 130 4320 6.9 23.9 9.4 72 52 38 2640 12.0 130 1586 4.5 15.7 6.0 74 54 40 2650 12.0 130 1590 4.5 15.9 6.0 76 56 42 2620 12.0 130 1625 4.6 16.3 6.2 78 58 44 2640 8.0 130 597 3.8 18.5 7.0 80 62 46 2950 12.0 120 1369 3.9 15.5 5.3 82 64 48 5300 12.0 130 1508 4.3 28.8 6.4 84 50 52 2700 12.0 130 1356 3.8 12.0 4.5 86 52 54 2600 12.0 130 494 1.4 1.8 .7 88 56 54 2640 12.0 130 41 .1 .0 .0 LO 90 58 56 2660 12.0 130 581 1.6 2.5 .9 92 60 58 1330 12.0 130 621 1.8 1.4 1.0 94 60 62 1130 8.0 130 580 3.7 7.5 6.7 8 d 12 96 66 52 2640 12.0 130 1373 3.9 12.0 4.6 97 68 54 2640 12.0 130 1506 4.3 14.3 5.4 98 70 56 2640 12.0 130 1573 4.5 15.5 5.9 99 72 58 2640 8.0 130 534 3.4 15.1 5.7 100 72 58 2640 8.0 130 534 3.4 15.1 5.7 101 { 74 60 2640 12.0 130 1562 4.4 15.3 5.8 102 80 62 3200 12.0 120 1489 4.2 19.7 6.1 104 84 64 2850 12.0 70 550 1.6 7.5 2.6 CITY OF HUNTINGTON BEACH FBI, SEP 4, 1987, 4:44 AN PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpn Fps CE ft ft/1000 CH ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 2199 3.5 7.5 2.7 108 66 50 5250 30.0 120 208 .1 LO .0 .0 LO 110 68 66 2640 30.0 120 2430 1.1 .5 .2 112 70 68 2680 30.0 120 4061 1.8 1.2 ;5 114 70 68 '2680 12.0 130 395 1.1 1.2 .5 116 72 70 2600 12.0 130 538 1.5 2.1 .8 118 72 70 2600 30.0 120 5525 2.5 2.1 A 120 74 72 1450 30.0 120 6482 2.9 1.6 1.1 122 76 74 600 30.0 120 7683 3.5 .9 1.5 124 76 78 150 8.0 130 852 5.4 2.0 13.6 HI 126 78 80 1050 12.0 130 852 2.4 2.0 1.9 128 82 80 1150 12.0 130 637 1.8 1.3 1.1 129 92 82 1350 12.0 130 999 2.8 3.4 2.5 130 82 84 1250 12.0 130 60 .2 .0 .0 LO 132 50 98 5300 12.0 130 384 1.1 2.3 .4 134 66 100 2580 12.0 130 291 .8 .7 .3 136 68 102 2640 12.0 130 14 .0 LO .0 .0 LO 138 104 70 2630 12.0 130 450 1.3 1.5 .6 140 86 72 1320 12.0 130 873 2.5 2.6 2.0 142 106 86 1320 12.0 130 238 .7 .2 .2 144 88 86 1450 14.0 120 804 1.7 1.3 .9 146 108 88 1280 12.0 130 1008 2.9 3.3 2.6 148 90 88 650 14.0 120 964 2.0 .8 1.3 149 88 74 1350 12.0 130 822 2.3 2.4 1.8 150 90 92 1750 12.0 130 590 1.7 1.7 1.0 151 90 76 1300 30.0 120 8535 3.9 2.3 1.8 152 90 96 3150 42.0 120 3416 .8 .2 .1 LO 154 90 94 2700 15.0 120 304 .6 .3 .1 156 94 92 1100 12.0 130 682 1.9 1.4 1.2 158 100 98 2680 12.0 136 462 1.3 1.6 .6 160 102 100 2680 12.0 130 37.9 1.1 1.1 .4 162 104 102 2750 12.0 130 604 1.7 2.7 1.0 164 106 104 2580 12.0 130 703 2.0 3.4 1.3 166 108 106 1500 12.0 130 1082 3.1 4.4 2.9 168 110 108 700 12.0 130 2221 6.3 7.8 11.1 HI 170 112 90 950 21.0 120 9027 8.4 10.8 11.3 HI 171 112 90 950 16.0 130 4783 7.6 10.8 11.3 HI 172 112 110 350 21.0 120 3066 2.8 .5 1.5 174 110 116 750 21.0 120 845 .8 .1 .1 176 114 96 3400 42.0 120 264 .1 LO .0 .0 LO 178 118 104 2640 12.0 130 698 2.0 3.4 1.3 179 120 106 2640 8.0 130 396 2.5 8.7 3.3 180 120 106 2640 6.0 130 186 2.1 8.7 3.3 182 116 120 2550 12.0 130 707 2.0 3.4 1.3 184 116 122 1900 21.0 120 66 .1 LO .0 .0 LO 186 126 94 3300 14.0 70 421 .9 2.5 .8 188 128 114 4000 42.0 120 1959 .5 .1 .0 LO 190 120 118 2550 8.0 130 402 2.6 8.6 3.4 192 122 120 2150 8.0 130 267 1.7 3.4 1.6 194 122 124 600 8.0 130 290 1.9 1.1 1.8 196 131 118 2640 8.0 130 577 3.7 17.4 6.6 197 132 130 800 8.0 130 349 2.2 2.1 2.6 198 f 130 129 850 6.0 130 64 .7 .4 .5 199 129 120 1250 8.0 130 64 .4 .1 .1 200 132 120 2750 8.0 130 202 1.3 2.6 .9 CITY OF HUNTINGTON BEACH FEI, SHP 4, 1987, 4:44 AN PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---AEADLOSS--- NO FROM TO Feet Inches H-W C Gpn Fps CB ft ft/1000 CH ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 201 134 122 2640 21.0 120 898 .8 .4 .2 202 124 136 3250 12.0 130 180 .5 .3 .1 204 138 126 880 14.0 60 568 1.2 1.5 1.8 206 128 140 700 12.0 130 1 .0 LO .0 .0 LO 208 128 142 1800 12.0 130 8 .0 LO .0 .0 LO 210 144 142 1150 12.0 130 177 .5 .1 .1 212 292 132 1950 8.0 130 389 2.5 6.2 3.2 214 134 132 2000 12.0 130 462 1.3 1.2 .6 216 134 136 1200 12.0 130 768 2.2 1.9 1.6 218 136 138 2050 12.0 130 970 2.8 4.9 2.4 220 164 146 2200 12.0 130 112 .3 .1 .0 LO 222 140 142 1800 12.0 130 8 .0 LO .0 .0 LO 224 146 128 4200 42.0 120 2304 .5 .1 .0 LO 226 146 144 650 24.0 120 393 .3 .0 .0 LO 228 152 131 2700 8.0 130 535 3.4 15.5 5.7 230 154 132 3150 8.0 130 262 1.7 4.8 1.5 232 156 134 2640 21.0 120 2359 2.2 2.5 .9 234 158 136 2640 12.0 130 180 .5 .3 .1 236 150 160 1400 12.0 130 91 .3 .0 .0 LO 238 148 150 700 14.0 130 91 .2 .0 .0 LO 240 138 148 500 12.0 130 402 1.1 .2 .5 242 162 140 2640 12.0 130 331 .9 .9 .3 244 164 146 2120 42.0 120 2834 .7 .1 .0 LO 246 152 154 2640 8.0 130 566 3.6 16.8 6.4 248 154 156 2640 8.0 130 130 .8 1.1 .4 250 156 158 1300 1Z.0 130 1122 3.2 4.1 3.1 252 168 160 2000 12.0 130 1043 3.0 5.5 2.7 254 160 162 2660 12.0 130 611 1.7 2.7 1.0 256 162 164 2660 12.0 130 280 .8 .6 .2 257 180 164 2700 12.0 130 184 .5 .3 .1 258 164 166 2640 12.0 130 1602 4.5 16.0 6.1 260 168 152 2550 12.0 130 1606 4.6 15.6 6.1 261 168 170 2330 21.0 120 6949 6.4 16.3 7.0 262 170 154 3050 8.0 130 512 3.3 16.1 5.3 263 170 172 2000 21.0 120 6354 5.9 11.8 5.9 264 172 156 2650 21.0 120 3567 3.3 5.4 2.0 265 172 174 1350 16.0 130 2124 .3.4 3.4 2.5 266 174 158 2650 8.0 130 326 2.1 6.1 2.3 267 174 176 1950 16.0 130 2264 3.6 5.5 2.8 269 176. 178 2640 16.0 130 2152 3.4 6.8 2.6 270 178 162 2700 12.0 130 501 1.4 1.9 .7 271 178 180 2700 16.0 120 1077 1.7 2.2 .8 272 180 164 2700 42.0 120 4583 1.1 .3 .1 273 180 182 1150 16.0 120 3704 5.9 9.4 8.2 274 166 184 2680 12.0 130 1247 3.5 10.2 3.8 275 182 184 1550 16.0 125 4537 7.2 17.1 11.1 HI 277 184 186 2650 16.0 125 5384 8.6 40.Z 15.2 HI 279 186 190 2750 16.0 125 667 1.1 .9 .3 280 190 192 1340 16.0 125 922 1.5 .8 .6 282 192 194 3200 14.0 130 838 1:7 2.8 .9 284 194 218 5300 14.0 130 241 .5 .5 .1 LO 286 196 170 2660 8.0 130 300 1.9 5.2 2.0 288 198 174 2640 12.0 130 759 2.2 4.0 1.5 290-r 200 176 2500 12.0 130 179 .5 .3 .1 292 202 Z04 2700 8.0 130 Z08 1.3 Z.7 1.0 CITY OF HUNTINGTON BEACH FHI, SEP 4, 1987, 4:44 AN PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HBADLOSS--- NO FROM TO Feet Inches H-W C Gpo Fps CB ft ft/1000 CB ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 294 178 204 800 12.0 130 44 .1 .0 .0 LO 296 206 180 2700 36.0 120 7720 2.4 1.7 .6. 298 206 182 3800 12.0 130 1078 3.1 11.1 2.9 300 184 208 2640 12.0 130 106 .3 .1 .0 LO 301 210 186 2640 8.0 130 601 3.8 18.8 7.1 302 212 190 2640 12.0 130 611 1.7 2.7 1.0 304 196 198 3300 8.0 130 496 3.2 16.4 5.0 306 198 200 2700 12.0 130 1179 3.3 9.3 3.4 308 200 202 2640 12.0 130 796 2.3 4.4 1.7 310 202 206 2640 12.0 130 680 1.9 3.3 1.2 312 206 208 2640 12.0 130 2179 6.2 28.3 10.7 HI 314 208 210 2640 12.0 130 1870 5.3 21.3 8.1 316 210 212 2640 12.0 130 1652 4.7 17.0 6.4 318 212 214 1300 12.0 130 714 2.0 1.8 1.4 320 292 196 2700 12.0 130 1215 3.4 9.8 3.6 322 272 224 1320 12.0 130 918 2.6 2.9 2.2 324 228 200 2640 12.0 130 484 1.4 1.7 .7 326 230 202 3000 12.0 130 427 1.2 1.6 .5 327 232 206 2640 12.0 130 608 1.7 2.7 1.0 328 232 206 2640 36.0 120 10099 3.2 2.7 1.0 330 236 210 2700 12.0 130 1267 3.6 10.6 3.9 332 214 216 1000 10.0 130 348 1.4 .9 .9 334 238 216 2100 8.0 130 299 1.9 4.1 1.9 336 302 220 4500 12.0 130 fill 1.7 4.6 1.0 338 220 218 1250 8.0 130 231 1.5 1.5 1.2 340 288 224 1700 12.0 130 2226 6.3 19.0 11.2 HI 342 224 228 2D00 12.0 136 1978 5.6 17.9 9.0 344 228 230 2640 12.0 130 812 2.3 4.6 1.7 346 230 232 2640 12.0 130 547 1.6 2.2 .8 348 232 234 2640 12.0 130 1752 5.0 18.9 7.2 350 234 236 2640 12.0 130 1938 5.5 22.8 8.6 352 236 238 5030 12.0 130 1472 4.2 26.1 5.2 354 224 226 1300 12.0 130 662 1.9 1.5 1.2 356 228 240 2700 12.0 130 250 .7 .5 .2 358 242 230 2700 12.0 130 482 1.4 1.8 .7 360 244 232 2700 36.0 120 12573 4.0 4.1 1.5 362 246 234 2700 12.0 130 347 1.0 1.0 .4 364 250 236 2680 12.0 130 1373 3.9 12.2 4.6 366 226 240 3800 8.0 130 467 3.0 16.9 4.5 368 240 242 2640 10.0 130 345 1.4 2.3 .9 370 244 242 2660 10.0 130 75 .3 .1 .1 LO 372 244 246 2550 12.0 130 1939 5.5 22.0 8.6 374 246 248 1500 12.0 130 1016 2.9 3.9 2.6 376 248 250 1200 10.0 130 1016 4.2 7.6 6.3 378 252 242 2540 12.0 130 518 1.5 1.9 .8 380 254 244 2640 36.0 120 15077 4.8 5.6 2.1 382 256 246 2540 12.0 130 139 .4 .2 .1 LO 384 258 250 2640 12.0 130 569 1.6 2.4 .9 386 278 252 1750 12,0 130 919 2.6 3.8 2.2 388 254 256 2600 12.0 130 2161 6.1 27.5 10.6 HI 390 256 258 2640 12.0 130 1197 3.4 9.3 3.5 392 260 254 2600 36.0 120 17658 5.6 7.4 2.8 394 262 260 150 36.0 130 5765 1.8 .0 .3 PECK RES. 395` 266 260 100 36.0 130 12381 3.9 .1 1.3 396 264 266 250 12.0 130 3381 9.6 6.1 24.2 HI WELL 7 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 4:44 AM PIPB --N0DB3-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpm Fps CB ft ft/1000 CE ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 400 270 168 970 12.0 130 2944 8.4 18.2 18.7 HI WELL 5 402 274 272 200 12.0 130 2972 8.4 3.8 19.1 HI WELL 6 404 272 198 1390 12.0 130 2053 5.8 13.3 9.6 406 276 278 170 8.0 130 808 5.2 2.1 12.3 HI WELL 1 408 254 278 900 12.0 130 111 .3 .0 .0 LO 414 284 168 1990 16.0 130 3154 5.0 10.4 5.2 WELL 9 416 288 222 1600 12.0 130 868 2.5 3.1 2.0 418 286 288 1050 16.0 130 3094 4.9 5.3 5.1 WELL 10 420 290 292 1400 6.0 120 431 4.9 25.3 18.1 HI DYKE WELL 422 292 131 750 8.0 130 42 .3 .0 .1 LO 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1124 3.2 9.0 3.1 452 300 168 5300 22.0 120 3376 2.8 7.7 1.5 OC9 500 301 112 100 36.8 120 16903 5.1 .2 2.4 Overmyer Res. 501 238 302 2000 12.0 130 611 1.7 2.0 1.0 502 95 84 1000 16.0 130 2913 4.6 4.5 4.5 503 96 95 452 24.0 120 3145 2.2 .4 .8 504 304 266 10 36.0 130 9000 2.8 .0 .7 OC35 516 114 115 3490 12.0 130 668 1.9 4.2 1.2 517 115 64 6850 12.0 130 668 1.9 8.2 1.2 r CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 4:44 AN GROUND RLV FLOW HGL RL READ ------- PRESSURE ------ NODE Feet Gpn Feet Feet Psi CE % DROP--CK 2 5 -462.43 116.1 111.1 48 51 4 5 -218.21 116.6 111.6 48 51 6 5 -384.91 116.0 111.0 48 51 Banning 8 5 -547.24 114.4 109.4 47 52 10 4 -911.49 112.4 108.4 47 52 12 4 -287.71 113.6 109.6 47 52 14 6 -594.14 118.6 112.6 48 50 16 7 -419.66 117.6 110.6 47 51 18 4 -428.90 116.7 112.7 48 51 20 2 -192.94 116.4 114.4 49 50 22 4 -178.36 113.7 109.7 47 52 24 6 -410.91 124.7 118.7 51 47 26 8 -428.90 123.0 115.0 49 49 28 4 -311.28 121.5 117.5 50 48 30 4 -736.53 119.4 115.4 50 49 32 6 -866.54 117.8 111.8 48 50 34 30 -451.49 120.9 90.9 39 LO 55 36 8 -647.60 136.8 128.8 55 42 38 9 -560.36 133.0 124.0 53 44 40 6 -636.42 131.1 125.1 54 45 42 6 -708.83 136.6 124.6 54 45 44 18 -419.66 130.9 112.9 48 47 46 36 -563.03 127.8 91.8 39 LO 53 48 36 -1225.69 128.0 92.0 39 LO 53 50 12 848.80 160.8 148.8 64 32 52 10 -649.05 148.7 138.7 60 38 54 7 -450.52 147.0 140.0 60 38 56 10 -487.94 147.0 137.0 59 38 58 25 -512.24 149.4 124.4 53 40 60 35 -361.34 150.8 115.8 50 41 62 40 -699.60 143.3 103.3 44 46 64 75 -1910.47 156.7 81.7 35 LO 48 66 10 -557.20 160.8 150.8 65 32 68 8 506.17 161.2 153.2 66 32 70 10 -483.81 162.5 152.5 66 31 72 55 -224.05 164.6 109.6 47 38 74 50 -461.94 166.1 116.1 50 36 76 50 .00 197.0 117.0 50 36 78 50 .00 165.0 115.0 49 37 80 50 .00 163.0 113.0 48 38 82 75 -301.81 164.3 89.3 38 LO 43 84 75 -223.56 164.2 89.2 38 LO 43 86 57 -168.40 16712 110.2 47 37 88 50 -346.03 168.5 118.5 51 35 90 60 .00 169.3 109.3 47 37 92 70 -272.89 167.7 97.7 42 40 94 115 -42.28 169.1 54.1 23 LO 54 95 103 -232.31 168.8 65.8 28 LO 49 Reservoir Hill 96 95 -534.60 169.1 74.1 32 LO 46 98 16 -846.37 158.5 142.5 61 34 100 15 -208.01 160.1 145.1 62 33 Flounder 102 12 -239.36 161.2 149.2 64 32 104, 14 -347.49 164.0 150.0 65 31 106 58 -722.44 167.4 109.4 47 37 108 55 -131.46 171.8 116.8 50 34 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 4:44 AN GROUND RLV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Pei CB % DROP--CE ---- ------ ------ ------ ------ ------ -- ------ -- 110 60 .00 179.E 119.6 51 31 112 60 -26.97 180.1 120.1 52 30 114 93 -1027.40 169.1 76.1 33 LO 46 115 35 .00 165.0 130.0 56 34 116 60 -71.93 179.5 119.5 51 31 118 13 -280.67 167.4 154.4 66 30 120 55 -256.37 176.1 121.1 52 32 122 35 -407.03 179.5 144.5 62 27 1Z4 Z5 -109.94 178.4 153.4 66 26 126 40 -147.50 171.6 131.6 57 32 128 5 -335.10 169.2 164.2 71 28 129 45 .00 176.2 131.2 56 30 130 45 285.52 176.6 131.6 57 30 131 45 .00 184.8 139.8 60 26 13Z 55 -561.57 178.7 1Z3.7 53 30 134 50 -230.61 179.9 129.9 56 29 136 50 -158.19 178.0 128.0 55 30 138 40 .00 173.1 133.1 57 31 140 2 -324.65 169.2 167.2 72 27 142 2 -192.94 169.2 167.2 72 27 144 2 -215.54 169.4 167.4 72 17 146 2 -249.32 169.4 167.4 72 27 148 40 -310.80 172.9 132.9 57 31 150 40 .00 172.9 132.9 57 31 152 28 -505.44 200.3 172.3 74 16 154 25 -686.23 183.5 158.5 68 24 156 25 215.30 182.4 157.4 68 24 158 30 -225.02 178.3 148.3 64 27 160 5 -522.69 172.8 167.8 72 26 162 3 -501.80 170.1 167.1 72 27 164 2 -499.12 169.5 167.5 72 27 166 2 -354.29 153.4 151.4 65 34 168 27 918.54 215.9 188.9 81 HI 8 170 26 -383.45 199.6 173.6 75 16 172 25 -662.90 187.8 162.8 70 22 174 25 -293.54 184.4 159.4 69 23 176 12 -290.39 178.8 166.8 72 24 178 5 -529.50 172.0 167.0 72 27 180 5 -326.35 169.8 164.8 71 28 182 5 -245.19 160.3 155.3 67 32 184 5 -294.76 143.2 138.2 59 39 186 34 -5317.50U 103.OF 69.0 29 LO 65 190 35 -356.24 102.1 67.1 29 LO 66 192 55 -84.32 101.4 46.4 20 LO 74 194 5 -596.81 98.6 93.6 40 59 196 25 -420.15 204.8 179.8 77 13 198 17 -611.39 188.4 171.4 74 21 200 14 -686.96 179.1 M.1 71 24 Heil 202 10 -334.37 174.7 164.7 71 26 204 10 -252.72 172.0 162.0 70 27 206 9 -411.16 171.4 162.4 70 27 208 14 -414.80 143.1 129.1 55 41 210 r 15 -884.28 121.8 106.8 46 51 212 9 -326.59 104.8 95.8 41 57 214 9 -365.71 103.1 94.1 40 58 CITY OF HUNTINGTON BEACH FBI, SEP 4, 1987, 4:44 AM GROUND BLV FLOW HGL EL HEAD ------- PRRSSURE ------ NODE Feet GPM Feet Feet Pei CE % DROP--CB ---- ------ ------ ------ ------ ------ -- ------ -- 216 9 -646.87 102.2 93.2 40 58 218 5 -471.42 98.1 93.1 40 59 220 5 -380.30 99.7 94.7 41 58 222 26 -776.63 214.6 188.6 81 HI 9 224 21 -503.98 198.8 177.8 77 16 226 23 -194.89 197.3 174.3 75 17 228 20 -432.54 180.8 160.8 69 24 230 12 -320.03 176.3 164.3 71 26 232 10 -660.96 174.1 164.1 71 26 234 12 -160.87 155.2 143.2 62 35 236 15 -571.05 132.4 117.4 50 46 Scenario .238 5 -562.79 106.3 101.3 43 55 240 21 -372.03 180.3 159.3 69 25 242 15 -456.60 178.0 163.0 70 25 244 16 -489.89 178.2 162.2 70 25 246 14 -714.91 156.1 142.1 61 35 248 14 .00 152.2 138.2 59 37 250 13 -212.14 144.6 131.6 57 40 252 22 -400.46 180.0 158.0 68 25 254 18 -308.12 183.8 165.8 71 23 256 17 -824.99 156.3 139.3 60 35 258 17 -628.64 147.0 130.0 56 40 260 23 -487.70 191.2 168.2 72 20 2629P 34 5764.76U 191.2 157.2 68 21 PECK RES. 264SP 18 3380.76U 197.4 179.4 77 16 WELL 7 266 23 .00 191.3 168.3 72 20 270SP 27 2944.41U 234.0 207.0 89 HI 0 WELL 5 272 25 .00 201.6 176.6 76 15 274SP 19 2971.65U 205.5 186.5 80 HI 13 WELL 6 276SP 17 807.70U 185.8 168.8 73 22 WELL 1 278 19 .00 183.8 164.8 71 23 284SP 27 3153.62U 226.3 199.3 86 HI 3 WELL 9 286SP 19 3093.76U 223.1 204.1 88 RI 5 WELL 10 288 22 .00 217.8 195.8 84 HI 7 2903P 44 431.00U 210.2 166.2 72 12 DYKE WELL 292 48 .00 184.9 136.9 59 26 294 12 6700.00 163.3 151.3 65 31 OC44,Adams 300 25 4500.00 223.6 198.6 86 HI 4 OC9 3013P 65 16902.95U 180.4 115.4 50 31 Overmyer Res. 302 5 .00 104.2 99.2 43 56 a 304 25 9000.00 191.3 166.3 72 20 OC35 Maximum Unbalanced Head = .00001 1 n r CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 4:44 AM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH HGL LIFT PUMP NODE Gpm Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 3013P 16903 50.0 180.4 130.4 20 Overmyer Res. 262SP 5765 20.0 191.2 171.2 30 PECK RES. 290SP 431 -34.0 210.2 244.2 11 DYKE WELL 2768P 868 -98.0 185.8 283.8 1 WELL 1 270SP 2944 -62.0 234.0 296.0 5 WELL 5 274SP 2972 -59.0 205.5 264.5 6 WELL 6 2643P 3381 -89.0 197.4 286.4 7 WELL 7 284SP 3154 -64.0 226.3 290.3 9 WELL 9 286SP 3094 -55.0 223.1 278.1 10 WELL 10 18fi -5318 103.0 SOURCE PUMPS Node Pump# 301 20 Head 132 131 130 114 106 . 100 93 82 Flow 0. 10000, 20650. 21875. 22525. 22875, 23350. 23775. 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000. 15800. 16100. 16250. 16500. 16750, 290 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200. 400. 600. 800, 0. 0. 0. 276 1 Head 410 399 348 311 287 205 98 0 Flow 0. 200. 400. 600. 800, 1000, 1200. 0. 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012, 3765, 4518. 4894. 0. 274 6 Head 488 318 296 287 257 206 148 0 Flow 0. 1761. 2201. 2641. 3081. 3521, 3962. 0. 264 7 Read 397 299 291 268 238 208 174 0 Flow 0. 2817. 3286. 3756, 4225. 4695, 5164, 0. 284 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745, 4214. 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859. 2324. 2789. 3253. 3718. 0. 0. ERROR encountered iteration 1 -.103817E-07 0 Iteration= 2, Flow Correction: 19744,660 Iteration= 3, Flow Correction: 5955.385 Iteration= 4, Flow Correction: 2984.509 Iteration= 5, Flow Correction- 1656.617 Iteration: 6, Flow Correction: 905.674 Iteration= 7, Flow Correction: 656.788 Iteration= 9, Flow Correction: 162.462 Iteration= 10, Flow Correction: 215,531 Iteration= 11, Flow Correction: 56.395 Iteration= 12, Flow Correction: 43.648 Iteration= 13, Flow Correction: 169.159 Iteration= 14, Flow Correction: 1.278 Iteration= 15, Flow Correction: .015 Iteration= 16, Flow Correction: .000 r ULTIMATE LAND USE ; RESIDENTIAL ----------- ; ; OPEN; SCHOOL ; SPECIAL 1 TOTAL TOTAL; LOW MEDIUM HIGH; comm.: MANU.: SPACE; ------ ; USERS ; ACRES DEMAND; : DENSITY DENSITY DENSITY; ; ; ; ------ ; NODE ; ACRES ACRES ACRES; ACRES; ACRES; ACRES; ACRES STUDENTS; NAME ACRES; G.P.M.; 1 37.4 ; ; ; 28.9; 1 CSDOC B7.41 153.7 190.31 4 ; 34.0 ; ; ; ; 1 CSDDC 37.11 71.1 89.81 6 ; 115.7 ; ; ; 6.8: 8.5 614: ; 131.0 158.6: 8 ; 79.1 ; ; 1.7: 1 EDISON 30.6: 111.4 225.31 10 ; 4.3 ; ; ; 71.51 1 EDISON 69.41 145.2 315.51 12 1 8.5 46.8 ; 4.3: ; ; ; 59.6 118.8: 14 ; 50.2 39.1: 22.1; ; 1 ; 1 111.4 244.71 1 16 ; 135.3 3.4 ; 2.6: ; ; ; 141.3 173.2: 18 ; 76.6 ; ; ; 67.21 B.5 5511 1 152.3 176.91 .20 ; 45.1 ; 69.81 ; ; ; 1 114:9 144.9: 22 ; 55.3; ; ; ; ; ; 55.3 149.3: 24 ; 130,2 ; 10,2; ; 1 140.4 169.51 26 ; 163.3 ; ; ; 6.01 22.1 CLOSED; ; 191.4 224.71 28 1 33.2 ; 17.9: ; 28.91 60.4 2534: ; 140.4 145.6: 30 116.6 17.0 46.8: ; ; 1 ; ; 180.4 303.71 32 ; 25.5 150.6 13.6: 10.21 : ; ; ; 199.9 411.9; 1 34 ; 106.31 ; ; ; ; ; 106.3 287.01 ; 36 ; 209.3 ; ; ; 3.41 11.1 CLOSED; 1 223.8 266.01 1 38 ; 159.2 il 1.71 ; 5.1: 23.0 1659; ; 188.0 230.81 40 1 206.7 ; ; ; 1.71 6.9 6171 ; 215.2 262.31 42 1 223.7 ; 1.7; ; 3.4: 16.2 CLOSED; 1 245.0 290.61 44 ; 23.8 11.9 45.1: 11.1; ; ; ; ; 91.9 190.9: 1 46 ; 90.21 ; ; 1 ; ; 90.2 243.51 48 ; 11.1 22.1 164.2: 1 : ; ; 197.4 505.31 1 50 ; 138.7 6.0 34.9; 56.11 ; ; 14.5 226: 1 250.2 351.3; 52 ; 110.6 15.3 37.4: ; ; ; ; 163.3 267.4: 54 1 113.1 ; 26.4: : 1.7; 15.3 CLOSED; ; 156.5 187.2: 56 ; 167.6 ; : 1 1 1 1 167.6 201.1: 58 ; 20.4 84.21 35.7: 1 ; ; ; 140.3 298.21 1 60 1 6.8 17.0 38.3: ; ; ; : 1 62.1 149.0: 62 ; 102.1 5.1 52.7: ; 1 11.1: 1 ; 171.0 288.2: 1 64 ; 132.7 6.8 164.2: 13.6: 9.51 55.31 25.5 1328: SHELL 51.6: 45B.2 852.1: : 66 1 173.5 1 1 1 2.61 17.0 CLOSED: ; 193.1 22B.1: 1 68 ; 164.2 1 ; ; 1 12.9 5811 ; 177.0 208.7: 70 ; 154.8 : ; ; 4.3: 10.2 4481 ; 169.3 199.5: 1 72 ; 17.0 1 '55.31 1 1 1 1 72.3 92.31 ; 74 : 8.1 76.6 17.01 1 1 : 1 1 101.7 224.1; 76 1 78 i 80 i 82 1 17.0 ; 18.7: 1 14.51 46.9 2525: ; 97.0 111.2: 84 1 44.2 11.9: : 38.3: 1 1 94.4 127.3: 86 ; 23.9 3.41 26.41 : 3.41 1 1 57.0 75.81 88 : 48.5 6.0: 1 : ; ; : 54.5 122.9: 90 i i i 92 i i 94 1 i i t 95 305.8 72.7 77.7: 188.41 52.1: 55.41 ; 1 752.1 1235.2: 96 1 i : 98 1 114.8 74.0 1 26.41 ; ; 14.5 CLOSED: ; 229.1 349.41 1 100 :` 71.5 1 3.4: : 1 ; ; 74.9 90.2: ULTIMATE LAND USE RESIDENTIAL 1 1 ! ----------- ; ; ; OPEN! SCHOOL ; SPECIAL ; TOTAL TOTAL; LOW MEDIUM HIGH; COMM.; MANU.1 SPACE; ------ ; USERS 1 ACRES DEMAND; 1 DENSITY DENSITY DENSITY; ; : ------ 1 1 NODE ; ACRES ACRES ACRES; ACRES; ACRES; ACRES; ACRES STUDENTS; NAME ACRES; G.P.M.; 102 43,4 2.6: 30,6: ; ; ; ; 76.6 98,9; 164 ; 11C.6 ; ; ; 10.2 524: ; 120.8 143.2: 106 ; 21.3 68,1: 51.9; 1 ; 141.3 298.21 108 ; 45.1 1 11.1; ; ; ; 56.2 113.7: ' 110 1 115 ; 17.0 80.8 107.21 ; 4.3: 69.8! SHELL 44.21 323.3 664.2: 116 ; 8.5 40.0; ; ; ; ; ; 48.5 126.7; 1 118 1 43.4 28.9 : ; ! 1 ; 72.3 115.71 120 ; 12.8 10.2 5.1: 43.41 ; ; 71.5 108.0: 122 ! 55.3 18.7 12.8; ; ; ; ; 86.8 142.1: 124 ! 1 93.6: 1 ; 1 93.6 121.71 1 126 ; ; 1 128 ; 38.3 ; 1 1 42.5; ! 1 80.8 92.7: 130 ; 52.7 1 ; 1 49,3: ; 1 102.0 117,5! ' 132 1 53.6 32.3 2.61 56.1: ; 5.1; 13.6 5271 ; 163.3 231.51 134 ; ; 73.2: : 1 1 : 73.2 95,2: 1 136 1 1 79.1: 1 1 1 79.1 102.81 139 : 49.3 ! 8.5: ; 127,6: ; ; 185.4 210.6: 140 ; 111.4 : 1 ; 1 1 111.4 133.71 142 ; 66.4 1 : : ; ; 1 66.4 79.7; 144 1 74.0 1 : ; ; 1 74.0 88.81 146 1 83.4 ; : 1 2.6! 10.2 UNBUILT; 1 96.2 102.91 ' 148 ' i ' 150 : ; : 1 152 1 63.0 55.3 1 1.71 ; 16.2 451: ; 136.2 208.51 : 154 1 29.8 63.0: 36.6: ; ; : 1 129.4 283.2! 1 156 : 3.41 61.31 1 1 ; 64.7 88.9: 1 158 1 11.1 1 77.41 1 1 ! ; 88.5 113.91 160 1 139.5 ; 1.71 1 41.7: ! : 182.9 215.51 1 162 : 145.5 ! ! 1 8.51 43.4 1397; : 197.4 211.9: 164 1 157.4 ; ; ; ; 15.3 CLOSED: ; 172.7 204.2; 166 1 110.6 1 1 ; ; 1513 6681 1 125.9 146.1: 1 168 1 245.9 18.71 16.2: 1 ; 11.1 CLOSED! ! 291.9 377.71 1 170 1 28.1 1.7: 51.9; : ! 22.1 CLOSED: 1 103.8 156.01 172 ; 65.5 42.5: 1 ; 3.4; 14.5 522: : 125.9 273.0: 174 1 23.8 1 40.0: ; ; 57.0 2731: ; 120.8 135,2; 1 176 ! 11.91, 56.11 1 21.3; 1 1 89.3 128.5: : 179 1 17.9 66.4: 1 1 1 : ; 84.3 218.7: : 180 : 2811 29.8 ; 27.2: ! ; 1 ; 85.1 134.6: 1 192 1 84.2 1 1 1 1 : M.G.C. 9.91 94.1 101.0: 1 1B4 1 84.2 17.0: 1 1 : 1 M.G.C. 10.7; 111.9 146.91 ;, 186 : 88.5 13.6 69.11 24.7: 1 1 : 1 194.9 352.1: ! 190 1 86.8 5.1 5.11 13.6! ; ; 1 ; 110.6 146.81 192 1 32.3 ; ; 1 1 ; 1 32.3 38.9; 194 ; 86.8 11.1 38.31 11.1: 1 1 1 ; 147.3 246.4: 1 196 ; 45.9 17.9 ! 52.7: 1 2.6! 12.8 3701 ; 131.9 173.21 19B ; 101.2 1 100.41 1 1 : ; 201.6 252.01 1 200 1 160.8 29.91 ! 1 ! 1111 4971 1 201.7 283.41 1 202 F 105.5 1 : 1 ; 17.0 5631 1 122.5 137.9: 204 ; 78,3 ; ; ! 9.4: : : 97.7 104.3: ULTIMATE LAND USE RESIDENTIAL ----------- ; ; ; OPEN; SCHOOL ; SPECIAL ; TOTAL TOTAL; LOW MEDIUM HIGH; COMM.: MANU.; SPACE: ------ ; USERS ; ACRES DEMAND; DENSITY DENSITY DENSITY; : ; : ; ------- : NODE ; ACRES ACRES ACRES; ACRES; ACRES; ACRES; ACRES STUDENTS; NAME ACRES: G.P.M.: 206 ; 129.3 1.7; ; 11.1; ; 142.1 169.6; 208 ; 119.7 5.1 1.7: M.G.C. 57.9; 194.0 171.0 ZVI ; 36.6 192.3 ; 17.9: ; ; ; 246.8 496.3: 61 ,; 2i2 ' 6 , i4. , . . 214 ' 33.2 34.0; ; 4.3; 18.7 ?18; 90.2 : 2i6 92.7 10.4 ; 16-7 2b6.6; 2i8 .9.6 6.8 40.0; , 7 48.511 =' 222 ' 94.4; 40.S; ; ; H.C.A. 29.9; 10.1 346.8; 224 72,3 ; i11.4; ; ; H.U.A. : 226 6.8 : 125.9 3600: 132.7 ".n uo 106._ 28.9; 3.4; . .3 46l; 153.9 176.1 ,, , �. w2 i4,9 26.4; ;r,,4; __,1+ 57.B 596; 196.6 71.5, 11.9 CLOSED; ; 11.9 234 ; 48.5 12.8 408: ; 61.3 66.4; 2:6 168.4 6.! : 15.3 309, 198.2 a5.5 , 238 : 148.0 11.9; ; ; 178.6 131.8; 240 ; 96.1 ; il.9: ; 11.9: 8.5 CLOSED; ; 123.4 152.41 2»2 ; 134.4 ; 5.5: ; ; 14.5 CLOSED; 157.4 1016.8: 244 '@',4 '; 77 , 178.7 " _. 78.E a.4, 13.b 8, � 13.c, 246 : 157.4; ; : ; WEI5ER 2'.2: i84.6 294.5; ,48 , 250 ; 61.3 ; ; ; ; 12.8 CLOSED; 74.1 S6.4; 252 ; 111.4 ; 6.8; i 2.6: 33.2 980; ; 154.0 1015.0; 254 : 68.9 ; 95,3: ; ; : 154.2 106.6; M[D-D 118.1: : 256 ; 58.7: WEI5ER 2b.4; 203.2 316.0; 258 ; ; i20.8; ; ; ; MCD-D 91.6.; 212.4 321.9; 260 ; 148.0 ; 13.6: : ; 11.3 CLOSED; 182.9 116.6: TOTALS 16783.9 25061.9 ACRES 8287.7 1506.4 1943.6 2417.5 64.9 854.7 956.5 29110 752.E 16783.9 N/A 6PM 9945.2 3314.1 5247.7 3142.8 240.0 940.1 213.7 582 1436.0 N/A 25061.9 NOTES; 1. "M.G.C" IS MEADOWLARK GOLF COURSE; ALL IRRIGATION PUMPED FROM WELL ON SITE; NO DEMANDS ON SYSTEM. 2. "H.C.A." IS HUNTINGTON CENTER AREA AS BOUNDED BY EDINGER, S.P. RAILROAD, AND 405 FREEWAY. 3. CLOSED SCHOOLS ARE ASSUMED TO USE WATER AT THE RATE OF 1.0 GPM/ACRE FOR IRRIGATION AND MINIMAL USE. --------------------------------------------------------------------------------------------------------1 TONING DESCRIPTION GPM/ACRE ------------------------------------------------------------------------------------------------------- R1,RA LOW DENSITY RESIDENTIAL R2,MH MEDIUM DENSITY RESIDENTIAL 2.2 R3,R4 HIGH DENSITY RESIDENTIAL 2.7 1 C1,C2,C4,R5,MI,CFC COMMERCIAL 1.3 I M2 MANUFACTURING 3.7 ROS,CFR OPEN SPACE, PARKS,CLOSED SCHOOLS 1.1 CFE SCHOOL 02 GPM/STUDENT -------------------------------------------------------------------------------------------------------------------------, 1 SPECIAL WATER CONSUMERS ACRES GPM-1986 LAND USE(GPM/AC); ------------------------------------------------------------------------------------------------------------------------ COUNTY SANITATION DISTRICTS PLANT Y2 125.1 162.6 1.30 SHELL OIL PRODUCTION 95.8 182.0 1.90 WEISER LOCK COMPANY 53.6 177.0 3.30 McDONNELt-DOUGLAS AIRCRAFT 209.7 377.5 1.80 SOUTHERN CALIFORNIA EDISON 100.0 420.2 4.20 1 HUNTINGTON CENTER AREA (USE COMMERCIAL VALUE OF 1.3) 89.8 35.9 .40 MEADOWLARK GOLF COURSE 78.5 SUM 752.6 1355.2 -------------------------------------------------------------------=-----------------------------------------------------f NEW WORKFILE TITLE CITY OF HUNTINGTON BEACH ULTIMATE SYSTEM -- PEAK HOUR WITH MAGNOLIA RESERVOIR **************FILENAME=PHUTMAG2 UNITS 0 0 0 0 0 0 0 FACTORS 4 . 0 1 .0 LIMITS 50 . 1 . 1 10 . 1 10 40 80 UNKNOWNS 262 20 .30 *Peck `Res.. 301 50 20 *Overmyer Res . 290 -34 11 276 -98 1 270 -62 5 274 -59 6 264 -89 7 284 -64 9 286 -55 10 18 180 *Magnolia Reservoir PIPES 2 2 4 2480 16 130 4 6 2 2000 12 130 6 6 4 1600 12 130 8 8 6 2600 12 130 10 8 10 2900 12 130 12 12 10 970 10 130 14 14 4 2900 16 130 16 16 6 2620 12 130 18 18 8 2640 20 130*# 20 20 12 2350 12 130 22 22 12 2280 127 130 24 16 14 2600 20 130*# 26 16 18 2610 20 130*# 28 20 18 2510 30 130*# 30 24 14 2620 16 130 32 26 16 2700 12 130 34 28 18 2700 12 130*# 36 30 20 2570 30 130*# 38 22 32 3430 8 130 40 26 24 2680 12 130 42 26 28 2640 12 130 44 30 28 2670 12 130 46 30 32 2550 30 130*# 48 32 34 2800 30 130*# 50 36 24 2640 16 130 52 38 26 2600 12 130 54 40 28 2580 12 130*# 56 42 30 2640 12 130 58 46 34 2320 12 130 60 36 38 2640 12 130 62 38 40 2640 12 130 64 40 42 2700 12 130*1$ 66 44 42 2550 12 130 68 46 48 700 12 130 70 50 36 2550 16 130 72 52 38 2640 12 130 74 54 40 2650 12 130 76 56 42 2620 12 130*# 78 58 44 2640 8 130 80 62 46 2950 12 120 82 64 48 5300 12 130 84 50 52 2700 12 130 86 52 54 2600 12 130 88 54 56 2640 12 130 90 56 58 2660 12 130 92 58 60 1330 12 130 94 60 62 1130 8 130*8 & 12 96 66 52 2640 12 130 97 68 54 2640 12 130 98 70 56 2640 12 130 99 58 72 2640 8 130 100 58 72 2640 8 130 101 74 60 2640 12 130 102 80 62 3200 12 120 104 64 84 2850 12 70 106 64 84 2800 16 130 108 50 66 5250 30 120 110 68 66 2640 30 120 112 68 70 2680 30 120 114 68 70 2680 12 130 116 70 72 2600 12 130 118 70 72 2600 30 120 120 74 72 1450 30 120 122 74 76 600 30 120 124 76 78 150 8 130 126 80 78 1050 12 130 128 82 80 1150 12 130 130 82 84 1250 12 130 132 50 98 5300 12 130 134 66 100 2580 12 130 136 102 68 2640 12 130 138 104 70 2630 12 130 140 86 72 1320 12 130 142 106 86 1320 12 130 144 86 88 1450 14 120 146 108 88 1280 12 130 148 88 90 650 14 120 149 88 74 1350 12 130 151 76 90 1300 30 120 152 90 96 3150 42 120 158 98 100 2680 12 130 160 100 102 2680 12 130 r 162 102 104 2750 12 130 164 104 106 2580 12 130 166 106 108 1500 12 13.0 168 108 110 700 12 130 170 112 90 950 21 120 171 112 90 950 16 130 172 110 112 350 21 120 174 116 110 750 21 120 176 96 114 3400 42 120 178 118 104 2640 12 130 179 106 120 2640 8 130 180 120 106 2640 6 130 182 120 116 2550 12 130 184 122 116 1900 21 120 188 128 114 4000 42 120 190 118 120 2550 8 130 192 120 122 2150 8 130 194 122 124 600 8 130 196 131 118 2640 8 130 197 132 130 800 8 130 198 130 129 850 6 130 199 129 120 1250 8 130 200 132 120 2750 8 130 201 134 122 2640 21 120 202 136 124 3250 12 130 206 140 128 700 12 130 208 128 142 1800 12 130 210 142 144 1150 12 130 212 292 132. 1950 8 130 214 132 134 .2000 12 130 216 134 136 1200 12 130 . 218 136 138 2050 12 130 220 146 164 2200 12 130 222 140 142 1800 12 130 224 128 146 4200 42 120 226 146 144 650 24 120 228 131 152 2700 8 130 230 154 132 3150 8 130 521 154 132 3150 8 130*0 232 156 134 2640 21 120 234 158 136 2640 12 130 236 160 150 1400 12 130 238 150 148 700 14 130 240 148 138 500 12 130 242 162 140 2640 12 130 244 164 146 2120 42 120 246 152 154 2640 . 8 130 248 156 154 2640 8 130 250 156 158 1300 12 130 252 158 160 2000 12 130 254 160 162 2660 12 130 r 256 162 164 2660 12 130 257 180 164 2700 12 130 258 164 166 2640 12 130 260 168 152 2550 12 130 261 168 170 2330 21 120 262 170 154 3050 8 130 . 522 170 154 3050 8 130*# 263 172 170 2000 21 120 264 172 156 2650 21 120 265 172 174 1350 16 130 266 174 158 2650 8 130 267 174 176 1950 16 130 269 176 178 2640 . 16 130 270 178 162 2700 12 130 271 178 180 2700 16 120 272 180 164 2700 42 120 273 180 182 1150 20 120*# 274 166 184 2680 12 130 275 182 184 1550 20 125*# 277 186 184 2650 20 125*# 279 190 186 2750 16 125 280 190 192 1340 16 125 282 194 192 3200 14 130 284 194 218 5300 14 130. 286 196 170 2660 8 130 523 196 170 2660 8 130*# 288 198 174 2640 12 130 290 200 176 2500 12 130 292 202 204 2700 8 130 294 204 178 800 12 130 296 206 180 2700 36 120 298 206 182 3800 12 130 300 208 184 2640 12 130 301 186 210 2640 8 130 302 212 190 2640 12 130 304 196 198 3300 8 130. 306 198 200 2700 12 130 308 200 202 2640 12 130 310 202 206 2640 12 130 312 206 208 2640 12 130 314 208 210 2640 12 130 316 212 210 2640 12 130 318 212 214 1300 12 130 320 196 222 2700 12 130 322 224 272 1320 12 130 324 228 200 2640 12 130 326 230 202 3000 12 130 328 232 206 2640 36 120 330 236 210 2700 12 130 332 216 214 1000 10 130 334 238 216 2100 8 130 336 302 220 4500 20 130*0 338 220 218 1250 14 130*# 340 288 224 1700 12 130 342 224 228 2000 12 130 344 228 230 2640 12 130 346 230 232 2640 12 130 348 232 234 2640 20 130*# 350 234 236 2640 20 130*# 352 236 238 5030 20 130*# 354 226 224 1300 12 130 356 240 228 2700 12 130 358 242 230 2700 12 130 360 244 232 2700 36 120 362 246 234 2700 12 130 364 250 236 2680 12 130 366 226 240 3800 8 130 368 240 242 2640 10 130 370 242 244 2660 10 130 372 244 246 2550 12 130 374 246 248 1500 12 130 376 248 250 1200 10 130 378 242 252 2540 12 130 380 254 244 2640 36 120 382 256 246 2540 12 130 384 258 250 2640 12 130 386 252 278 1750 12 130 388 254 256 2600 12 130 390 256 258 2640 12 130 392 254 260 2600 36 120 327 232 206 2640 12 130 408 278 254 900 12 130 406 278 276 170 8 130*WELL 1 400 270 168 970 12 130*WELL 5 414 284 168 1990 16 130*WELL 9 396 264 266 250 12 130*WELL 7 395 266 260 100 36 130 394 262 260 150 36 130*PECK RES. 418 286 288 1050 16 130*WELL 10 416 288 222 1600 12 130 402 272 274 200 12 130*WELL 6 404 272 198 1380 12 130 420 292 290 1400 6 120*DYKE WELL 422 292 131 750 8 130 424 294 50 2200 30 120*OC44 450 222 300 2850 12 130 452 168 300 5300 22 120*OC9 500 301 112 100 36 . 8 120*Overmyer Res . 501 238 302 2000 20 130*# 502 84 95 1000 16 130 503 95 96 452 24 120 504 304 266 10 36 130*OC35 510 95 84 1000 20 130*DOWNTOWN LOOP 511 84 307 2800 20 130*DOWNTOWN LOOP 512 305 306 7200 20 130*DOWNTOWN LOOP 513 306 46 2000 20 130*DOWNTOWN LOOP 514 46 62 2900 20 130*DOWNTOWN LOOP 515 62 80 2300 20 130*DOWNTOWN LOOP 516 114 115 3490 12 130 517 115 64 6850 12 130 530 306 315 450 30 130*# 531 315 34 225 30 130*# 532 307 64 20 12 130*# 533 307 305 1500 20 130*# 534 80 76 900 .20 130*# NODES 2 0 5 0 51600 8020 4 0 5 0 53160 10000 6 0 5 0 51600 10000*Banning 8 0 5 0 48920 10000 10 0 4 0 46570 10000 12 0 4 0 45820 10500 14 0 6 0 54240 12640 16 0 7 0 51600 12640 18 0 4 0 48960 12640 20 0 2 0 46320 12640 22 0 4 0 43720 12050 24 0 6 0 54240 15280 26 0 8 0 51600 15280 28 0 4 0 48960 15280 30 e 0 4 0 46320 15280 32 0 6 0 43720 15280 34 0 30 0 41300 15280 36 0 8 0 54240 17920 38 0 9 0 51600 17920 40 0 6 0 48960 17920 42 0 6 0 46320 17920 44 0 18 0 43720 17920 46 0 36 0 41300 17630 48 0 36 0 40600 17630 50 0 12 0 54240 20560 52 0 10 0 51600 20560 54 0 7 0 48960 205.60 56 0 10 0 46320 20560 58 0 25 0 43720 20560 60 .0 35 0 42400 20560 62 0 40 0 41300 20560 64. 0 45 0 36640 21100 66 0 10 0 51600 23200 68 0 8 0 48920 23200 70 0 10 0 46320 23200 72 0 55 0 43720 23200 74 0 50 0 42400 23300 I 76 0 50 0 41700 23300 78 0 50 0 41700 23000 80 0 50 0 40870 23000 82 0 75 0 39970 23200 84 0 75 0 38480 23200 86 j 0 57 0 43720 24490 88 0 50 0 42400 24490 90 0 60 0 41700 24490 96 0 95 0 38340 24840 98 0 16 0 54240 25840 100 0 15 0 51600 25840*Flounder 102 0 12 0 48960 25840 104 0 14 0 46320 25840 106 0 58 0 43720 25840 108 0 55 0 42400 25840 110 0 60 0 41700 25840 112 0 60 0 41700 25500 114 0 93 0 35840 25840 116 0 60 0 41700 26640 118 0 13 0 46320 28480 120 0 55 0 43720 28480 122 0 35 0 41700 28480 124 0 25 0 41120 28340 128 0 5 0 35840 29920 129 0 45 0 44000 29680 130 0 45 0 44000 30420 131 0 45 0 46320 31120 132 0 55 0 43720 31120 134 0 50 0 41700 31120 136 0 50 0 40420 31120 138 0 40 0 38480 31120 140 0 2 0 35840 31120 142 0 2 0 34190 30820 144 0 2 0 33200 31120 146 0 2 0 33200 31570 148 0 40 0 38480 31620 150 0 40 0 38480 32120 152 0 28 0 46320 33720 154 0 25 0 43720 33720 156 0 25 0 41700 33720 158 0 30 0 40420 33720 160 0 5 0 38480 33720 162 0 3 0 35840 33720 164 0 2 0 33200 33720 166 0 2 0 30560 33720 168 0 27, 0 46320 36320 170 0 26 0 43720 36320 172 s 0 25 0 41700 36320 174 0 25 0 40420 36320 176 0 12 0 38480 36320 178 0 5 0 35840 36320 180 0 5 0 33200 36320 182 0 5 0 31910 36320 184 0 5 0 30560 36320 186 0 34 0 27920 36320 190 0 35 0 25280 36320 192 0 55 0 25280 34970 194 0 5 0 22350 34970 196 0 25 0 43720 38960 198 0 17 0 40420 38960 200 0 14 0 38480 38960*Heil 202 0 10 0 35840 38960 204 0 10 0 35840 37320 206 0 9 0 33200 38960 208 0 14 0 30560 38960 210 0 15 0 27920 38960 212 0 9 0 25280 38960 214 0 9 0 24180 38960 216 0 9 0 24130 40050 218 0 5 0 18200 38270 220 0 5 0 17250 39500 222 0 26 0 43720 41600 224 0 21 0 40420 41600 226 0 23 0 40420 42800 228 0 20 0 38480 41600 230 0 12 0 35840 41600 232 0 10 0 33200 41600 234 0 12 0 30560 41600 236 0 15 0 27920 41600*Scenario 238 0 5 0 23080 41600 240 0 21 0 38480 44240 242 0 15 0 35840 44240 244 0 16 0 33200 44240 246 0 14 0 30560 44240 248 0 14 0 29160 44240 250 0 13 0 27920 44240 252 0 22 0 35840 46880 254 0 18 0 33200 46880 256 0 17 0 30560 46880 258 0 17 0 27920 46880 260 0 23 0 33200 49200 .276 0 17 0 34100 46200*WELL 1 264 0 18 0 32600 50000*WELL 7 266 0 23 0 33200 50000 262 0 34 0 32400 49200*PECK RES. 270 0 27 , 0 47300 36320*WELL 5 284 0 27 0 48300 36700*WELL 9 286 0 19 0 42120 40200*WELL 10 288 0 22 0 42120 41600 290 0 44 0 45570 29720*DYKE WELL 278 0 19 0 34100 46880 292 0 48 0 45570 31120 r 294 0 12 0 56440 20560*OC44,Adams 300 0 25 0 46320 41600*OC9 274 0 19 0 40000 40340*WELL 6 272 0 25 0 40420 40340 301 0 65 0 41200 25500*Overmyer Res . 302 0 5 0 21080 41600 95 0 103 0 38480 24200*Re8ervoir Hill 304 0 25 0 33200 50400*OC35 305 0 40 0 35640 19960 306 0 30 0 40900 15830 115 0 35 0 32600 24640 307 0 45 0 36440 21100 315 0 34 0 41050 15280 COORDINATE PIPES 112 48720 23000 46520 23000 114 48720 23400 46520 23400 116 46120 23000 43920 23000 118 46120 23400 43920 23400 102 40700 22560 40700 21760 41300 21760 104 38480 22600 176 38340 25740 186 38340 25800 152 41000 25100 154 41300 24800 39200 24800 208 34960 30220 222 34300 31120 224 35500 31000 34300 31000 34300 31570 202 40420 28420 284 21400 34920- 18800 37720 336 19800 41600 366 40700 43240 40700 44240 334 23530 40600 24130 40450 298 32840 38520 32840 37320 31910 36970 327 33700 41000 33700 39300 257 337.00 36000 33700 34000 108 53800 21000 53800 23200 276 27920 35120 10 48320 8950 14 54100 11550 53800 10700 20 46320 11050 126 41300 22900 128 40470 23200 220 33700 32000 33700 33000, 414 46520 36700 171 41900 25300 41900 24600 99 44000 20760 44000 23000 179 44000 26040 44000 28280 197 44000 30920 199 44000 28680 510 38280 24000 38280 23400 511 38280 23200 513 41100 16080 41100 17430 514 41100 17830 41100 20360 515 4110.0 20760 41100 22900 516 34200 25840 517 32600 23340 34640. 21190 512 40700 15480 523 43920 38760 43920 36520 522 43920 36120 43920 33920 521 43920 33520 43920 31320 520 43920 30920 43920 28680 519 43920 '28280 43920 26040 528 31960 29420 529 33200 30520 530 41050 15730 534 41500 23000 PUMP CURVES 11 0 330 200 306 400 ' 256 600 180 800 72 1 0 440 200 399 400 348 600 311 800 287 1000 205 1200 98 5 0 471 1882 359 2259 337 3012 292 3765 224 4518 143 4894 98 6 0 -488 1761 318 2201 296 2641 287 3081 257 3521 206 3962 148 7 0 397 2817 299 3286 291 3756 268 4225 238 4695 208 5164 174 9 0 544 1170 424 1873 366 3277 283 3745 237 4214 173 10 0 562 1859 369 2324 341 2789 305 3253 264 3718 222 20 0 132 10000 131 20650 130 21875 114 22525 106 22875 100 23350 93 23775 82 30 0 172 7500 171 15000 169 15800 157 16100 151 16250 146 16500 141 16750 131 FIXED DEMAND 294 6700 *OC44 300 4500 *OC9 304 9000 *OC35 DEMANDS 2 -190 . 3 4 -89 . 8 6 -158 . 6 8 -225 . 3 10 -375 . 5 12 -118 . 8 14 -244 . 7 16 -173 . 2 18 -176 . 9 20 -144. 9 22 -149 . 3 24 -169 . 5 26 -224 . 7 28 -145 . 6 30 -303 . 7 32 -411 .9 34 -287 . 0 36 -266 . 0 38 -230 . 8 40 -262 . 3 42 -290 . 6 f 44 -190 . 9 46 -243 . 5 48 -505 . 3 50 -351 . 3 52 -267 . 4 54 -187 . 2 56 -201 . 1 58 -298 . 2 60 -149 . 0 62 -288 . 2 64 -852 . 1 66 -228 . 1 68 -208 . 7 70 -199 . 5 72 -92 . 3 74 -224. 1 76 . 0 78 . 0 80 . 0 82 -111 . 2 84 -127 . 3 86 -75 . 8 88 -122 . 9 90 . 0 92 . 0 94 . 0 95 -1235 .2 96 . 0 98 -349 . 4 100 -90 . 2 102 -98 . 9 104 -143 . 2 106 -298 . 2 108 -113 . 7 110 . 0 112 . 0 115 -664. 2 116 -126 . 7 118 -115. 7 120 -.108 . 0 122 -142 . 1 124 -121 .7 126 . 0 128 -92 . 7 130 -117 . 5 132 -231 . 5 134 -95 . 2 136 -102 . 8 138 -210 .6 140 -133 . 7 142 -79 . 7 144 -88 . 8 146• -102 .9 148 . 0 150 . 0 152 -208 . 5 154 -283 . 2 156 -88 . 9 158 -113 . 9 160 -215 . 5 162 -211 . 9 164 -204. 2 166 -146 . 1 168 -377 . 7 170 -156 . 0 172 -273 . 0 174 -135 . 2 176 -128 . 5 178 -218 . 7 180 -134 . 6 182 -101 . 0 184 -146 . 9 186 -352 . 1 190 -146 . 8 192 -38 . 8 194 -246 . 4 196 -173 . 2 198 -252 . 0 200 -283 . 4 202 -137 . 9 204 -104. 3 206 -169 . 6 208 -171 . 0 210 -490 . 3 212 -134 . 9 214 -150 . 7 216 -266 . 6 218 -194. 5 220 -157 . 1 222 -346. 8 224 -261 . 4 226 -80 . 2 228 -178 . 1 230 -132 . 0 232 -271 . 5 234 -66 . 4 236 -235 . 5 238 -231 . 8 240 -152 . 4 242 -186 . 8 244 -213 . 2 246 -294 . 5 f 248 . 0 250 -86 . 4 252 -165 . 0 254 -206 . 6 256 -376 . 0 258 -321 . 9 260 -216 . 6 RUN END CITY OF HUNTINGTON BEACH MON, NOV 9, 1987, 12:03 PM ULTIMATE SYSTEM -- PEAK HOUR WITH MAGNOLIA RESERVOIR INPUT FILE NAME PHUTMAG2 NUMBER OF PIPES 248 NUMBER OF NODES 152 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 4.000 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gpm MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-) FIXED DEMANDS = .00 SUM OF l+) FIXED DEMANDS = 20200,00 SUM OF PEAKABLE DEMANDS =-24885.71 SUM OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -99542.82 SUM OF ALL DEMANDS --------- -79342.82 Solution reached in 15 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH MON, NOV 9, 1997, 12:03 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Bps Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 24BO 16.0 130 184 .3 .1 .0 LO 4 6 2 20DO 12.0 130 577 1.6 1.8 .9 6 6 4 16DO 12.0 130 639 1.8 1.8 1.1 8 8 6 2600 12.0 130 1260 3.6 10.1 3.9 10 8 10 2900 12.0 130 1382 3.9 13.4 4.6 12 12 10 970 10.0 130 120 .5 .1 .1 14 4 14 2900 16.0 130 94 .2 .0 .0 LO 16 16 6 2620 12.0 130 589 1.7 2.5 1.0 18 18 8 2640 20.0 130 3543 3.6 5.8 2.2 # 20 20 12 2350 12.0 130 1256 3.6 9.1 3.9 22 12 22 2280 12.0 130 661 1.9 2.7 1.2 24 16 14 2600 20.0 130 3036 3.1 4.3 1.6 # 26 18 16 2610 20.0 130 5609 5.7 13.4 5.1 # 28 18 20 2510 30.0 130 14185 6.4 10.0 4.0 # 30 14 24 2620 16.0 130 2151 3.4 6.8 2.6 32 16 26 2700 12.0 130 1291 3.7 11.0 4.1 34 18 28 2700 12.0 130 1946 5.2 21.3 7.9 # 36 20 30 2570 30.0 130 12350 5.6 7.9 3.1 1 3B 22 32 3430 8.0 130 64 .4 .4 .1 40 26 24 2680 12.0 130 69 .2 .0 .0 LO 42 28 26 2640 12.0 130 660 1.9 3.1 1.2 44 30 28 2670 12.0 130 693 2.0 3.4 1.3 46 30 32 2550 30.0 130 BB87 4.0 4.3 1.7 # 48 32 34 2800 30.0 130 7303 3.3 3.3 1.2 # 50 24 36 2640 16.0 130 1542 2.5 3.7 1.4 52 26 38 2600 12.0 130 984 2.8 6.4 2.5 54 28 40 2580 12.0 130 1296 3.7 10.6 4.1 # 56 30 42 2640 12.0 130 1556 4.4 15.2 5.7 58 34 46 2320 12.0 130 811 2.3 4.0 1.7 60 36 38 2640 12.0 130 609 1.7 2.7 1.0 62 38 40 2640 12.0 130 375 1.1 1.1 .4 64 40 42 2700 12.0 130 384 1.1 1.2 .4 # 66 42 44 2550 12.0 130 612 1.7 2.6 1.0 68 46 48 700 12.0 130 1926 5.2 5.4 7.7 70 50 36 2550 16.0 130 131 .2 .0 .0 LO 72 38 52 2640 12.0 130 294 .8 .7 .3 74 40 54 2650 12.0 130 239 .7 .5 .2 76 42 56 2620 12.0 130 164 .5 .2 .1 LO # 78 58 44 2640 8.0 130 151 1.0 1.5 .6 80 46 62 2950 12.0 120 226 .6 .6 .2 82 64 48 5300 12.0 130 196 .6 .7 .1 84 50 52 2700 12.0 130 686 1.9 3.4 1.3 86 52 54 2600 12.0 130 335 .9 .9 .3 88 54 56 2640 12.0 130 343 1.0 .9 .3 90 56 58 2660 12.0 130 340 1.0 .9 .3 92 60 58 1330 12.0 130 480 1.4 .9 .7 94 62 60 1130 8.0 130 378 2.4 3.4 3.0 8 & 12 96 66 52 2640 12.0 130 424 1.2 1.4 .5 97 68 54 2640 12.0 130 518 1.5 2.0 .8 98 70 56 2640 12.0 130 637 1.8 2.9 1.1 99 72 58 2640 8.0 130 262 1.7 4.0 1.5 100 72 58 2640 9.0 130 262 1.7 4.0 1.5 101 74 60 2640 12.0 130 698 2.0 3.4 1.3 102 80 62 3200 12.0 120 60 .2 .1 .0 LO 104 r 84 64 2850 12.0 70 229 .6 1.5 .5 CITY OF HUNTINGTON BEACH MON, NOY 9, 1997, 12:03 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 912 1.5 1.5 .5 108 50 66 5250 30.0 120 3727 1.7 2.0 .4 110 66 68 2640 30.0 120 1753 .8 .3 .1 LO 112 70 68 2680 30.0 120 42 .0 LO .0 .0 LO 114 70 68 2680 12.0 130 4 .0 LO .0 .0 LO ilb 72 70 2604 12.0 130 157 .4 .2 .1 LO 119 72 70 2600 30.0 120 1610 .7 .2 .1 LO 120 74 72 1450 30.0 120 2499 1.1 .3 .2 122 76 74 600 30.0 120 3676 1.7 .2 .4 124 76 78 150 8.0 130 171 1.1 .1 .7 126 78 80 1050 12.0 130 171 .5 .1 .1 LO 12B 80 82 1150 12.0 130 854 2.4 2.2 1.9 130 82 84 1250 12.0 130 409 1.2 .6 .5 132 50 98 5300 12.0 130 751 2.1 7.9 1.5 134 66 100 2580 12.0 130 637 1.8 2.8 1.1 136 68 102 2640 12.0 130 446 1.3 1.5 .6 138 70 104 2630 12.0 130 286 .8 .7 .2 140 86 72 1320 12.0 130 161 .5 .1 .1 LO 142 86 106 1320 12.0 130 157 .4 .1 .1 LO 144 BB 86 1450 14.0 120 621 1.3 .8 .6 146 108 Be 1280 12.0 130 901 2.6 2.7 2.1 148 90 88 650 14.0 120 629 1.3 .4 .6 149 88 74 1350 12.0 130 417 1.2 .7 .5 151 90 76 1300 30.0 120 4B91 2.2 .B .6 152 90 96 3150 42.0 120 9758 2.3 1.4 .4 158 100 98 2680 12.0 130 647 1.8 3.0 1.1 160 102 100 2690 12.0 130 371 1.1 1.1 .4 162 104 102 2750 12.0 130 320 .9 .8 .3 164 106 104 25BO 12.0 130 337 1.0 .9 .3 166 108 106 1500 12.0 130 973 2.8 3.6 2.4 168 110 108 700 12.0 130 2329 6.6 8.5 12.1 HI 170 112 90 950 21.0 120 9986 9.3 13.0 13.7 HI 171 112 90 950 16.0 130 5291 8.4 13.0 13.7 HI 172 112 110 350 21.0 120 6557 6.1 2.2 6.3 174 110 116 750 21.0 120 4229 3.9 2.1 2.8 176 96 114 3400 42.0 120 2274 .5 .1 .0 LO 178 118 104 2640 12.0 130 270 .8 .6 .2 179 120 106 2640 B.0 130 272 1.7 4.3 1.6 180 120 106 2640 6.0 130 128 1.4 4.3 1.6 182 116 120 2550 12.0 130 933 2.6 5.7 2.2 184 116 122 1900 21.0 120 2789 2.6 2.4 1.3 188 114 128 4000 42.0 120 641 .1 .0 .0 LO 190 120 118 2550 8.0 130 287 1.9 4.6 1.8 192 122 120 2150 8.0 130 260 1.7 3.2 1.5 194 122 124 600 8.0 130 613 3.9 4.4 7.4 196 131 118 2640 9.0 130 446 2.8 10.8 4.1 197 132 130 800 8.0 130 345 2.2 2.0 2.5 198 129 130 850 6.0 130 125 1.4 1.3 1.6 199 120 129 1250 8.0 130 125 .8 .5 .4 200 132 120 2750 8.0 130 51 .3 .2 .1 LO 201 122 134 2640 21.0 120 1348 1.2 .9 .3 202 124 136 3250 12.0 130 126 .4 .2 .1 LO 206 128 140 700 12.0 130 510 1.4 .5 .7 208 128 142 1B00 12.0 130 229 .7 .3 .2 210 , 144 142 1150 12.0 130 290 .8 .3 .2 CITY OF HUNTINGTON BEACH MON, NOV 9, 1997, 12:03 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C 6pw Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 212 292 132 1950 8.0 130 388 2.5 6.2 3.2 214 134 132 2000 12.0 130 629 1.8 2.2 1.1 216 134 136 1200 12.0 130 1115 3.2 3.7 3.1 21B 136 138 2050 12.0 130 858 2.4 3.9 1.9 220 164 146 2200 12.0 130 57 .2 .0 .0 LO 222 142 140 1800 12.0 130 191 .5 .2 .1 224 146 128 4200 42.0 120 469 .1 .0 .0 LO 226 146 144 650 24.0 120 636 .5 .0 .0 LO 228 152 131 2700 8.0 130 354 2.3 1.2 2.1 230 154 132 3150 8.0 130 153 1.0 1.9 .6 232 156 134 2640 21.0 120 777 .7 234 158 136 2640 12.0 130 28 .1 LO .0 .0 LO 236 150 160 1400 12.0 130 15 .0 LO .0 .0 LO 238 148 150 700 14.0 130 15 .0 LO :0 .0 LO 240 138 148 500 12.0 130 15 .0 LD .0 .0 LO 242 140 162 2640 12.0 130 166 .5 .2 .1 LO 244 164 146 2120 42.0 120 1459 .3 .0 .0 LO 246 152 154 2640 B.0 130 460 2.9 11.4 4.3 248 156 154 2640 8.0 130 102 .6 .7 .3 250 156 158 1300 12.0 130 1115 3.2 4.0 3.1 252 158 160 2000 12.0 130 871 2.5 3.9 2.0 254 160 162 2660 12.0 130 24 .1 LO .0 .0 LO 256 164 162 2660 12.0 130 313 .9 .8 .3 257 180 164 2700 12.0 130 145 .4 .2 .1 LO 258 164 166 2640 12.0 130 1110 3.1 8.1 3.1 260 168 152 2550 12.0 130 164E 4.7 16.3 6.4 261 168 170 2330 21.0 120 6902 6.3 15.6 6.7 262 170 154 3050 8.0 130 438 2.8 12.1 4.0 263 170 172 2000 21.0 120 5455. 5.1 8.9 4.5 264 172 156 2650 21.0 120 2349 2.2 2.5 .9 265 172 174 1350 16.0 130 2014 3.2 3.1 2.3 266 174 158 2650 9.0 130 239 1.5 3.4 1.3 267 174 176 1950 16.0 130 1784 2.8 3.6 1.8 269 176 178 2640 16.0 130 1345 2.1 2.9 1.1 270 178 162 2700 12.0 130 344 1.0 1.0 .4 271 180 178 2700 16.0 120 99 .2 .0 .0 LO 272 180 164 2700 42.0 120 3611 .8 .2 .1 LO 273 180 182 1150 20.0 120 4313 4.4 4.2 3.7 4 274 166 1B4 2680 12.0 130 526 1.5 2.1 .8 275 182 1B4 1550 20.0 125 4703 4.8 6.2 4.0 1 277 184 186 2650 20.0 125 4073 4.2 8.1 3.1 t 279 186 190 2750 16.0 125 2309 3.7 8.7 3.2 280 190 192 1340 16.0 125 958 1.5 .8 .6 282 192 194 3200 14.0 130 803 1.7 2.6 .8 2B4 218 194 5300 14.0 130 183 .4 .3 .1 LO 286 196 170 2660 9.0 130 77 .5 .4 .2 2BB 199 174 2640 12.0 130 550 1.6 2.2 .8 290 200 176 2500 12.0 130 75 .2 .1 .0 LO 292 202 204 2700 8.0 130 192 1.2 2.3 .9 294 178 204 800 12.0 130 225 .6 .1 .2 296 206 180 2700 36.0 120 8707 2.7 2.1 .8 298 206 182 3800 12.0 130 794 2.3 6.3 1.7 . 300 184 208 2640 12.0 130 568 1.6 2.4 .9 301 186 210 2640 9.0 130 355 2.3 7.1 2.7 302 190 212 2640 12.0 130 764 2.2 4.1 1.5 CITY OF HUNTINGTON BEACH MON, NOV 9, 1987, 12:03 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpa Fps CK ft ft!1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 304 196 199 3300 8.0 130 393 2.4 10.2 3.1 306 198 200 2700 12.0 130 907 2.6 5.7 2.1 308 200 202 2640 12.0 130 296 .8 .7 .3 310 202 206 2640 12.0 130 104 .3 .1 .0 LO 312 206 208 2640 12.0 130 1535 4.4 14.8 5.6 314 208 210 2640 12.0 130 1420 4.0 12.8 4.9 316 210 212 2640 12.0 130 917 2.6 5.7 2.2 31B A 2 214 1300 12.0 130 1141 3.2 4.2 3.2 320 222 196 2700 12.0 130 1230 3.5 10.0 3.7 322 272 224 1320 12.0 130 1184 3.4 4.6 3.5 324 228 200 2640 12.0 130 598 1.7 2.6 1.0 326 230 202 3000 12.0 130 551 1.6 2.5 .8 327 232 206 2640 12.0 130 660 1.9 3.1 1.2 328 232 206 2640 36.0 120 10951 3.5 3.1 1.2 330 236 210 2700 12.0 130 1103 3.1 8.2 3.0 332 214 216 1000 10.0 130 539 2.2 2.0 2.0 334 238 216 2100 8.0 130 528 3.4 11.8 5.6 336 302 220 4500 20.0 130 15B9 1A 2A .5 # 338 220 218 1250 14.0 130 961 2.0 1.4 1.1 # 340 288 224 1700 12.0 130 2149 6.1 17.8 10.5 HI 342 224 228 2000 12.0 130 1604 4.6 12.2 6.1 344 228 230 2640 12.0 130 309 .9 .8 .3 346 232 230 2640 12.0 130 239 .7 .5 .2 348 232 234 2640 20.0 130 5366 5.5 12.5 4.7 # 350 234 236 2640 20.0 130 4765 4.9 10.0 3.8 # 352 236 238 5030 20.0 130 3044 3.1 0.3 1.7 # 354 224 226 1300 12.0 130 682 1.9 1.6 1.2 356 240 228 2700 12.0 130 14 .0 LO .0 .0 LO 359 242 230 2700 12.0 130 532 1.5 2.1 .8 360 244 232 2700 36.0 120 18302 5.8 8.2 3.0 362 234 246 2700 12.0 130 336 1.0 .9 .3 364 250 236 2680 12.0 130 325 .9 .8 .3 366 226 240 3800 8.0 130 361 2.3 10.5 2.8 368 242 240 2640 10.0 130 262 1.1 1.4 .5 370 244 242 2660 10.0 130 609 2.5 6.6 2.5 372 244 246 2550 12.0 130 1918 5.4 21.6 B.5 314 246 248 1500 12.0 130 80 2 A 2.8 1.9 376 248 250 1200 10.0 130 B49 3.5 5.5 4.5 378 252 242 2540 12.0 130 932 2.6 5.7 2.2 380 254 244 2640 36.0 120 21682 6.8 11.0 4.2 382 246 256 2540 12.0 130 228 .6 .4 ..2 384 250 258 2640 12.0 130 178 .5 .3 .1 386 278 252 1750 12.0 130 1592 4A 10.5 6.0 388 254 256 2600 12.0 130 2386 6.8 33.0 12.7 HI 390 256 258 2640 12.0 130 1110 3.1 8.1 3.1 392 260 254 2600 36.0 120 25653 B.1 14.8 5.7 394 262 260 150 36.0 130 14097 4.4 .2 1.6 PECK RES. 395 266 260 100 36.0 130 12423 3.9 .1 1.3 396 264 266 250 12.0 130 3423 9.7 6.2 24.8 HI WELL 7 400 270 168 970 12.0 130 3277 9.3 22.2 22.8 HI WELL 5 402 274 272 200 12.0 130 3265 9.3 4.5 22.7 HI WELL 6 404 272 198 1300 12.0 130 2082 51 13.6 9.9 406 276 278 170 8.0 130 834 5.3 2.2 13.1 HI WELL 1 408 254 27B 900 12.0 130 758 2.2 1.4 1.5 414 r 294 168 1990 16.0 130 3505 5.6 12.7 6.4 WELL 9 CITY OF HUNTINGTON BEACH MON, NOV 9, 1987, 12:03 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 416 288 222 1600 12.0 130 155 3 A 6.6 4.1 418 286 288 1050 16.0 130 3444 5.5 6.5 6.2 WELL 10 42D 290 292 1400 6.0 120 480 5.4 31.0 22.1 HI DYKE WELL 422 292 131 750 8.0 00 92 .6 .2 .2 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1321 3.7 12.1 4.2 452 300 168 5300 22.0 120 3179 2.7 6.9 1.3 OC9 500 301 112 100 36.8 120 21835 6.6 .4 3.8 Overmyer Res. 501 238 302 2000 20.0 130 1589 1.6 1.0 .5 # 502 95 84 1000 16.0 130 909 1.5 .5 .5 503 96 95 452 24.0 120 7484 5.3 1.9 4.2 504 304 266 10 36.0 130 9000 2.8 .0 .7 OC35 510 95 84 1000 20.0 130 1634 1A .5 .5 DOWNTOWN LOOP 511 84 307 2800 20.0 110 1303 1.3 1.0 .3 DOWNTOWN LOOP 512 306 305 7200 20.0 130 2185 2.2 6.4 .9 DOWNTOWN LOOP 513 306 46 2000 20.0 130 3160 3.2 3.5 1.8 DOWNTOWN LOOP 514 46 62 2900 20.0 130 945 1.0 .6 .2 ➢OWNTOWN LOOP 515 80 62 2300 20.0 130 300 .3 .1 .0 LO DOWNTOWN LOOP 516 114 115 3490 12.0 130 1633 4.6 21.9 6.3 517 64 115 6850 12.0 130 1024 2.9 19.2 2.7 521 154 132 3150 8.0 130 153 1.0 1.8 .6 # 522 170 154 3050 8.0 130 439 2.8 12.1 4.0 1 523 196 170 2660 8.0 130 77 .5 .4 .2 # 530 315 306 450 30.0 130 5344 2.4 .3 .7 # 531 34 315 225 30.0 130 5344 2.4 .1 .7 # 532 307 64 20 12.0 130 3497 9.9 .5 25.6 HI # 533 305 307 1500 20.0 130 2185 2 a 1.3 .9 # 534 76 80 900 20.0 130 1043 1.1 .2 .2 # CITY OF HUNTINGTON BEACH MON, NOV 9, 1987, 12:03 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -761.20 162.3 157.3 68 21 4 5 -359.20 162.3 157.3 68 21 6 5 -634.40 164.1 159.1 68 20 Banning 8 5 -901.20 174.2 169.2 73 15 10 4 -1502.00 160.9 156.8 67 22 12 4 -475.20 160.9 156.9 68 22 14 6 -978.80 162.3 156.3 67 21 16 7 -692.80 166.6 159.6 69 19 18 4 25183.07U 180.OF 176.0 76 12 20 2 -579.60 170.0 168.0 72 17 22 4 -591.20 158.3 154.3 66 23 24 6 -678.00 155.6 149.6 64 25 26 8 -998.80 155.6 147.6 63 25 28 4 -582.40 158.7 154.7 67 23 30 4 -1214.80 162.1 158.1 68 21 326 -1647.60 157.9 151.9 65 24 34 30 -1148.00 154.6 124.E 54 29 36 B -1064.00 151.9 143.9 62 27 38 9 -923.20 149.2 140.2 60 28 40 6 -1049.20 148.1 142.1 61 28 42 6 -1162.40 147.0 141.0 61 29 44 is -763.60 144.3 126.3 54 32 46 36 -974.00 150.6 114.6 49 32 48 36 -2021.20 145.2 109.2 47 35 50 12 -1405.20 151.9 139.9 60 27 52 10 -1069.60 148.5 139.5 60 29 54 7 -748.80 147.6 140.6 60 29 56 10 -904.40 146.7 136.7 59 30 58 25 -1192.80 145.8 1203 52 33 60 35 -596.00 146.7 111.7 48 34 62 40 -1152.80 150.1 110.1 47 33 64 45 -3408.40 145.9 100.9 43 37 66 10 -912.40 149.9 139.9 60 28 68 8 -834.80 149.E 141.6 61 28 70 10 -798.00 149.6 139.6 60 28 72 55 -369.20 149.9 94.8 41 37 74 50 -896.40 150.1 100.1 43 35 76 50 .00 150.3 100.3 43 35 78 50 .00 150.2 100.2 43 35 80 50 .00 150.1 100.1 43 35 82 75 -444.80 148.0 73.0 31 LO 44 84 75 -509.20 147.3 72.3 31 LO 44 86 57 -303.20 150.0 93.0 40 37 88 50 -491.60 150.8 100.8 43 35 90 60 .00 151.2 91.2 39 LO 37 95 103 -4940.80 147.9 44.9 19 LO 56 Reservoir Hill 96 95 .00 149.8 54.0 23 LO 50 98 16 -1397.60 144.0 12B.0 55 32 100 15 -360.BO 147.0 132.0 57 30 Flounder 102 12 -395.60 148.1 136.1 59 29 104 14 -572.80 149.0 135.0 58 29 106 58 -1192.80 149.8 91.9 39 LO 37 108 55 -454.80 153.5 98.5 42 34 110 60 .00 162.0 102.0 44 30 112 60 .00 164.1 104.1 45 28 CITY OF HUNTINGTON BEACH MON, NOV 9, 1987, 12:03 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet Gpm Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 114 93 .00 149.7 56.7 24 LO 49 115 35 -2656.80 127.7 92.7 40 45 116 60 -506.80 159.9 99.9 43 31 118 13 -462.80 149.6 136.6 59 29 120 55 -432.00 154.2 99.2 42 34 122 35 -568.40 157.4 122.4 53 28 124 25 -486.80 153.0 128.0 55 29 128 5 -370.80 149.6 144.6 62 28 129 45 .00 153.7 108.7 47 32 130 45 -470.00 152.4 107.4 46 33 131 45 .00 160.4 115.4 50 28 132 55 -926.00 154.4 99.4 43 34 134 50 -380.80 156.5 106.5 46 31 136 50 -411.20 152.8 102.8 44 34 138 40 -842.40 148.9 108.9 47 34 140 2 -534.80 149.1 147.1 63 27 142 2 -318.80 149.3 147.3 63 27 144 2 -355.20 149.6 147.6 63 27 146 2 -411.60 149.6 147.6 64 27 148 40 .00 148.9 108.9 47 34 156 40 .00 148.9 108.9 47 34 152 28 -934.00 167:6 139.6 60 21 154 25 -1132.90 156.2 131.2 56 27 156 25 -355.60 156.9 131.9 57 27 159 30 -455.60 152.8 122.8 53 30 160 5 -862.00 148.9 143.9 62 28 162 3 -847.60 148.9 145.9 63 28 164 2 -816.90 149.7 147.7 64 27 166 2 -504.40 141.6 139.6 60 31 168 27 -1510.BO 183.9 156.9 68 12 170 26 -621 00 168.3 142.3 61 20 172 25 -1092.00 159.3 134.3 58 25 174 25 -540.90 156.3 131.3 56 27 176 12 -514.00 152.7 140.7 60 27 178 5 -974.80 149.9 144.8 62 27 180 5 -538.40 149.9 144.9 62 27 182 5 -404.00 145.7 140.7 60 30 iB4 5 -587.60 139.5 134.5 58 33 186 34 -1408.40 131.4 97.4 42 43 190 35 -587.20 122.7 87.7 38 LO 48 192 55 -155.20 121.9 66.9 28 LO 55 194 5 -985.60 119.3 114.3 49 43 196 25 -692.80 168.7 143.7 62 20 198 17 -1008.00 158.5 141.5 61 25 200 14 -1133.60 152.7 138.7 60 27 Heil 202 10 -551.60 152.0 142.0 61 27 204 10 -417.20 149.7 139.7 60 28 206 9 -678.40 151.9 142.9 61 27 208 14 -684.00 137.1 123.1 53 35 210 15 -1961.20 124.3 109.3 47 42 212 9 -539.60 112.6 109.6 47 44 214 9 -602.80 114.4 105.4 45 46 216 9 -1066.40 112.4 103.4 44 47 218 5 -778.00 119.6 114.6 49 43 220 5 -628.40 121.0 116.0 50 42 CITY OF HUNTINGTON BEACH MiON, NO'd 9, 1987, 12:03 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK DROP--CK ---- ------ ------ ------ ------ ------ -- ------ 'In') 26 -1381.10 178.7 152.7 66 15 LL 224 21 -1045.60 167.5 146.5 63 20 226 23 -320,80 165,9 142.9 61 21 228 20 -112.40 155.3 135.3 58 21 230 12 -528,Ci� 154.6 142.E 61 26 232 155.0 145,0 62 26 234 12 -'265,60 142.b 130.E 56 32 2t 5 s 7 s,, 19 - ,6 1: -942,00 1312.51 i1;._ Ycenar;o 238 921.20 124.2 119.2 Cl 40 240 ci -i09,60 ;55.3 i34,3 58 27 242 15 -747,=!, 156.7 141.7 61 2`4 244 16 -8;2180 i63, 447.2 7 22 24b 14 -1118.00 141.6 127.6 55 33 248 14 ? i38,8 124.8 54 35 250 13 -345,6iJ 1177.4 120.4 52 37 252 22 -6b0,00 162.4 '-40.4 60 23 254 18 -826.4: 174,2 156._ 61 16 256 17 -1504.00 141.2 124.2 53 T4 258 17 -1287.6L� 133.1 116.1 38 2b0 23 -866,40 189.0 166.0 11 9 262SP 34 14096.79U 189.2 155.2 67 9 PECK RES.. L64SP 18 3422.58U 195.3 177.3 76 5 WELL 7 266 23 .00 189.1 166.1 72 9 270SP 27 7217.11U 206.1 179.1 77 0 WELL 5 272 25 .00 172.1 147.1 63 18 274SP 19 3265.4% 176.E 157.6 68 15 WELL 6 276SP 17 833.9% 175.1 158.1 68 16 WELL 1 218 19 .00 172.9 153.9 66 17 284SP 27 3505.07U 196.6 169.6 73 5 WELL 9 286SP 19 3443.96U 191.9 172,8 74 7 WELL 10 288 22 .00 185.3 163.3 70 11 290SP 44 480.21U 191.5 147.5 63 8 DYKE WELL 292 48 .00 160.E 112.E 48 28 294 12 6700.00 154.4 142.4 61 26 OC44,Adams ?00 25 4500.00 190.8 165.8 71 8 OC9 3019P 65 21834.60U 164.5 99.5 43 29 Overmyer Res. 302 5 .00 123.2 118.2 51 41 304 25 9000.00 189.1 164.1 71 9 OC35 305 40 .00 147.7 107.7 46 35 306 30 .00 154.2 124.2 53 29 307 45 .00 146.4 101.4 43 37 315 34 .00 154.5 120.5 52 29 Maximum Unbalanced Head = .00002 212 r CITY OF HUNTINGTON BEACH MON, NOV 99 1987, 12:03 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION H8L DISCH H8L LIFT PUMP NODE 8pm Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 262SP 14097 20.0 189.2 169.2 30 PECK RES. 301SP 21835 50.0 164.5 114.5 20 Overmyer Res. 290SP 480 -34.0 191.5 225.5 11 DYKE WELL 276SP 834 -98.0 175.1 273.1 1 WELL 1 270SP 3277 -62.0 206.1 268.1 5 WELL _5 274SP 3265 -59.0 176.6 235.6 6 WELL 6 264SP 3423 -89.0 195.3 284.3 7 WELL 7 284SP 3505 -64.0 196.6 260.6 9 WELL 9 286SP 3444 -55.0 191.8 246.8 10 WELL 10 18 25183 180.0 SOURCE PUMPS Node Pump# 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000, 15800. 16100. 16250. 16500. 16750, 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000. 20650. 21875. 22525. 22875, 23350. 23775. 290 11 Head 330 306 256 190 72 0 0 0 Flow 0. 200, 400. 600. 800. 0. 0. 0. 276 1 Head 440 399 348 311 287 205 98 0 Flow 0. 200. 400. 600. 800. 1000. 1200. 0. 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012. 3765. 4518. 4894. 0, 274 6 Head 48B 318 296 287 257 206 148 0 Flow 0. 1761. 2201. 2641. 3081. 3521. 3962. 0. 264 7 Head 397 299 291 268 238 209 174 0 Flow 0. 2817. 3286. 3756. 4225. 4695. 5164. 0. 284 9 Head 544 424 366 293 237 173 0 0 Flow 0. 1170. 1973. 3277. 3745. 4214. 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859, 2324. 2789. 3253. 3718. 0. 0. Iteration= 1, Flow Correction= 15206.560 Iteration= 2, Flow Correction= 10362,220 Iteration= 3, Flow Correction= 5330.956 Iteration= 4, Flow Correction= 1813.989 Iteration= 5, Flow Correction= 661.710 Iteration= 6, Flow Correction= 595.203 Iteration= 7, Flow Correction= 570.546 Iteration= 8, Flow Correction= 550.349 Iteration= 9, Flow Correction= 534.316 Iteration= 11, Flow Correction= 515.034 Iteration= 12, Flow Correction= 228.555 Iteration= 13, Flow Correction= 38.276 Iteration= 14, Flow Correction= .068 Iteration= 15, Flow Correction= .001 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:28 AM ULTIMATE SYSTEM -- MAXIMUM DAY ULTIMATE DEMAND & FIRE @ NODE 28 INPUT FILE NAME M➢UFR28 NUMBER OF PIPES 245 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gpe MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40. Psi - HIGH BO. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-) FIXED DEMANDS = .00 SUM OF (+) FIXED DEMANDS = 20200.00 SUM OF PEAKABLE DEMANDS =-24917.00 SUM OF ALL FIXED ➢EMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -60548.33 SUM OF ALL DEMANDS --------- -40348.33 Solution reached in 12 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:29 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Bps Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 24BO 16.0 130 722 1.2 .8 .3 4 2 6 2000 12.0 130 259 .7 .4 .2 6 4 6 1600 12.0 130 533 1.5 1.3 .8 8 6 B 2600 12.0 130 B25 2.3 4.6 1.8 10 8 10 2900 12.0 130 500 1.4 2.0 .7 12 12 10 970 10.0 130 412 1.7 1.2 1.2 14 14 4 2900 16.0 130 1473 2.3 3.7 1.3 16 16 6 2620 12.0 130 419 1.2 1.3 .5 i8 18 8 2640 12.0 130 223 .6 .4 .2 20 20 12 2350 12.0 130 536 1.5 1.9 .8 22 22 12 2280 12.0 130 164 .5 ' .2 .1 LO 24 14 16 2600 12.0 130 726 2.1 3.6 1.4 26 16 18 2610 12.0 130 908 2.6 5.5 2.1 2B 20 18 2510 12.0 130 275 .B .6 .2 30 24 14 2620 16.0 130 2793 4.5 11.0 4.2 32 26 16 2700 12.0 130 1021 2.9 7.1 2.6 34 1B 28 2700 12.0 , 130 530 1.5 2.1 .8 36 30 20 2570 12.0 130 1163 3.3 9.6 3.4 38 32 22 3430 B.0 130 527 3.4 19.2 5.6 40 24 26 2680 12.0 130 1054 3.0 7.5 2.8 42 26 28 2640 12.0 130 1533 4.3 14.9 5.6 44 30 28 2670 12.0 130 1320 3.7 11.3 4.2 46 32 30 2550 12.0 130 11B5 3.4 0.9 3.5 48 34 32 2B00 12.0 130 2713 7.7 45.1 16.1 HI 50 36 24 2640 16.0 130 4259 6.8 24.1 9.1 52 3B 26 2600 12.0 130 2046 5.8 24.8 9.6 54 40 28 2580 12.0 130 251E 7.1 36.2 14.0 HI 56 42 30 2640 12.0 130 2036 5.8 25.0 9.5 58 46 34 2320. 12.0 130 2332 6.6 28.2 12.2 HI 60 36 38 2640 12.0 130 1008 2.9 6.8 2.6 62 3B 40 2640 12.0 130 696 2.0 3.4 1.3 64 42 40 2700 12.0 ' 130 112 .3 .1 .0 LO 66 44 42 2550 12.0 130 460 1.3 1.5 .6 68 46 48 700 12.0 130 794 2.3 1.2 1.7 70 50 36 2550 16.0 130 5914 9.4 42.8 16.8 H1 72 52 38 2640 12.0 130 2295 6.5 31.2 11.8 HI 74 54 . 40 2650 12.0 130 2347 6.7 32.6 12.3 HI 76 56 42 2620 12.0 130 2394 6.8 33.5 12.8 HI 7B 58 44 2640 8.0 130 924 5.9 41.7 15.8 HI BO 62 46 2950 12.0 120 533 1.5 2.7 .9 82 64 48 5300 12.0 t30 434 1.2 2.9 .5 84 50 52 2700 12.0 130 1706 43 1B.4 6.8 86 52 54 2600 12.0 130 523 1.5 2.0 .B 88 56 54 2640 12.0 130 349 1.0 1.0 .4 90 58 56 2660 12.0 130 1219 3.5 9.7 3.7 92 60 58 1330 12.0 130 1665 4.7 8.7 6.5 94 62 60 1130 B.0 130 600 3.8 8.0 7.1 8 & 12 96 66 52 2640 12.0 130 1762 5.0 19.1 7.2 97 68 54 2640 12.0 130 1930 5.5 22.6 8.6 98 70 56 2640 12.0 130 2012 5.7 24.4 9.3 99 72 58 2640 B.0 130 b01 3.9 18.8 7.1 100 72 58 2640 8.0 130 601 3.8 18.8 7.1 101 74 60 2640 12.0 130 1428 4.1 12.9 4.9 102 80 62 3200 12.0 120 728 2.1 5.2 1.6 104 B4 64 2850 12.0 70 558 1.6 7.7 2.7 CITY OF HUNTINGTON BEACH FRI, SEP 4, 19B7, 3:29 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 2231 3.6 7.7 2.8 10B 66 50 5250 30.0 120 2101 1.0 .7 .1 110 68 66 2640 30.0 120 4630 2.1 1.5 .6 112 70 68 2680 30.0 120 6312 2.9 2.8 1.0 114 70 68 2690 12.0 130 614 1.7 2.0 1.0 116 72 70 2600 12.0 130 775 2.2 4.1 1.6 118 72 70 2600 30.0 120 7966 3.6 4.1 1.6 120 74 72 1450 30.0 120 BB84 4.0 2.8 1.9 122 76 74 600 30.0 120 9632 4.4 1.3 2.2 124 76 78 150 B.0 130 415 2.6 .5 3.6 126 78 80 1050 12.0 130 415 1.2 .5 .5 12B B2 80 1150 12.0 130 313 .9 .3 .3 130 84 B2 1250 12.0 130 503 1.7 1.2 .9 132 50 9B 5300 12.0 130 32B .9 1.7 .3 134 66 100 2580 12.0 130 213 .6 .4 .1 136 102 68 2640 12.0 130 142 .4 .2 .1 LO 138 104 70 2630 12.0 130 681 1.9 3.3 1.2 140 86 72 1320 12.0 130 1285 3.6 5.3 4.0 142. 106 86 1320 12.0 130 355 1.0 .5 .4 144 BB B6 1450 14.0 120 1114 2.3 2.5 1.7 146 108 88 1280 12.0 130 1206 3.4 4.6 3.6 14B 90 88 650 14.0 120 1431 3.0 1.8 2.7 149 BB 74 1350 12.0 130 1224 3.5 5.0 3.7 151 90 76 1300 30.0 120 133B6 6.1 5.4 4.1 152 90 96 3150 42.0 120 2219 .5 .1 .0 LO 158 100 98 2680 12.0 130 521 1.5 2.0 .8 160 102 100 2680 12.0 130 52B 1.5 2.1 .8 162 104 102 2750 12.0 130 910 2.6 5.9 2.1 164 106 104 2580 12.0 130 1010 2.9 6.7 2.6 166 108 106 1500 12.0 130 1342 3.8 6.6 4.4 168 110 108 700 12.0 130 2B24 8.0 12.1 17.3 HI 170 112 90 950 21.0 120 11136 10.3 HI 15.9 16.7 HI 171 112 90 950 16.0 130 5900 9.4 15.9 16.7 HI 172 112 110 350 21.0 120 4065 3.8 .9 2.6 174 110 116 750 21.0 120 1241 1.1 .2 .3 176 114 96 3400 42.0 120 6493 1.5 -.7 .2 178 118 104 2640 12.0 130 929 2.6 5.B 2.2 179 120 106 2640 8.0 130 509 3.2 13.9 5.2 180 . 120 106 2640 6.0 130 239 2.7 13.8 5.2 1B2 116 120 2550 12.0 130 839 2.4 4.7 1.8 184 116 122 1900 21.0 120 95 .1 LO .0 .0 LO IBB 128 114 4000 42.0 120 7822 1.8 1.2 .3 190 120 118 2550 8.0 130 535 3.4 14.6 5.7 192 122 120 2150 8.0 130 316 2.0 4.7 2.2 194 122 124 600 B.0 130 35B 2.3 1.6 2.7 196 131 118 2640 8.0 130 676 4.3 23.3 8.9 197 132 130 800 8.0 130 406 2.6 2.7 3.4 198 130 129 850 6.0 130 120 1.4 1.2 1.5 199 121 120 1250 8.0 130 120 .8 .5 .4 200 132 120 2750 B.0 130 270 1.7 4.4 1.6 201 134 122 2640 21.0 120 925 .9 .4 .2 202 124 136 3250 12.0 130 62 .2 .0 .0 LO 206 140 128 700 12.0 130 329 .9 .2 .3 208 142 129 1B00 12.0 130 223 .6 .3 .2 210 144 142 1150 12.0 130 509 1.4 .8 .7 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3.29 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-a C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 212 292 132 1950 8.0 130 329 2.1 4.5 2.3 214 134 132 2000 12.0 130 333 .9 .7 .3 216 134 136 1200 12.0 130 823 2.3 2.1 1.8 218 136 138 2050 12.0 130 840 2.4 3.8 1.8 220 164 146 2200 12.0 130 321 .9 .7 .3 222 142 140 1800 12.0 130 93 .3 .1 .0 LO 224 146 128 4200 42.0 120 7495 1.7 1.2 .3 226 14b 144 650 24.0 120 725 .5 .0 .1 LO 228 152 131 2700 8.0 130 557 3.6 16.7 6.2 230 154 132 3150 8.0 130 288 1.8 5.0 1.8 232 156 134 2640 21.0 120 2312 2.1 2.4 .9 234 15B 136 2640 12.0 130 204 .6 .4 .1 236 150 160 1400 12.0 130 32B .9 .5 .3 236 148 150 700 14.0 130 32B .7 .1 .2 240 13B 148 500 12.0 130 328 .9 .2 .3 242 162 140 2640 12.0 130 561 1.6 2.3 .9 244 164 146 2120 42.0 120 8149 1.9 .7 .3 246 152 154 2640 B.0 130 536 3.4 15.2 5.8 248 154 156 2640 8.0 130 211 1.3 2.7 1.0 250 156 158 1300 12.0 130 1135 3.2 4.2 3.2 252 15B 160 2000 12.0 130 975 2.9 4.8 2.4 254 160 162 2660 12.0 130 780 2.2 4.3 1.6 256 162 164 266D 12.0 130 292 .8 .7 .3 257 190 164 2700 12.0 130 362 1.0 1.0 .4 258 164 166 2640 12.0 130 710 2.0 3.6 1.3 260 168 152 2550 12.0 130 1600 4.5 15.4 6.1 261 168 170 2330 21.0 120 7092 6.6 16.9 7.3 262 170 154 3050 8.0 130 470 3.0 13.8 4.5 263 170 172 2000 21.0 120 6221 5.8 11.4 5.7 264 172 156 2650 21.0 120 3453 3.2 5.1 1.9 265 172 174 1350 16.0 130 2105 3.4 3.3 2.5 266 174 158 2650 8.0 130 321 2.0 5.9 2.2 267 174 176 1950 16.0 130 2224 3.5 5.4 2.7 269 176 17B 2640 16.0 130 2194 3.5 7.1 2.7 270 116 162 2700 12.0 130 589 1.7 2.6 1.0 271 17B 180 2700 16.0 120 1069 1.7 2.2 .8 272 180 164 2700 42.0 120 9022 2.1 1.0 .4 273 180 1B2 1150 16.0 120 1556 2.5 1.9 1.6 274 166 184 2680 12.0 130 355 1.0 1.0 .4 275 182 184 1550 16.0 125 1987 3.2 3.7 2.4 277 184 186 2650 16.0 125 1836 2.9 5.5 2.1 279 1Bb 190 2750 16.0 125 1006 1.6 1.9 .7 2BO 190 192 1340 16.0 125 316 .5 .1 .1 LO 282 192 194 3200 14.0 130 222 .5 .2 .1 LO 284 218 194 5300 14.0 130 377 .8 1.0 .2 2B6 196 170 2660 8.0 130 224 1.4 3.0 1.1 288 19B 174 2640 12.0 130 768 2.2 4.1 1.6 290 200 176 2500 12.0 130 282 .8 .6 .2 292 202 204 2700 8.0 130 250 1.6 3.8 1.4 294 178 204 800 12.0 130 4 .0 LO .0 .0 LO 296 206 180 2700 36.0 120 1019E 3.2 2.8 1.0 296 206 182 3800 12.0 130 676 1.9 4.7 1.2 300 184 208 2640 12.0 130 149 .4 .2 .1 LO 301 210 1B6 2640 8.0 130 25 .2 .1 .0 LO 302 190 212 2640 12.0 130 332 .9 .9 .3 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:29 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpe Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 304 196 198 3300 8.0 130 447 2.9 13.7 4.1 306 19B 200 2700 12.0 130 1147 3.3 9.9 3.3 308 200 202 2640 12.0 130 747 2.1 3.9 1.5 310 202 206 2640 12.0 130 673 1.9 3.2 1.2 312 206 20B 2640 12.0 130 1143 3.2 9.6 3.2 314 208 210 2640 12.0 130 B76 21 12 2.0 316 210 212 2640 12.0 130 623 1.8 2.8 1.1 318 212 214 1300 12.0 130 628 1.B 1.4 1.1 320 222 196 2700 12.0 20 1318 17 144 4.2 322 272 224 1320 12.0 130 986 2.8 3.3 2.5 324 22B 200 2640 12.0 130 568 1.6 2.4 .9 326 230 202 3000 12.0 130 511 1.4 2.2 .7 327 232 206 2640 12.0 130 668 1.9 3.2 1.2 320 232 206 2640 36.0 120 1108E 3.5 3.2 1.2 330 236 210 2700 12.0 130 963 2.7 6.4 2.4 332 214 216 1000 10.0 130 262 1.1 .5 .5 334 238 216 2100 8.0 130 386 2.5 6.6 3.1 336 302 220 4500 20.0 130 1231 1.3 1.4 .3 # 338 220 21B 1250 14.0 130 949 1.8 1.1 .9 # 340 288 224 1700 12.0 130 2202 6.2 18.6 10.9 HI 342 224 228 2000 12.0 130 1912 5.4 16.8 8.4 344 22B 230 2640 12.0 130 763 2.2 4.1 1.5 346 230 232 2640 12.0 130 553 1.6 2.2 .8 348 232 234 2640 20.0 130 3413 3.5 5.4 2.0 # 350 234 236 2640 20.0 130 3343 3.4 5.2 2.0 # 352 236 238 5030 20.0 130 2181 2.2 4.5 .9 # 354 224 226 1300 12.0 130 641 1.8 1.4 1.1 356 228 240 2700 12.0 130 148 .4 .2 .1 LD 358 242 230 2700 12.0 130 622 1.8 2.8 1.1 360 244 232 2700 36.0 120 15276 4.0 5.9 2.2 362 246 234 2700 12.0 130 91 .3 .1 .0 LO 364 250 236 2680 12.0 130 373 1.1 1.1 .4 366 226 240 3800 8.0 130 446 2.8 15.6 4.1 36B 240 242 2640 10.0 130 224 .9 1.0 .4 370 244 242 2660 10.0 130 195 .8 .8 .3 372 244 246 2550 12.0 130 1345 3.8 11.2 4.4 374 246 248 1500 12.0 130 587 1.7 1.4 .9 376 248 250 1200 10.0 130 587 2.4 2.8 2.3 378 252 242 2540 12.0 130 657 1.9 3.0 1.2 380 254 244 2640 36.0 120 17334 5.5 7.3 2.7 3B2 256 246 2540 12.0 130 50 .1 .0 .0 LO 384 250 258 2640 12.0 130 4 .0 LO .0 .0 LO 386 278 252 1750 12.0 130 1058 3.0 4.9 2.8 3BB 254 256 2600 12.0 130 1742 4.9 18.4 7.1 390 256 258 2640 12.0 130 778 2.2 4.2 1.6 392 260 254 2600 36.0 120 19822 6.2 9.2 3.5 394 262 260 150 36.0 130 7960 2.5 .1 .6 PECK RES. 395 266 260 100 36.0 130 12388 3.9 .1 1.3 396 264 26b 250 12.0 130 3388 9.6 6.1 24.3 HI WELL 7 400 270 16B 970 12.0 130 3034 8.6 19.2 19.8 HI WELL 5 402 274 272 200 12.0 130 3067 8.7 4.0 20.2 HI WELL 6 404 272 190 1380 12.0 130 2081 5.9 13.6 9.9 406 276 278 170 8.0 130 813 5.2 2.1 12.5 HI WELL 1 400 254 278 900 12.0 130 245 .7 .2 .2 t14 2B4 160 1990 16.0 130 3262 12 IL 1 5.6 WELL 9 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:29 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK it ft11000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 416 2BB 222 1600 12.0 130 974 2.8 3.9 2.4 41B 286 2BB 1050 16.0 130 3176 5.1 5.6 5.3 WELL 10 420 290 292 1400 6.0 120 447 5.1 27.1 19.4 HI DYKE WELL 422 292 131 750 8.0 130 119 .8 .3 .4 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1186 3.4 9.9 3.5 452 300 16B 5300 22.0 120 3314 2.8 7.5 1.4 OC9 500 301 112 100 36.8 120 21101 6.4 .4 3.6 Overmyer Res. 501 238 302 2000 20.0 130 1231 1.3 .6 .3 # 502 95 84 1000 16.0 130 2041 3.3 2.3 2.3 503 96 95 452 24.0 120 0712 6.2 2.5 5.5 504 304 266 10 36.0 130 9000 2.8 .0 .7 OC35 510 95 B4 1000 20.0 130 3670 3.7 2.3 2.3 DOWNTOWN LOOP 511 84 305 4400 20.0 130 2028 2.1 3.4 .B DOWNTOWN LOOP 512 305 306 7200 20.0 130 2028 2.1 5.6 .8 DOWNTOWN LOOP 513 306 46 2000 20.0 130 951 1.0 .4 .2 DOWNTOWN LOOP 514 62 46 2900 20.0 130 2234 2.3 2.7 .9 DOWNTOWN LOOP 515 76 62 3200 20.0 130 3339 3.4 6.3 2.0 DOWNTOWN LOOP 516 114 115 3490 12.0 130 1329 3.8 15.0 4.3 517 64 115 6850 12.0 130 285 .9 1.7 .2 521 154 132 3150 8.0 130 2BB 1.8 5.8 1.8 1 522 170 154 3050 8.0 130 470 3.0 13.8 4.5 # 523 196 170 2660 8.0 130 224 1.4 3.0 1.1 # 530 306 315 450 8.0 130 107B 6.9 9.4 21.0 HI 1 531 315 34 225 6.0 130 1078 12.2 HI 19.2 85.2 HI # CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:29 AN GROUND ELV FLOW H6L EL HEAD ------- PRESSURE ------ NODE Feet Bps Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -462.43 56.7 51.7 22 LO 76 4 5 -218.21 57.6 52.6 22 LO 76 6 5 -385.40 56.3 51.3 22 LO 76 Banning 8 5 -547.48 51.7 46.7 20 LO 79 10 4 -912.47 49.7 45.7 19 LO 79 12 4 -288.68 50.8 46.8 20 LO 79 14 6 -594.62 61.3 55.3 23 LO 75 16 7 -420.8B 57.6 50.6 21 LO 77 18 4 -429.87 52.1 48.1 20 LO 78 20 2 -352.11 52.7 50.7 21 LO 77 22 4 -362.80 51.0 47.0 20 LO 79 24 6 -411.89 72.3 66.3 28 LO 70 26 8 -546.02 64.9 56.8 24 LO 74 28 4 -5900.67U 50.GF 46.0 19 LO 79 30 4 -737.99 61.3 57.3 24 LO 74 32 6 -1000.92 70.2 64.2 27 LO 71 34 30 -697.41 115.2 85.2 36 LO 56 36 B -646.3B 96.4 BB.4 3B LO 59 38 9 -560.84 89.6 80.6 34 LO 63 40 6 -637.39 86.2 80.2 34 LO 63 42 6 -706.16 B6.3 80.3 34 LO 63 44 18 -463.89 87.8 69.8 30 LO 66 46 36 -591.71 143.5 107.5 46 44 48 36 -1227.88 142.3 106.3 46 44 50 12 -853.66 139.2 127.2 55 41 52 10 -649.78 120.8 110.E 48 49 54 7 -454.90 118.8 111.8 4B 49 56 10 -488.67 119.8 109.E 47 49 58 25 -724.63 129.5 104.5 45 48 60 35 -362.07 138.2 103.2 44 46 62 40 -700.33 146.2 106.2 46 43 64 75 -2070.60 t45.2 70.2 30 LO 54 66 10 -554.2B 139.9 129.9 56 40 68 8 -507.14 141.5 133.5 57 39 70 10 -484.79 144.2 134.2 58 38 72 55 -224.29 148.3 93.3 40 46 74 50 -544.56 151.1 101.1 43 43 76 50 .00 152.5 102.5 44 42 78 50 .00 151.9 101.9 44 42 80 50 .00 151.4 101.4' 43 43 B2 75 -270.22 151.8 76.8 33 LO 49 B4 75 -309.34 152.9 77.9 33 LO 49 B6 57 -1B4.19 153.7 96.7 41 43 B8 50 -298.65 156.1 106.1 45 40 90 60 .00 157.9 97.9 42 41 95 103 -3001.54 155.3 52.3 22 LO 58 Reservoir Hill 96 95 .00 157.8 62.8 27 LO 52 98 16 -849.04 137.5 121.5 52 42 100 15 -219.19 139.5 124.5 53 41 Flounder 102 12 -240.33 141.6 129.6 56 39 104 14 -347.99 147.5 133.5 57 37 106 5B -724.63 154.1 96.1 41 43 108 55 -276.29 160.7 105.7 45 38 110 60 .00 172.8 112.8 48 32 112 60 .00 173.7 113.7 49 32 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:29 AM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet Gp® Feet Feet Psi CK I DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 114 93 .00 158.5 65.5 2B LO 51 115 35 -1614.01 143.5 108.5 47 43 116 60 -307.88 172.6 112.6 48 32 118 13 -2B1.15 153.3 140.3 60 34 120 55 -262.44 168.0 113.0 48 34 122 35 -345.30 172.6 137.6 59 28 124 25 -295.73 171.0 146.0 63 28 128 5 -225.26 159.7 154.7 67 30 129 45 .00 168.4 123.4 53 32 130 45 -285.52 169.7 124.7 54 31 131 45 .00 176.7 131.7 57 28 132 55 -562.55 172.4 117.4 50 32 134 50 -231.34 173.1 123.1 53 30 136 50 -249.80 170.9 120.9 52 32 138 40 -511.76 167.2 127.2 55 32 140 2 -324.89 159.9 157.9 68 30 142 2 -193.67 160.0 158.0 68 30 144 2 -215.78 160.E 15B.8 68 29 146 2 -250.05 160.0 15B.8 68 29 148 40 .00 167.0 127.0 55 32 150 40 .00 166.9 126.9 55 32 152 2B -506.65 193.4 165.4 71 17 154 25 -6BB.19 178.2 153.2 66 24 156 25 -216.03 175.5 150.5 65 25 158 30 -276.78 171.3 141.3 61 28 160 5 -523.67 166.5 161.5 69 27 162 3 -514.92 162.2 159.2 69 29 164 2 -496.21 161.5 159.5 69 29 166 2 -355.02 158.0 156.0 67 30 168 27 -917.B1 208.8 181.8 78 9 170 26 -379.OB 191.9 165.9 71 17 172 25 -663.39 1B0.5. 155.5 67 23 174 25 -328.54 177.2 152.2 65 25 176 12 -312.26 171.8 159.E 69 26 178 5 -531.44 164.8 159.E 69 28 1BO 5 -327.08 162.6 157.6 68 29 182 5 -245.43 160.7 155.7 67 30 1B4 5 -356.97 157.0 152.0 65 31 186 34 -855.60 151.5 117.5 50 39 190 35 -356.72 149.6 114.6 49 40 192 55 -94.28 149.5 94.5 40 45 194 5 -598.75 149.3 144.3 62 35 196 25 -420.8E 195.0 170.0 73 16 198 17 -612.36 1B1.3 164.3 71 22 200 14 -688.66 172.4 158.4 68 25 Heil 202 10 -335.10 16B.5 15B.5 6B 27 204 10 -253.45 164.8 154.8 67 29 206 9 -412.13 165.3 156.3 67 28 20B 14 -415.53 156.B 142.8 61 33 210 15 -1191.43 151.5 136.5 59 35 212 9 -327.81 148.7 139.7 60 36 214 9 -366.20 147.3 138.3 59 36 216 9 -647.84 146.8 137.9 59 37 218 5 -472.64 150.3 145.3 62 34 �20 5 -381.75 151.4 146.4 63 34 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987. 3:29 AM GROUND ELY FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 222 26 -942.72 206.4 180.4 78 10 224 21 -635.20 191.6 170.6 73 17 226 23 -194.89 190.2 167.2 72 18 22B 20 -432.78 174.8 154.8 67 25 230 12 -320.76 170.7 15B.7 6B 26 232 10 -659.74 168.5 15B.5 68 27 234 12 -161.35 163.1 151.1 65 30 236 15 -572.27 157.9 142.9 61 32 Scenario 238 5 -563.27 153.4 14B.4 64 33 240 21 -370.33 174.6 153.6 66 25 242 15 -453.92 173.6 158.6 68 25 244 16 -518.08 174.4 15B.4 68 15 246 14 -715.64 163.2 149.2 64 30 24B 14 .00 161.0 147.E 64 30 250 13 -209.95 159.0 146.0 63 32 252 22 -400.95 176.5 154.5 66 24 254 18 -502.04 181.6 163.6 70 22 156 17 -913.6B 163.2 146.2 63 30 25B 17 -782.22 159.0 142.0 61 32 260 23 -526.34 190.0 167.8 72 1B 262SP 34 7960.11U 190.9 156.9 68 19 PECK RES. 2645P 18 33BB.26U 197.0 179.0 77 14 WELL 7 266 23 .00 190.9 167.9 72 18 270SP 27 3033.96U 228.0 201.0 87 HI 0 WELL 5 272 25 .00 194.9 169.9 73 16 274SP 19 3067.11U 198.9 179.9 7B 13 WELL 6 276SP 17 B13.21U 183.6 166.6 72 21 WELL 1 278 19 .00 . 181.5 162.5 70 22 284SP 27 _ 3261.68U 219.9 192.9 83 HI 4 WELL 9 186SP 19 3175,92U 215.8 196.8 85 HI 5 WELL 10 288 22 .00 210.2 188.2 B1 HI 8 290SP 44 447.17U 204.1 160.1 69 13 DYKE WELL 292 48 .00 176.9 128.9 55 28 294 12 6700.00 141.7 129.7 56 39 OC44,Adams 300 25 4500.00 216.3 191.3 82 HI 5 DC9 3015P 65 21101.47U 174.1 109.1 47 33 Overmyer Res, 302 5 .00 152.8 147.E 64 33 304 25 9000.00 190.9 165.9 71 18 OC35 305 40 .00 149.5 109.5 47 41 306 30 .00 143.9 113.9 49 42 315 34 .00 134.4 100.4 43 48 Maximum Unbalanced Head = .00002 208 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:29 AM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION H8L DISCH H8L LIFT PUMP NODE Bp® Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 301SP 21101 50.0 174.1 124.1 20 Overmyer Res. 262SP 7960 20.0 190.9 170.9 30 PECK RES. 290SP 447 -34.0 204.1 239.1 11 DYKE WELL 276SP 813 -9B.0 183.6 281.6 1 WELL 1 2706P 3034 -62.0 228.0 290.0 5 WELL 5 274SP 3067 -59.0 19B.9 257.9 6 WELL 6 264SP 33BB -B9.0 197.0 286.0 7 WELL 7 284SP 3262 -64.0 219.9 293.9 9 WELL 9 286SP 3176 -55.0 215.8 270.8 10 WELL 10 28 -5901 50.0 SOURCE PUMPS Node Pump# 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000. 20650. 21B75. 22525. 22875. 23350. 23775. 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000. 15800. 16100. 16250. 16500. 16750. 290 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200. 400. 600. 800. 0. 0. 0. 276 1 Head 440 399 348 311 287 205 98 0 Flow 0. 200. 400. 600. BOO. 1000. 1200. 0. 270 5 Head 471 359 337 292 224 143 9B 0 Flow 0. 1882. 2259. 3012. 3765. 451B. 4894. 0. 274 6 Head 488 318 296 287 257 206 148 0 Flow 0. 1761. 2201. 2641. 3081. 3521. 3962. 0. 264 7 Head 397 299 291 268 238 208 174 0 Flow 0. 2B17. 3286. 3756. 4225. 4695. 5164. '0. 2B4 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170, 1873. 3277. 3745. 4214. 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1959. 2324. 27B9. 3253. 371B. 0. 0. Iteration= 1, Flow Correction= 45313.140 Iteration= 2, Flow Correction= 19405.920 Iteration= 3, Flow Correction= 9172.602 Iteration= 4, Flow Correction= 4143.083 Iteration= 5, Flow Correction= 3998.221 (.teration= 6, Flow Correction= 1625.028 Iteration= 7, Flow Correction= 799.036 Iteration= B, Flow Correction= 158.518 Iteration= 9, Flow Correction= 27.238 Iteration= 11, Flow Correction= .001 Iteration= 12, Flow Correction= .000 CITY OF HUNTINGTON BEACH TUE, NOV 10, 1987, 4:37 PM ULTIMATE SYSTEM -- MAXIMUM DAY ULTIMATE DEMAND 6 FIRE NODE 46 INPUT FILE NAME MDUFR46 NUMBER OF PIPES 245 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gpm MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet 11000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40. Psi - HIGH BO. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-} FIXED DEMANDS = .00 SUM OF (+} FIXED DEMANDS = 20200.00 SUM OF PEAKABLE DEMANDS =-24819.11 SUM OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -60310.43 SUM OF ALL DEMANDS --------- -40110.43 Solution reached in 21 iterations Last flow correction was .00 t CITY OF HUNTINGTON BEACH TUE, NOV 10, 1987, 4:37 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Bps Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 563 .9 .5 .2 4 2 6 2000 12.0 130 101 .3 .1 .0 LO 6 4 6 1600 12.0 130 35B 1.0 .6 .4 8 6 8 2600 12.0 130 542 1.5 2.1 .8 10 8 10 2900 12.0 130 564 1.6 2.5 .9 12 12 10 970 10.0 130 349 1.4 .8 .9 14 14 4 2900 16.0 130 1140 1.8 2.3 .8 16 16 6 2620 12.0 130 468 1.3 1.6 .6 18 18 8 2640 12.9 130 570 1.6 2.4 .9 20 20 12 2350 12.0 130 727 2.1 3.3 1.4 22 12 22 2280 12.0 130 89 .3 .1 .0 LO 24 14. 16 2600 12.0 130 413 1.2 1.3 .5 26 16 18 2610 12.0 130 430 1.2 1.4 .5 28 18 20 2510 12.0 130 316 .9 .8 .3 30 24 14 2620 16.0 130 2148 3.4 6.7 2.6 32 26 16 2700 12.0 130 906 2.6 5.7 2.1 34 28 1B 2700 12.0 130 B85 2.5 5.5 2.0 36 30 20 2570 12.0 130 762 2.2 3.9 1.5 38 32 22 3430 9.0 130 273 1.7 5.7 1.7 40 24 26 2680 12.0 130 560 1.6 2.3 .9 42 26 28 2640 12.0 130 465 1.3 1.6 .6 44 28 30 2670 12.0 130 555 1.6 2.3 .9 46 30 32 2550 12.0 130 475 1.3 1.6 .6 48 34 32 2900 -12.0 130 799 2.3 4.7 1.7 50 36 24 2640 16.0 130 3119 5.0 13.6 5.1 52 38 26 2600 12.0 130 1358 3.9 11.6 4.5 54 40 28 2580 12.0 130 1329 3.8 11.1 4.3 56 42 30 2640 12.0 130 1420 4.0 12.9 4.9 58 46 34 2320 12.0 130 907 2.6 4.9 2.1 60 36 38 2640 12.0 130 784 2.2 4.3 1.6 62 38 40 2640 12.0 130 543 1.5- 2.2 .8 64 40 42 2700 12.0 130 254 .7 .5 .2 66 44 42 2550 12.0 130 157 .4 .2 .1 LO 68 48 46 700 20.0 130 2475 2.5 .8 1.1 70 50 36 2550 16.0 130 4549 7.3 26.3 10.3 HI 72 52 38 2640 12.0 130 1677 4.9 17.5 6.6 74 54 40 2650 12.0 130 1677 4.8 17.5 6.6 76 56 42 2620 12.0 130 1716 4.9 18.1 6.9 18 58 44 2640 8.0 130 621 4.0 20.0 7.6 80 62 46 2950 12.0 120 1576 4.5 20.1 6.8 82 64 48 5300 20.0 130 3703 3.8 12.6 2.4 84 50 52 2700 12.0 130 1423 4.0 13.2 4.9 86 52 54 2600 12.0 130 538 1.5 2.1 .8 88 54 56 2640 12.0 130 1 .0 LD .0 .0 LO 90 58 56 2660 12.0 130 536 1.5 2.1 .8 92 60 58 1330 12.0 130 734 2.1 1.9 1.4 94 60 62 1130 8.0 130 54B 3.5 6.8 6.0 8 6 12 96 66 52 2640 12.0 130 1443 4.1 13.2 5.0 97 68 54 2640 12.0 130 1595 4.5 15.9 6.0 98 70 56 2640 12.0 130 1667 4.7 17.2 6.5 99 72 58 2640 8.0 130 574 3.7 17.3 6.5 100 72 58 2640 8.0 130 574 3.7 17.3 6.5 101 74 60 2640 12.0 130 1644 4.7 16.8 6.4 102 80 62 3200 12.0 120 1393 4.0 17.4 5.4 104 84 64 2850 12.0 70 1059 3.0 25.3 8.9 CITY OF HUNTINGTON BEACH TUE, NOV 10, 1997, 4:37 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO . Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 4230 6.7 25.3 9.0 108 66 50 5250 30.0 120 503 .2 .0 .0 LO 110 68 66 2640 30.0 120 2770 1.3 .6 .2 112 70 68 2b80 30.0 120 4303 2.0 1.4 .5 114 70 68 2680 12.0 130 419 1.2 1.4 .5 116 72 70 2600 12.0 130 546 1.5 2.2 .8 118 72 70 2600 30.0 120 5613 2.5 2.2 .8 120 74 72 1450 30.0 120 6198 2.8 1.4 1.0 122 76 74 600 30.0 120 7016 3.2 .8 1.3 124 76 78 150 8.0 130 1147 7.3 3.5 23.5 HI 126 78 80 1050 12.0 130 1147 3.3 3.4 3.3 128 82 80 1150 12.0 130 246 .7 .2 .2 130 84 82 1250 12.0 130 517 1.5 .9 .7 132 50 98 5300 12.0 130 378 1.1 2.2 .4 134 66 100 2580 12.0 130 270 .8 .6 .2 136 102 68 2640 12.0 130 150 .4 .2 .1 LO 139 104 70 2630 12.0 130 715 2.0 3.6 1.4 140 86 72 1320 12.0 130 1333 3.8 5.7 4.3 142 106 86 1320 12.0 130 554 1.6 1.1 .8 144 88 86 1450 14.0 120 964 2.0 1.9 1.3 146 108 88 1280 12.0 130 1400 4.0 6.1 4.7 149 90 88 650 14.0 120 1234 2.6 1.3 2.0 149 88 74 1350 12.0 130 1371 3.9 6.1 4.6 151 90 76 1300 30.0 120 15099 6.9 6.7 5.2 152 90 96 3150 42.0 120 2672 .6 .1 .0 LO 15B 100 98 2680 12.0 130 471 1.3 1.7 .6 160 102 100 2690 12.0 130 421 1.2 1.4 .5 162 104 102 2750 12.0 130 811 2.3 4.7 1.7 164 106 104 2580 12.0 130 901 2.6 5.4 2.1 166 108 106 1500 12.0 130 1370 3.9 6.8 4.5 168 110 108 700 12.0 130 3047 9.6 14.0 20.0 HI 170 112 90 950 21.0 120 12423 11.5 HI 19.5 20.5 HI 171 112 90 950 16.0 130 6582 10.5 HI 19.5 20.5 HI 172 112 11.0 350 21.0 120 3679 3.4 .8 2.2 174 110 116 750 21.0 120 632 .6 .1 .1 LO 176 114 96 3400 42.0 120 10603 2.5 1.8 .5 178 119 104 2640 12.0 130 973 2.8 6.4 2.4 179 120 106 2640 8.0 130 551 3.5 16.0 6.1 180 120 106 2640 6.0 130 258 2.9 16.0 6.1 182 116 120 2550 12.0 130 846 2.4 4.8 1.9 184 122 116 1900 21.0 120 522 .5 .1 .1 LO 18B 128 114 4000 42.0 120 12701 2.9 2.9 .7 190 120 118 2550 8.0 130 542 3.5 15.0 5.9 192 122 120 2150 8.0 130 324 2.1 4.9 2.3 194 122 124 600 9.0 130 268 1.7 1.0 1.6 196 131 118 2640 8.0 130 712 4.5 25.7 9.7 197 132 130 900 8.0 130 429 2.7 3.1 3.8 19B 130 129 850 6.0 130 144 1.6 1.7 2.0 199 129 120 1250 9.0 130 144 .9 .6 .5 200 132 120 2750 B.0 130 300 1.9 5.4 2.0 201 134 122 2640 21.0 120 1459 1.4 1.0 .4 202 136 124 3250 12.0 130 28 .1 LO .0 .0 LO 206 140 128 700 12.0 130 608 1.7 .7 1.0 208 142 12B 1800 12.0 130 408 1.2 .9 .5 2W 144 142 1150 12.0 130 768 2.2 1.9 1.6 CITY OF HUNTINGTON BEACH TUE, NOV 10, 1987, 4:37 PM PIPE --NODES-- LENGTH OIAN -FLOW- -VELOCITY- ---HEAOLOSS--- NO FROM TO Feet Inches H-W C Gpm Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 212 292 132 1950 8.0 130 367 2.3 5.6 2.9 214 134 132 2000 12.0 130 277 .8 .5 .2 216 134 136 1200 12.0 130 791 2.2 2.0 1.6 219 136 138 2050 12.0 130 819 2.3 3.6 1.8 220 164 146 2200 12.0 130 498 1.4 1.5 .7 222 142 140 1900 12.0 130 166 .5 .2 .1 LO 224 146 128 4200 42.0 120 11911 2.8 2.7 .6 226 146 144 650 24.0 120 993 .7 .1 .1 LO 228 152 131 2700 8.0 130 594 3.8 19.8 7.0 230 154 132 3150 8.0 130 324 2.1 7.1 2.3 232 156 134 2640 21.0 120 2759 2.6 3.3 1.3 234 158 136 2640 12.0 130 306 .9 .7 .3 236 150 160 1400 12.0 130 308 .9 .4 .3 238 148 150 700 14.0 130 308 b .1 .1 240 138 149 500 12.0 130 308 .9 .1 .3 242 162 140 2640 12.0 130 767 2.2 4.1 1.6 244 164 146 2120 42.0 120 12646 2A 1.5 .7 246 152 154 2640 8.0 130 569 3.6 17.0 6.4 248 154 156 2640 8.0 130 236 1.5 3.3 1.3 250 156 15B 1300 12,0 130 1191 3.4 4.6 3.5 252 158 160 2000 12.0 130 990 2.8 5.0 2.5 254 160 162 2660 12.0 130 774 2.2 4.2 1.6 256 162 164 2660 12.0 130 258 .7 .5 .2 257 180 164 2700 12.0 130 537 1.5 2.2 .8 258 164 166 2640 - 12.0 130 51B 1.5 2.0 .8 260 168 152 2550 12.0 130 1670 4.7 16.7 6.6 261 168 170 2330 21.0 120 7377 6.8 18.2 7.8 262 170 154 3050 8.0 130 501 3.2 15.5 5.1 263 170 172 2000 21.0 120 6522 6.0 12.4 6.2 264 172 156 2650 21.0 120 3929 3.6 6.4 2.4 265 172 174 1350 16.0 130 1929 3.1 2.8 2.1 266 174 158 2650 8.0 130 392 2.4 9.1 3.1 267 174 176 1950 16.0 130 2143 3.4 5.0 2.6 20 11 09 2"0 16.0 130 2371 3.9 9.2 3.1 NO 08 162 2700 12.0 130 765 2A 4.2 1.5 271 178 180 2700 16.0 120 1156 1.8 2.6 .9 272 180 164 2700 42.0 120 13364 3.1 2.2 .8 273 180 192 1150 16.0 120 120 2 A 1.3 1.1 274 166 184 2680 12.0 130 163 .5 .2 .1 LO 275 182 184 1550 16.0 125 1810 21 3.1 10 277 184 196 2650 16.0 125 1650 2.6 4.5 1.7 279 196 190 2750 16.0 125 876 1.4 1.4 .5 280 190 192 1340 16.0 125 207 .3 .0 .0 LO 282 192 194 3200 14.0 130 113 .2 .1 .0 LO 284 218 194 5300 14.0 130 496 1.0 1.7 .3 286 196 170 2660 8.0 130 263 1.7 4.1 1.5 288 198 174 2640 12.0 130 924 2.6 5.8 2.2 290 200 176 2500 12.0 130 540 11 2.0 .8 292 202 204 2700 8.0 130 336 2.1 6.5 2.4 294 204 178 800 12.0 130 82 .2 .0 .0 LO 296 206 180 2700 36.0 120 14320 4.5 5.2 1.9 298 206 182 3800 12.0 130 906 2.3 6.5 1.7 300 208 184 2640 12.0 130 35 .1 LO .0 .0 LO 301 210 186 2640 8.0 130 81 .5 .5 .2 302 190 212 2640 12.0 130 312 .9 .8 .3 CITY OF HUNTINGTON BEACH TUE, NOV 10, 19811 4:37 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft11000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 304 196 198 3300 8.0 130 447 2.9 13.6 4.1 306 198 200 2700 12.0 130 1142 3.2 8.9 3.2 308 200 202 2640 12.0 130 719 2.0 3.6 1.4 310 202 206 2640 12.0 130 747 2.1 3.9 1.5 312 206 209 2640 12.0 130 1213 3.4 9.6 3.6 314 208 210 2640 12.0 130 763 2.2 4.1 1.5 316 210 212 2640 12.0 130 610 1.7 2.7 1.0 318 212 214 1300 12.0 130 594 1.7 1.3 1.0 320 222 196 2700 12.0 130 1395 4.0 12.7 4.7 322 272 224 1320 12.0 130 956 2.7 3.1 2.3 324 228 200 2640 12.0 130 806 2.3 4.5 1.7 326 230 202 3000 12.0 130 698 2.0 3.9 1.3 327 232 206 2640 12.0 130 909 2.6 5.6 2.1 328 232 206 2640 36.0 120 15096 4.8 5.6 2.1 330 236 210 2700 12.0 130 1119 3.2 9.4 3.1 332 214 216 1000 10.0 130 227 .9 .4 .4 334 238 216 2100 8.0 130 420 2.7 7.7 3.7 336 302 220 4500 20.0 130 1340 11 1.6 .4 # 338 220 218 1250 14.0 130 958 2.0 1.4 1.1 # 340 288 224 1700 12.0 130 2213 60 18.8 11.0 HI 342 224 228 2000 12.0 130 1900 5.4 16.6 9.3 344 228 230 2640 12.0 130 779 2.2 4.2 1.6 346 230 232 2640 12.0 130 548 1.6 2.2 .8 34B 232 234 2640 20.0 130 3316 3.4 5.1 1.9 # 350 234 236 2640 20.0 130 3510 3.6 5.7 2.2 # 352 236 238 5030 20.0 130 2324 2.4 5.1 1.0 # 354 224 226 1300 12.0 130 634 1.8 1.4 1.1 3% 240 228 2"0 12.0 130 118 .3 .1 .0 LO 358 242 230 2700 12.0 130 788 2.2 4.4 1.6 360 244 232 2700 36.0 120 19434 6.1 9.2 3.4 362 246 234 2700 12.0 130 . 355 1.0 1.0 .4 364 250 236 2690 12.6 •130 505 1.4 1.9 .7 366 226 240 3800 8.0 130 439 2.8 15.1 4.0 368 242 240 2640 10.0 130 49 .2 .1 .0 LO 370 244 242 2660 10.0 130 368 1A 16 1.0 372 244 246 2550 12.0 130 1475 4.2 13.3 5.2 374 246 248 1500 12.0 130 631 1.8 1.6 1.1 376 248 250 1200 10.0 130 631 2.6 3.2 2.6 378 252 242 2540 12.0 130 924 2.6 5.6 2.2 380 254 244 2640 36.0 120 21794 6.9 11.1 4.2 382 256 246 2540 12.0 130 227 .6 .4 .2 384 258 250 2640 12.0 130 84 .2 .1 .0 LD 386 278 252 1750 12.0 130 1325 3A 7.5 4.3 388 254 256 2600 12.0 130 2007 5.7 24.0 9.2 390 256 258 2640 12.0 130 866 2.5 5.1 1.9 392 260 254 2600 36.0 120 24799 7.8 13.9 5.3 394 262 260 150 36.0 130 12909 4.1 .2 1.4 PECK RES. 395 266 260 100 36.0 130 12416 3.9 '1 1.3 396 264 266 250 12.0 130 3416 9.7 6.2 24.7 HI WELL 7 400 270 168 970 12.0 130 3183 9.0 21.0 21.6 HI WELL 5 402 274 272 200 12.0 130 3197 9.0 4.3 21.7 HI WELL 6 404 272 198 1390 12.0 130 2231 6.3 15.5 11.2 HI 406 276 278 170 9.0 130 829 5.3 2.2 12.9 HI WELL 1 408 254 278 900 12.0 130 496 1.4 .6 .7 414 284 168 1990 16.0 130 3413 5A 12.1 6.1 WELL 9 CITY OF.HUNTINGTON BEACH TUE, NOV 10, 1987, 4:37 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- . NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 416 288 222 1600 12.0 130 1106 3.1 4.9 3.1 418 286 288 1050 16.0 130 331E 5A 6 A 18 WELL 10 420 290 292 1400 6.0 120 485 5.5 31.5 22.5 HI DYKE WELL 422 292 131 750 8.0 130 118 .8 .3 .3 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1132 3.2 9.1 3.2 452 300 168 5300 22.0 120 3368 2.8 7.7 1.5 OC9 500 301 112 100 36.8 120 22684 6.8 .4 4.1 Overmyer Res, 501 238 302 2000 20.0 130 1340 1.4 .7 .4 N 502 95 84 1000 16.0 130 3671 5.9 6.9 6.9 503 96 95 452 24.0 120 13275 9.4 5.5 12.1 HI 504 304 266 10 36.0 130 9000 2.9 .0 .7 OC35 510 95 84 1000 20.0 130 6602 6.7 6.9 6.9 DOWNTOWN LOOP 511 84 305 4400 20.0 130 4159 4.2 13.0 3.0 DOWNTOWN LOOP 512 305 306 7200 20.0 130 4159 4.2 21.2 3.0 DOWNTOWN LOOP 513 306 46 2000 20.0 130 3570 3.6 4.4 2.2 DOWNTOWN LOOP 514 62 46 2900 20.0 130 6602 6.7 20.1 6.9 DOWNTOWN LOOP 515 76 62 3200 20.0 130 6937 7.1 24.4 7.6 DOWNTOWN LOOP 516 114 115 3490 12.0 130 209E 6.0 34.9 10.0 HI 517 115 64 6850 12.0 130 484 1.4 4.5 .7 521 154 132 3150 00 130 324 2.1 7.1 2.3 # 522 170 154 3050 8.0 130 501 3.2 15.5 5.1 1 523 196 170 2660 8.0 130 263 1.7 4.1 1.5 # 530 306 315 450 8.0 130 589 3.8 3.1 6.9 # 531 315 34 225 6.0 130 589 6.7 6.3 27.9 HI t r CITY OF HUNTINGTON BEACH TUE, NOV 10, 1987, 4:37 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi Ck % DROP--Ck ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -462.43 70.9 65.9 28 LO 68 4 5 -218.21 71.4 66.4 28 LO 68 6 5 -385.40 70.8 65.8 28 LO 68 Banning 8 5 -547.48 68.7 63.7 27 LO 69 10 4 -912.47 66.1 62.1 26 LO 70 12 4 -288.68 67.0 63.0 27 LO 70 14 6 -594.62 73.7 67.7 29 LO 67 16 7 -420.88 72.4 65.4 28 LO 68 18 4 -429.87 71.0 67.0 29 LO 68 20 2 -352.11 70.3 68.3 29 LO 67 22 4 -362,80 66.9 62.9 27 LO 70 24 6 -411.89 80.4 74.4 32 LO 64 26 8 -546.02 79.1 70.1 30 LO 66 28 4 -353.81 76.5 72.5 31 LO 65 30 4 -737.99 74.2 70.2 30 LO 66 32 6 -1000.92 72.6 66.6 28 LO 68 34 30 -697.41 77.3 47.3 20 LO 74 36 8 -646.38 94.0 86.0 37 LO 58 38 9 -560.94 89.7 90.7 35 LO 60 40 6 -637.39 87.6 8.1.6 35 LO 60 42 6 -706.16 87.0 81.0 35 LO 61 44 18 -463.89 87.3 69.3 30 LO 64 46 36 -13314.60U 82.2F 46.2 20 LO 74 48 36 -1227.88 83.0 47.0 20 LO 73 50 12 -853.66 120.4 108.4 46 46 52 10 -649.79 107.2 97.2 42 52 54 7 -454.90 105.1 98.1 42 52 56 10 7488.67 105.1 95.1 41 53 58 25 -724.63 107.2 82.2 35 LO 56 60 35 -362.07 109.1 74.1 32 LO 58 62 40 -700.33 102.3 62.3 27 LO 64 64 75 -2070.60 95.6 20.6 B LO 85 66 10 -554.29 120.4 110.4 47 46 68 8 -507.14 121.0 113.0 48 45 70 10 -484.79 122.3 112.3 48 45 72 55 -224.29 124.5 69.5 30 LO 56 74 50 -544.56 125.9 75.9 32 LO 53 76 50 .00 126.7 76.7 33 LO 53 78 50 .00 123.2 73.2 31 LO 55 80 50 .00 119.7 69.7 30 LO 57 82 75 -270.22 119.9 44.9 19 LO 67 84 75 -309.34 120.9 45.9 19 LO 67 86 57 -194.19 130.2 73.2 31 LO 53 88 50 -298.65 132.1 82.1 35 LO 50 90 60 .00 133.4 73.4 31 LO 52 95 103 -3001.54 127.8 24.8 10 LO 77 Reservoir Hill 96 95 .00 133.3 38.3 16 LO 67 98 16 -849.04 119.1 102.1 44 48 100 15 -219.19 119.8 104.8 45 47 Flounder 102 12 -240.33 121.2 109.2 47 46 104 14 -347.98 125.9 111.9 48 44 106 5B -724.63 131.3 73.3 31 LO 53 108 55 -276.29 138.1 93.1 36 LO 47 110 60 .00 152.1 92.1 39 LO 40 142 60 .00 152.9 92.9 40 39 CITY OF HUNTINGTON BEACH TUE, NOV 10, 1987, 4:37 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK 2 DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 114 93 .00 135.1 42.1 18 LO 65 115 35 -1614.01 100.1 65.1 28 LO 63 116 60 -307.8B 152.1 92.1 39 LO 40 118 13 -281.15 132.3 119.3 51 40 120 55 -262.44 147.3 92.3 40 42 122 35 -345.30 152.2 117.2 50 34 124 25 -295.73 151.2 126.2 54 33 128 5 -225.26 139.0 133.0 57 36 129 45 .00 147.9 102.9 44 39 130 45 -285.52 149.7 104.7 45 38 131 45 .00 158.0 113.0 48 33 132 55 -562.55 152.7 97.7 42 38 134 50 -231.34 153.2 103.2 44 37 136 50 -249.90 151.2 101.2 43 38 138 40 -511.76 147.6 107.6 46 38 140 2 -324.89 138.7 136.7 59 35 142 2 -193.67 138.8 136.8 59 35 144 2 -215.78 140.6 138.6 60 34 146 2 -250.05 140.7 138.7 60 34 148 40 .00 147.5 107.5 46 38 150 40 .00 147.4 107.4 46 38 152 28 -506.65 176.8 148.8 64 20 154 25 -688.18 159.8 134.8 58 28 156 25 -216.03 156.5 131.5 57 30 158 30 -276.78 152.0 122.0 52 33 160 5 -523.67 147.0 142.0 61 32 162 3 -514.92 142.8 139.8 60 33 164 2 -496.21 142.2 140.2 60 34 166 2 -355.02 140.3 138.3 59 34 169 27 -917.81 193.5 166.5 72 11 170 26 -379.08 175.4 149.4 64 20 172 25 -663.39 163.0 139.0 59 27 174 25 -328.54 160.1 135.1 58 28 176 12 -312.26 155.1 143.1 62 29 178 5 -531.44 147.0 142.0 61 32 180 5 -327.08 144.4 139.4 60 33 182 5 -245.43 143.1 138.1 59 34 184 5 -356.97 140.0 135.0 58 35 186 34 -B55.60 135.5 101.5 44 43 190 35 -356.72 134.1 99.1 42 44 192 55 -94.28 134.0 79.0 34 LO 50 194 5 -598.75 134.0 129.0 55 38 196 25 -420.88 179.5 154.5 66 18 198 17 -612.36 165.9 148.9 64 24 200 14 -688.66 157.1 143.1 62 28 Heil 202 10 -335.10 153.5 143.5 62 29 204 10 -253.45 147.0 137.0 59 33 206 9 -412.13 149.6 140.6 60 31 208 14 -415.53 140.0 126.0 54 37 210 15 -1191.43 136.0 121.0 52 39 212 9 -327.81 133.3 124.3 53 39 214 9 -366.20 132.0 123.0 53 40 216 9 -647.94 131.6 122.6 53 40 219 5 -472.64 135.6 130.6 56 37 220 5 -381.75 137.0 132.0 57 37 CITY OF HUNTINGTON BEACH TUE, NOV 105 1987, 4:37 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 222 26 -842.72 192.2 166.2 72 11 224 21 -635.20 178.3 157.3 68 18 226 23 -194.89 176.9 153.9 66 19 22B 20 -432.78 161.6 141.6 61 27 230 12 -320.76 157.4 145.4 63 28 232 10 -659.74 155.2 145.2 62 29 234 12 -161.35 150.1 138.1 59 31 236 15 -572.27 144.4 129.4 56 35 Scenario 238 5 -563.27 139.4 134.4 58 35 240 21 -370.33 161.8 140.9 61 27 242 15 -453.92 161.8 146.8 63 26 244 16 -518.08 164.4 148.4 64 25 246 14 -715.64 151.1 137.1 59 31 248 14 .00 149.5 135.5 58 32 250 13 -209.95 146.3 133.3 57 33 252 22 -400.95 167.4 145.4 63 24 254 19 -502.04 175.5 157.5 68 19 256 17 -913.68 151.5 134.5 56 31 258 17 -782.22 146.4 129.4 56 34 260 23 -526.34 189.4 166.4 72 13 262SP 34 12909.37U 189.6 155.6 67 13 PECK RES. 264SP 18 3415.83U 195.6 177.6 77 9 TELL 7 266 23 .00 189.5 166.5 72 13 270SP 27 3183.18U 214.5 187.5 81 HI 0 WELL 5 272 25 .00 181.4 156.4 67 17 274SP 19 3187.SOU 185.7 166.7 72 14 WELL 6 276SP 17 829.13U 177.1 160.1 69 i8 WELL 1 278 19 .00 174.9 155.9 67 20 2649P 27 3413.16U 205.6 179.6 77 4 WELL 9 28bSP 19 3318.35U 203.1 184.1 79 5 WELL 10 288 22 .00 197.1 175.1 75 9 290SP 44 484.76U 189.8 145.E 63 14 DYKE WELL 292 48 .00 158.3 110.3 47 73 294 12 6700.00 122.9 110.9 48 45 OC44,Adams 300 25 4500.00 201.3 176.3 76 7 OC9 301SP 65 22684.OBU 153.3 88.3 38 LO 40 Overmyer Res. 302 5 " .00 138.6 133.6 57 36 304 25 9000.00 189.5 164.5 71 13 OC35 305 40 .00 107.9 67.9 29 LO 61 306 30 .00 86.6 56.6 24 LO 69 315 34 .00 83.6 49.6 21 LO 72 Maximum Unbalanced Head = .00002 208 CITY OF HUNTINGTON BEACH TUE, NOV 10, 1987, 4,37 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH HGL LIFT PUMP NODE GPM Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 30iSP 22684 50.0 153.3 li?3.3 20 Overmyer Res. 2626P 12909 20.0 189.6 169.6 30 PECK RES, 2909P 485 -34.0 189.8 223.3 11 DYKE WELL 276SP 329 -98.0 177.1 275.1 1 WELL i 270SP 3i83 -62.0 214,5 276.5 5 WELL 5 274SP 3187 -59.0 195.7 244.7 6 WELL 6 264SP 3416 -89.0 1195.6 294,6 7 WELL 7 284SP 3413 -64.0 205.6 269.6 9 WELL 9 286SP 3318 -55.0 203.1 258.1 10 WELL 10 46 -13315 82.2 SOURCE PUMPS Node Pump# 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000. 2065V 21875, 22525. 22975. 23350. 23775. 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000. 15800. 16100, 16250. 16500. 16750. 290 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200, 400. 600. 800, 0. 0. 0. 276 1 Head 440 399 7,48 311 287 205 98 0 Flow 0. 200. 400. 600. BOO. 1000. 1200. 0. 270 5 Head 471 359 • 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012. 3765. 4518. 4894. 0. 274 6 Head 4B8 318 296 287 257 206 148 0 Flow 0. 1761. 2201. 2641. 3081. 3521. 3962. 0. 264 7 Head 397 299 291 26B 239 208 174 0 Flow 0. 2817. 3296. 3756. 4225. 4695. 5164. 0. 284 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170, 1873. 3277, 3745, 4214. 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859. 2324. 2799, 3253. 3718. 0. 0. Iteration= 1, Flow Correction= 315760.700 Iteration= 2, Flow Correction= 130293.200 Iteration= 3, Flow Correction= 108352.600 Iteration= 4, Flow Correction= 41337.410 Iteration= 5, Flow Correction= 1985B.270 Iteration= 65 Flow Correction= 14620.330 Iteration= 7, Flow Correction= 11473.740 Iteration= 8, Flow Correction= 12732.080 Iteration= 9, Flow Correction= 8543.874 Iteration= 11, Flow Correction= 7355.579 Iteration= 12, Flow Correction= 5101.878 Iteration= _13, Flow Correction= 3654.863 Iteration= 14, Flow Correction= 3938.792 Iteration= 15, Flow Correction= 3302.110 Iteration= 16, Flow Correction= 2955,929 Iteration= 17, Flow Correction= 1312.919 Iteration= 18, Flow Correction= 184.623 Iteration= 19, Flow Correction= 17.389 Iteration= 201 Flow Correction= .004 Iteration= 21, Flow Correction= .000 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 4:56 AN ULTIMATE SYSTEM -- MAXIMUM DAY ULTIMATE DEMAND A FIRE I NODE 95 INPUT FILE NAME RDUPR95 NUMBER OF PIPES 245 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 9 NUMBER OF SOURCR PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gp® MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HBADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pet STATIC HGL ELEVATION 0, Feet -SUN OF I-I FIXED DEMANDS = -6000.00 SUM OF FIXED DEMANDS = 20200.00 SUN OF PEAKABLE DEMANDS =-25062.61 SUN OF ALL FIXED DEMANDS --- 14200.00 SUN OF ALL PEAKED DEMANDS -- -60902.14 SUN OF ALL DEMANDS --------- -46702.15 Solution reached in 11 iterations Last flow correction Was .00 r CITY OF HUNTINGTON BBACH FBI, SBP 4, .1987, 3:08 AN PIPB --NODBS-- LBNGTH DIAN -FLOW- -VBLOCITY- ---HHADLOSS--- NO FROM TO Feet Inches H-W C GPI Fps CH ft ft/1000 CH ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 521 .8 ,5 ,2 4 2 6 2000 12.0 130 58 .2 .0 .0 LO 6 4 6 1600 12.0 130 319- .9 .5 .3 8 6 8 2600 12.0 130 462 113 1.6 16 10 8 10 2900 12.0 130 501 114 210 .7 12 12 10 970 10.0 130 411 117 1.2 112 14 14 4 2900 16.0 130 1058 1.7 2.0 ,7 16 16 6 2620 12.0 130 470 1,3 1.6 .6 18 18 8 2640 12,0 130 587 1.7 215 .9 20 20 12 2350 12.0 130 709 2.0 3.2 1.3 22 12 22 2280 12.0 130 9 .0 LO .0 .0 LO 24 14 16 2600 12.0 130 333 .9 .9 .3 26 16 18 2610 12.0 130 303 .9 .7 ,3 28 18 20 2510 12.0 130 166 .5 .2 ,1 LO 30 24 14 2620 16.0 130 1986 3.2 5.8 2.2 32 26 16 2700 12.0 130 862 2.4 5.2 1.9 34 28 18 2700 12.0 130 879 2.5 5.4 2.0 36 30 20 2570 12.0 130 896 2.5 5.3 2.1 38 32 22 3430 8.0 130 353 2.3 9.1 2.7 40 24 26 2680 12.0 130 441 1.3 1.5 16 42 26 28 2640 12.0 130 255 .7 .5 .2 44 28 30 2670 12.0 130 187 .5 .3 .1 46 32 30 2550 12.0 130 292 .8 17 .3 48 34 32 2800 12.0 130 1646 4.7 17.9 6.4 50. 36 - 24 2640 16.0 130 2838 4.5 11.4 4.3 52 38 26 2600 12.0 130 1222 3.5 9.6 3.7 54 40 28 2580 12.0 130 1164 3.3 8.7 3.4 56 42 30 2640 12.0 130 1155 3.3 8.7 3.3 58 46 34 2320 12.0 130 1603 4.5 14.1 6.1 60 36 38 2640 12.0 130 685 1,9 3,3 1.3 62 38 40 2640 12.0 130 432 1.2 1.4 .5 64 40 42 2700 12.0 130 161 .5 .2 .1 LO 66 44 42 2550 12.0 130 138 .4 ,2 .1 LO 68 46 48 700 12.0 130 1085 3.1 2.1 3.0 70 50 36 2550 16.0 130 4170 6.7 22.4 8.8 72 52 38 2640 12.0 130 1530 4.3 14.7 5.6 74 54 40 2650 12.0 130 1530 4.3 14.8 5.6 76 56 42 2620 12.0 130 1563 4.4 15.2 5.8 78 58 44 2640 8.0 130 601 3.8 18.8 7.1 80 62 46 2950 12.0 120 511 1.4 2.5 .8 82 64 48 5300 12.0 130 142 .4 ,4 J LO 84 50 52 2700 12.0 130 1294 3.7 11.0 411 86 52 54 2600 12.0 130 424 1.2 1.3 .5 88 56 54 2640 12.0 130 145 .4 .2 .1 LO 90 58 56 2660 12.0 130 732 2.1 3.8 1.4 92 60 58 1330 12.0 130 1135 3.2 4.3 3.2 94 62 60 1130 8.0 130 362 2.3 3.1 2.8 8 A 12 96 66 52 - 2640 12.0 130 1309 3.7 11.0 4.2 97 68 54 2640 12.0 130 1416 4.0 12,8 4.8 98 70 56 2640 12.0 130 1466 4.2 13.6 5.1 99 72 58 2640 8.0 130 462 2.9 11.5 4.4 100 72 58 2640 8.0 130 462 2.9 11.5 4.4 101 74 60 2640 12.0 130 1135 3.2 8.5 3.2 102 80 62 3200 12.0 120 478 1.4 2.4 .7 14 84 64 2850 12.0 70 498 1.4 6.2 2.2 CITY OF HUNTINGTON BEACH FBI, 8EP 4, 1987, 3:08 AN PIPE --NODBB-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADL0E8--- NO FROM TO Feet Inches H-W C Gpn Fps CB ft ft/1000 CB ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 1988 3.2 6.2 2.2 108 66 50 5250 30.0 120 6 .0 LO .0 .0 LO 110 68 66 2640 30.0 120 2173 1.0 .4 .1 112 70 68 2680 30.0 120 3698 1.7 1.0 .4 114 70 68 2680 12.0 130 360 1.0 1.0 .4 116 72 70 2600 12.0 130 484 1.4 1.7 .7 118 72 70 2600 30.0 120 4978 2.3 1.7 .7 120 74 72 1450 30.0 120 5605 2.5 1.2 .8 122 76 74 600 30.0 120 6295 2.9 .6 1.0 124 76 78 150 8.0 130 795 5.1 1.8 12.0 HI 126 78 80 1050 12.0 130 795 2.3 1.7 1.7 128 80 82 1150 12.0 130 317 .9 .3 .3 130 82 84 1250 12.0 130 47 .1 .0 .0 LO 132 50 98 5300 12.0 130 389 1.1 2.3 .4 134 66 100 2580 12.0 130 303 .9 .7 .3 136 102 68 2640 12.0 130 38 .1 .0 .0 LO 138 104 70 2630 12.0 130 546 1.5 2.2 .8 140 86 72 1320 12.0 130 1005 2.9 3.4 2.6 142 106 86 1320 12.0 130 442 1.3 .7 .6 144 88 86 1450 14.0 120 747 1.6 1.2 .8 146 108 88 1280 12.0 130 1242 3.5 4.9 3.8 148 90 88 650 14.0 120 793 1.7 .6 .9 149 88 74 1350 12.0 130 989 2.8 3.4 2.5 151 90 76 1300 30.0 120 10328 4.7 3.3 2.6 152 90 96 3150 42.0 120 6185 1.4 .6 .2 158 100 98 2680 12.0 130 460 1.3 1.6 .6 160 102 100 2680 12.0 130 376 1.1 1.1 .4 162 104 102 2750 12.0 130 655 1.9 3.2 1.2 164 106 104 2580 12.0 130 731 2.1 3.7 1.4 166 108 106 1500 12.0 130 1194 3.4 5.3 3.5 168 110 108 700 12.0 130 2713 7.7 11.3 16.1 HI 170 112 90 950 21.0 120 11312 10.5 HI 16.4 17.2 HI 171 112 90 950 16.0 130 5994 9.6 16.4 17.2 HI 172 112 110 350 21.0 120 3853 3.6 .8 2.3 174 110 116 750 21.0 120 1140 1.1 .2 .2 176 114 96 3400 42.0 120 6932 1.6 .8 .2 178 118 104 2640 12.0 130 817 2.3 4.6 1.7 179 120 106 2640 8.0 130 479 3.1 12.3 4.7 180 120 106 2640 6.0 130 225 2.5 12.3 4.7 182 116 120 2550 12.0 130 776 2.2 4.0 1.6 184 116 122 1900 21.0 120 57 .1 LO .0 .0 LO 188 128 114 4000 42.0 120 8273 1.9 1.3 .3 190 120 118 2550 8.0 130 467 3.0 11.4 4.5 192 122 120 2150 8.0 130 293 1.9 4.0 1.9 194 122 124 600 8.0 130 364 2.3 1.7 2.8 196 131 118 2640 8.0 130 631 4.0 20.6 7.8 197 132 130 800 8.0 130 394 2.5 2.6 3.3 198 130 129 850 6.0 130 109 1.2 1.0 1.2 199 129 120 1250 8.0 130 109 .7 .4 .3 200 132 120 2750 8.0 130 256 1.6 4.0 1.5 201 134 122 2640 21.0 120 946 .9 .5 .2 202 124 136 3250 12.0 130 68 .2 .1 .0 LO 206 140 128 700 12.0 130 361 1.0 .3 .4 208 142 128 1800 12.0 130 242 .7 .3 .2 210- 144 142 1150 12.0 130 531 1.5 .9 .8 CITY OF HUNTINGTON BEACH FBI, SEP 4, 1987, 3:08 AN PIPE --NODBS-- LENGTH DIAH -FLOW- -VELOCITY- ---HEADLOSS--- NO FHON TO Feet Inches H-W C Gpi Fps CE ft ft/1000 CE ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 212 292 132 1950 8.0 130 358 2.3 5.3 2.7 214 134 132 2000 12.0 130 281 .8 .5 .2 216 134 136 1200 12.0 130 840 2.4 2.2 1.8 218 136 139 2050 12.0. 130 856 2.4 3.9 1.9 220 164 146 2200 12.0 130 337 1.0 .7 .3 222 142 140 1800 12.0 130 96 .3 .1 .0 LO 224 146 128 4200 42.0 120 7896 1.8 1.3 .3 226 146 144 650 24.0 120 747 .5 .0 .1 LO 228 152 131 2700 8.0 130 543 3.5 15.9 5.9 230 154 132 3150 8.0 130 286 1.8 5.7 1.8 232 156 134 2640 21.0 120 2299 2.1 2.4 .9 234 158 136 2640 12.0 130 197 .6 .3 .1 236 150 160 1400 12.0 130 344 1.0 .5 .4 238 148 150 700 14.0 130 344 .7 .1 .2 240 138 148 500 12.0 130 344 1.0 .2 .4 242 162 140 2640 12.0 130 590 1.7 2.5 1.0 244 164 146 2120 42.0 120 8556 2.0 .7 .4 246 152 154 2640 8.0 130 540 3.4 15.4 5.8 248 154 156 2640 8.0 130 216 1.4 2.8 1.1 250 156 158 1300 12.0 130 1147 3.3 4.3 3.3 252 158 160 2000 12.0 130 993 2.8 5.0 2.5 254 160 162 2660 12.0 130 814 2.3 4.6 1.7 256 162 164 2660 12.0 130 312 .9 .8 .3 257 180 164 2700 12.0 130 377 1.1 1.1 .4 258 164 166 2640 12.0 130 698 2.0 3.4 1.3 260 168 152 2550 12.0 130 1589 4.5 15.3 6.0 261 168 170 2330 21.0 120 7112 6.6 17.0 7.3 262 170 154 3050 8.0 130 468 3.0 13.7 4.5 263 170 172 2000 21.0 120 6244 5.8 11.5 5.7 264 172 156 2650 21.0 120 3446 3.2 5.0 1.9 265 172 174 1350 16.0 130 2134 3.4 3.4 2.5 266 174 158 2650 8.0 130 320 2.0 5.9 2.2 267 174 176 1950 16.0 130 2255 3.6 5.5 2.8 269 176 178 2640 16.0 130 2233 3.6 7.3 2.8 270 178 162 2700 12.0 130 603 1.7 2.7 1.0 271 178 180 2700 16.0 120 1101 1.8 2.3 .9 272 180 164 2700 42.0 120 9398 2.2 1.1 .4 273 180 182 1150 16.0 120 1534 2.4 1.8 1.6 274 166 184 2680 12.0 130 343 1.0 .9 .4 275 182 184 1560 16.0 125 1974 3.1 3.7 2.4 277 184 186 2650 16.0 125 1822 2.9 5.4 2.0 279 186 190 2750 16.0 125 997 1.6 1.8 .7 280 190 192 1340 16.0 125 309 .5 .1 .1 LO 282 192 194 3200 14.0 130 215 .4 .2 .1 LO 284 218 194 5300 14.0 130 384 .8 1.1 .2 286 196 170 2660 8.0 130 224 1.4 3.0 1.1 288 198 174 2640 12.0 130 770 2.2 4.1 1.6 290 200 176 2500 12.0 130 290 .8 .6 .3 292 202 204 2700 8.0 130 256 1.6 4.0 1.5 294 204 178 800 12.0 130 3 .0 LO .0 .0 LO 296 206 180 2700 36.0 120 10535 3.3 3.0 1.1 298 206 182 3800 12.0 130 686 1.9 4.8 1.3 300 184 208 2640 12.0 130 138 .4 .2 .1 LO 301 210 186 2640 8.0 130 30 .2 .1 .0 LO 30t 190 212 2640 12.0 130 331 .9 .9 .3 CITY OF HUNTINGTON BEACH FEI,.SEP 4, 1987, 3:08 AN PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPI Fps CH ft ft/1000 CE ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 304 196 198 3300 8.0 130 451 2.9 13.8 4.2 306 198 200 2700 12.0 130 1157 3.3 9.0 3.3 308 200 202 2640 12.0 130 756 2.1 4.0 1.5 310 202 206 2640 12.0 130 688 2.0 3.3 1.3 312 206 208 2640 12.0 130 1147 3.3 8.6 3.3 314 208 210 2640 12.0 130 869 2.5 5.2 2.0 316 210 212 2640 12.0 130 622 1.8 2.8 1.1 318 212 214 1300 12.0 130 625 1.8 1.4 1.1 320 222 196 2700 12.0 130 1320 3.7 11.4 4.2 322 272 224 1320 12.0 130 988 2.8 3.3 2.5 324 228 200 2640 12.0 130 577 1.6 2.4 .9 326 230 202 3000 12.0 130 523 1.5 2.3 .8 327 232 206 2640 12.0 130 687 1.9 3.3 1.3 328 232 206 2640 36.0 120 11405 3.6 3.3 1.3 330 236 210 2700 12.0 130 974 2.8 6.5 2.4 332 214 216 1000 10.0 130 259 1.1 .5 .5 334 238 216 2100 8.0 130 389 2.5 6.7 3.2 336 302 220 4500 20.0 130 1238 1.3 1.4 .3 t 338 220 218 1250 14.0 130 857 1.8 1.1 .9 t 340 288 224 1700 12.0 130 2209 6.3 18.7 11.0 HI 342 224 228 2000 12.0 130 1919 5.4 17.0 8.5 344 228 230 2640 12.0 130 769 2.2 4.1 1.6 346 230 232 2640 12.0 130 561 1.6 2.3 .9 348 232 234 2640 20.0 130 3403 3.5 5.4 2.0 t 350 234 236 2640 20.0 130 3356 3.4 5.2 2.0 352 236 238 5030 20.0 130 2190 2.2 4.5 .9 t 354 224 226 1300 12.0 130 643 1.8 1.5 1.1 356 228 240 2700 12.0 130 140 .4 .2 .1 LO 358 242 230 2700 12.0 130 637 1.8 3.0 1.1 360 244 232 2700 36.0 120 15593 4.9 6.1 2.3 362 246 234 2700 12.0 130 114 .3 .1 .0 LO 364 250 236 2680 12.0 130 381 1.1 1.1 .4 366 226 240 3800 8.0 130 448 2.9 15.7 4.1 368 240 242 2640 10.0 130 218 .9 1.0 .4 370 244 242 2660 10.0 130 200 .8 .8 .3 372 244 246 2550 12.0 130 1355 3.8 11.4 4.5 374 246 248 1500 12.0 130 590 1.7 1.4 1.0 376 248 250 1200 10.0 130 590 2.4 2.8 2.3 378 252 242 2540 12.0 130 673 1.9 3.1 1.2 380 254 244 2640 36.0 120 17666 5.6 7.5 2.8 382 256 246 2540 12.0 130 65 .2 .0 .0 LO 384 258 250 2640 12.0 130 1 .0 LO .0 .0 LO 386 278 252 1750 12.0 130 1074 3.0 5.1 2.9 388 254 256 2600 12.0 '130 1762 5.0 18.8 7.2 390 256 258 2640 12.0 130 783 2.2 4.3 1.6 392 260 254 2600 36.0 120 20190 6.4 9.5 3.6 394 262 260 150 36.0 130 8326 2.6 .1 .6 PECK EES, 395 266 260 100 36.0 130 12390 3.9 .1 1.3 396 264 266 250 12.0 130 3390 9.6 6.1 24.3 HI WELL 7 400 270 168 970 12.0 130 3039 8.6 19.3 19.9 HI WELL 5 402 274 272 200 12.0 130 3076 8.7 4.1 20.3 HI WELL 6 404 272 198 1380 12.0 130 2088 5.9 13.7 9.9 406 276 278 170 8.0 130 814 5.2 2.1 12.5 HI WELL 1 408 254 278 900 12.0 130 260 .7 .2 .2 41k 284 168 1990 16.0 130 3269 5.2 11.1 5.6 WELL 9 CITY OF HUNTINGTON BEACH FRI, 8EP 4, 1987, 3:08 AN PIPE --NODRB-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADL09B--- NO FROM TO Feet Inches H-W C GPI Fps CH ft ft/1000 CB ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- - 416 288 222 1600 12.0 130 973 2.8 3.9 2.4 418 286 288 1050 16.0 130 3182 5.1 5.6 5.3 WELL 10 420 290 292 1400 6.0 120 446 5.1 27.1 19.3 HI DYKE WELL 422 292 131 750 8.0 130 88 .6 .2 .2 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1189 3.4 10.0 3.5 452 300 168 5300 22.0 120 3311 2.8 7.5 1.4 OC9 500 301 112 100 36.8 120 21159 6.4 .4 3.6 Overmyer Res, 501 238 302 2000 20.0 130 1238 1.3 .6 .3 # 502 95 84 1000 16.0 130 1471 2.3 1.3 1.3 503 96 95 452 24.0 120 13117 9.3 5.3 11.8 HI 504 304 266 10 36.0 130 9000 2.8 .0 .7 OC35 510 95 84 1000 2010 130 2645 2.7 1.3 1.3 DOWNTOWN LOOP 511 84 305 4400 20.0 130 1368 114 1.7 .4 DOWNTOWN LOOP 512 305 306 7200 20.0 130 1368 1.4 2.7 .4 DOWNTOWN LOOP 513 306 46 2000 20.0 130 627 .6 ,2 .1 LO DOWNTOWN LOOP 514 62 46 2900 20.0 130 2142 2.2 2.5 .9 DOWNTOWN LOOP 515 76 62 3200 20.0 130 3237 3.3 5.9 1.9 DOWNTOWN LOOP 516 114 115 3490 12.0 130 1341 3.8 15.2 4.4 517 64 115 6850 12.0 130 273 .8 1.6 .2 521 154 132 3150 8.0 130 286 1.8 5.7 1.8 # 522 170 154 3050 8.0 130 468 3.0 13.7 4.5 # 523 196 170 2660 8.0 130 224 1.4 3.0 1.1 # 530 306 315 450 8.0 130 740 4.7 4.7 10.5 HI 1 531 315 34 225 6.0 130 740 8.4 9.6 42.5 HI # r CITY OF HUNTINGTON BEACH FRI, 8RP 4, 1987, 3:08 AN GROUND RLV FLOW HGL BL BRAD ------- PRESSURE ------ NODB Feet Gpn Feet Feet Psi CB % DROP--CB ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -462.43 106.3 101.3 43 54 4 5 -218.21 106.7 101.7 44 54 6 5 -385.40 106.2 101.2 43 54 Banning 8 5 -547.48 104..7 99.7 43 55 10 4 -912.47 102.6 98.6 42 55 12 4 -288.68 103.8 99.8 43 55 14 6 -594.62 109.7 102.7 44 53 16 7 -420.88 107.9 100.9 43 54 18 4 -429.87 107.2 103.2 44 53 20 2 352.11 106.9 104.9 45 53 22 4 -362.80 103.8 99.8 43 55 24 6 -411.89 114.6 108.6 47 50 26 8 -546.02 113.1 105.1 45 52 28 4 -353.81 112.5 108.5 47 51 30 4 -737.99 112.2 108.2 46 51 32 6 -1000.92 112.9 106.9 46 51 34 30 -697.41 130.8 100.8 43 48 36 8 -646.38 126.0 118.0 51 46 38 9 -560.84 122.6 113.6 49 48 40 6 -637.39 121.2 115.2 49 47 42 6 -706.16 121.0 115.0 49 48 44 18 -463.89 121.2 103.2 44 50 46 36 -591.71 144.9 108.9 47 43 48 36 -1227.88 142.8 106.8 46 44 50 12 -853.66 148.4 136.4 59 36 52 10 -649.78 137.3 127.3 55 41 54 7 -454.90 136.0 129.0 55 41 56 10 -488.67 136.2 126.2 54 42 58 25 -724.63 140.0 115.0 49 43 60 35 -362.07 144.2 109.2 47 43 62 40 -700.33 147.4 107.4 46 42 64 75 -2070.60 143.2 68.2 29 LO 55 66 10 -554.28 148.4 138.4 59 36 68 8 -507.14 148.8 140.8 61 35 70 10 -484.79 149.8 139.8 60 35 12 55 -224.29 151.5 96.5 41 44 74 50 -544.56 152.7 102.7 44 42 76 50 .00 153.3 103.3 44 41 78 50 .00 151.5 101.5 44 42 80 50 .00 149.8 99.8 43 43 82 75 -270.22 149.4 74.4 32 LO 51 84 75 -309.34 149.4 74.4 32 LO 51 86 57 -184.19 154.9 97.9 42 42 88 50 -298.65 156.1 106.1 45 40 90 60 .00 156.6 96.6 41 42 95 103 -9001.54 150.7 47.7 20 LO 61 Reservoir Hill 96 95 .00 156.0 61.0 26 LO 53 98 16 849.04 146.0 130.0 56 38 100 15 -219.19 147.7 132.7 57 37 Flounder 102 12 -240.33 148.8 136.8 59 36 104 14 -347.98 152.0 138.0 59 35 106 58 -724.63 155.6 97.6 42 42 108 55 -276.29 160.9 105.9 45 38 110 60 .00 172.2 112.2 48 33 lit 60 A 173.0 113.0 49 32 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:08 AN GROUND HLV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet Gp0 Feet Feet Psi CE % DROP--CE ---- ------ ------ ------ ------ ------ -- ------ -- 114 93 .00 156.8 63.8 27 LO 52 115 35 -1614.01 141.6 106.6 46 44 116 60 -307.88 172.0 112.0 48 33 118 13 -281.15 156.6 143.6 62 33 120 55 -262.44 167.9 112.9 48 34 122 35 =345.30 172.0 137.0 59 28 124 25 -295.73 170.3 145.3 62 28 128 5 -225.26 158.2 153.2 66 31 129 45 .00 168.3 123.3 53 32 130 45 -285.52 169.4 124.4 53 31 131 45 .00 177.1 132.1 57 27 132 55 -562.55 172.0 117.0 50 32 134 50 -231.34 172.4 122.4 53 31 136 50 -249.80 170.2 120.2 52 32 138 40 -511.76 166.3 126.3 54 32 140 2 -324.89 158.4 156.4 67 30 142 2 -193.67 158.5 156.5 67 30 144 2 -215.78 159.4 157.4 68 30 146 2 -250.05 159.4 157.4 68 30 148 40 .00 166.2 126.2 54 32 150 40 .00 166.1 126.1 54 32 152 28 -506.65 193.1 165.1 71 17 154 25 -688.18 177.6 152.6 66 24 156 25 -216.03 174.8 149.8 64 26 158 30 -276.78 170.6 140.6 60 28 160 5 -523.67 165.6 160.6 69 27 162 3 -514.92 161.0 158.0 68 29 164 2 -496.21 160.2 158.2 68 29 166 2 -355.02 156.7 154.7 67 31 168 27 -917.81 208.3 181.3 78 9 170 26 -379.08 191.3 165.3 71 17 172 25 -663.39 179.9 154.9 67 23 174 25 -328.54 176.4 151.4 65 25 176 12 -312.26 170.9 158.9 68 26 178 5 -531.44 163.6 158.6 68 28 180 5 -327.08 161.3 156.3 67 29 182 5 -245.43 159.5 154.5 66 30 184 5 -356.97 155.8 150.8 65 32 186 34 -855.60 150.4 116.4 50 39 190 35 -356.72 148.5 113.5 49 41 192 55 -94.28 148.4 93.4 40 45 194 5 -598.75 148.2 143.2 62 35 196 25 -420.88 194.4 169.4 73 16 198 17 -612.36 180.6 163.6 70 22 200 14 -688.66 171.6 157.6 68 26 Heil 202 10 -335.10 167.6 157.6 68 27 204 10 -253.46 163.6 153.6 66 29 206 9 -412.13 164.3 155.3 67 28 208 14 -415.53 155.6 141.6 61 33 210 15 -1191.43 150.5 135.5 58 36 212 9 -327.81 147.7 138.7 60 36 214 9 -366.20 146.3 137.3 59 37 216 9 -647.84 145.8 136.8 59 37 218 5 -472.64 149.3 144.3 62 35 2M 5 -381.75 150.4 145.4 63 34 CITY OF HUNTINGTON BEACH FBI, SBP 4, 1987, 3:08 AN GROUND BLV FLOW HGL BL HEAD ------- PRESSURE ------ NODE Feet Gpm Feet Feet Psi CB % DROP--CE ---- ------ ------ ------ ------ ------ -- ------ -- 222 26 -842.72 205.8 179.8 77 10 224 21 -635.20 191.0 170.0 73 17 226 23 -194.99 189.5 166.5 72 18 228 20 -432.78 174.0 154.0 66 25 230 12 -320.76 169.9 157.9 68 26 232 10 -659.74 167.6 157.6 68 27 234 12 -161.35 162.2 150.2 65 30 236 15 -572.27 157.0 142.0 61 33 Scenario 238 5 -563.27 152.5 147.5 63 33 240 21 -370.33 173.8 152.8 66 26 242 15 -453.92 172.9 157.9 68 25 244 16 -518.08 173.7 157.7 68 25 246 14 -715.64 162.3 148.3 64 30 248 14 .00 160.9 146.9 63 31 250 13 -209.95 158.1 145.1 62 32 252 22 -400.95 176.0 154.0 66 25 254 18 -502.04 181.2 163.2 70 22 256 17 -913.68 162.4 145.4 63 30 258 17 -782.22 158.1 141.1 61 32 260 23 -526.34 190.7 167.7 72 18 2628P 34 8325.63U 190.8 156.8 67 19 PECK RES. 264SP 18 3390.26U 196.9 178.9 77 14 WELL 7 266 23 .00 190.8 167.8 72 17 270SP 27 3038.83U 227.6 200.6 86 HI 0 WELL 5 272 25 .00 194.2 169.2 73 16 274SP 19 3076.43U 198.3 179.3 77 14 WELL 6 2168P 17 814.28U 183.1 166.1 72 21 WELL 1 278 19 .00 181.0 162.0 70 22 284SP 27 3269.28U 219.5 192.5 83 HI 4 WELL 9 2868P 19 3182.02U 215.3 196.3 85 HI 5 WELL 10 288 22 .00 209.7 187.7 81 HI 8 2908P 44 446.46U 204.3 160.3 69 12 DYKE WELL 292 48 .00 177.3 129.3 56 28 294 12 6700.00 150.9 138.9 60 35 OC44,Adams 300 25 4500.00 215.8 190.8 82 HI 5 OC9 301SP 65 21158.97U 173.4 108.4 46 33 Overmyer Res. 302 5 .00 151.8 146.8 63 34 304 25 9000.00 190.8 165.8 71 18 OC35 305 40 .00 147.8 107.8 46 42 306 30 .00 145.1 115.1 49 41 315 34 .00 140.3 106.3 46 45 Maximum Unbalanced Read = .00002 206 CITY OF HUNTINGTON BEACH FBI, SEP 4, 1987, 3:08 AM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH HGL LIFT PUMP NODE Gpm Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 301SP 21159 5010 173.4 123.4 20 Overmyer Res. 2628P 8326 20.0 190.8 170.8 30 PECK RES. 2908P 446 -34.0 204.3 238.3 11 DYKE WELL 276SP . 814 -98.0 183.1 281.1 1 WELL 1 2708P 3039 -62.0 227.6 289.6 5 WELL 5 274SP 3076 -59.0 198.3 257.3 6 WELL 6 264SP 3390 -89.0 196.9 285.9 7 WELL 7 284SP 3269 -64.0 219.5 283.5 9 WELL 9 286SP 3182 -55.0 215.3 270.3 10 WELL 10 SOURCE PUMPS Node Pump# 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000. 20650. 21875. 22525. 22875. 23350. 23775. 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500, 15000, 15800, 16100. 16250. 16500. 16750. 290 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200, 400, 600. 800, 0. 0. 0. 276 1 Head 440 399 348 311 287 205 98 0 Flow 0. 200. 400. 600, 800. 1000, 1200, 0. 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012. 3765. 4518. 4894. 0. 274 6 Head 488 318 296 287 257 206 148 0 Flow 0, 1761, 2201. 2641, 3081. 3521. 3962, 0. 264 7 Head 397 299 291 268 238 208 174 0 Flow 0. 2817. 3286. 3756. 4225. 4695. 5164, 0. 284 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277, 3745. 4214. 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859. 2324. 2789. 3253. 3718. 0. 0. Iteration: 1, Flow Correction:. 13443.490 Iteration: 2, Flow Correction: 5006.243 Iteration: 3, Flow Correction: 2961,605 0 Iteration: 4, Flow Correction: 1045.408 Iteration: 5, Flow Correction: 683.452 Iteration: 6, Flow Correction: 542,666 Iteration: 7, Flow Correction: 527.857 Iteration= 8, Flow Correction: 282.592 Iteration: 9, Flow Correction: 43.143 Iteration: 10, Flow Correction: .156 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987. 3:11 AM ULTIMATE SYSTEM -- MAXIMUM DAY ULTIMATE DEMAND & FIRE @ NODE 154 INPUT FILE NAME MDUFR154 NUMBER OF PIPES 245 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Bpi MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIBH 10. Feet 11000 PRESSURE CHECK - LOW 40. Psi - HIGH BO. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-) FIXED DEMANDS = .00 SUM OF (+) FIXED DEMANDS = 20200.00 SUM OF PEAKABLE DEMANDS =-24779.41 SUM OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -60213.96 SUM OF ALL DEMANDS --------- -40013.96 Solution reached in 17 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:12 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches, H-W C Bpr Fps CK ft ft1.1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 51B .8 .5 .2 4 2 6 2000 12.0 130 56 .2 .0 .0 LO 6 4 6 1600 12.0 130 317 .9 .5 .3 B 6 B 2600 12.0 130 458 1.3 1.6 .6 10 B 10 2900 12.0 130 49B 1.4 2.0 .7 12 12 10 970 10.0 130 415 1.7 1.2 1.2 14 14 4 2900 16.0 130 1054 1.7 2.0 .7 16 16 6 2620 12.0 130 470 1.3 1.6 .6 18 1B 8 2640 12.0 130 507 1.7 2.5 .9 20 20 12 2350 12.0 130 708 2.0 3.1 1.3 22 12 22 2200 12.0 130 4 .0 LD .0 .0 LO 24 14 16 260D 12.0 130 32B .9 .8 .3 26 16 18 2610 12.0 130 296 .8 .7 .3 28 18 20 2510 12.0 130 158 .4 .2 .1 LD 30 24 14 2620 16.0 130 1976 3.2 5.8 2.2 32 26 16 2700 12.0 130 B60 2.4 5.2 1.9 34 2B 18 2700 12.0 130 B79 2.5 5.4 2.0 36 30 20 2570 12.0 130 901 2.6 5.4 2.1 38 . 32 22 3430 B.0 130 35B 2.3 9.4 2.7 40 24 26 2680 12.0 130 432 1.2 1.4 .5 42 26 28 2640 12.0 130 240 .7 .5 .2 44 2B 30 2670 12.0 130 162 .5 .2 .1 LD 46 32 30 2550 12.0 130 335 1.0 .9 .3 48 34 32 2800 12.0 130 1695 4.8 18.9 6.7 50 36 24 2640 16.0 130 2B20 4.5 11.2 4.3 52 38 26 2600 12.0 130 1213 3.4 9.4 3.6 54 40 28 2580 12.0 130 1155 3.3 8.5 3.3 56 42 30 2640 12.0 130 1143 3.2 8.6 3.2 58 46 34 2320 12.0 130 1634 4.6 14.6 6.3 60 36 38 2640 12.0 130 677 1.9 3.3 1.2 62 3B 40 2640 12.0 130 423 1.2 1.4 .5 64 40 42 2700 12.0 130 152 .4 .2 .1 LO 66 44 42 2550 12.0 130 140 .4 .2 .1 LO 68 46 4B 700 12.0 130 994 2.8 1.8 2.5 70 50 36 2550 16.0 130 4143 6.6 22.2 B.7 72 52 38 2640 12.0 130 1520 4.3 14.5 5.5 74 54 40 2650 12.0 130 1522 4.3 14.6 5.5 76 - 56 42 2620 12.0 130 1557 4.4 15.1 5.8 78 58 44 2640 9.0 130 604 3.9 19.0 7.2 BO 62 46 2950 12.0 120 457 1.3 2.0 .7 B2 64 48 5300 12.0 130 234 .7 .9 .2 84 50 52 2700 12.0 130 1283 3.6 10.9 4.0 B6 52 54 2600 12.0 130 411 1.2 1.3 .5 B8 56 54 2640 12.0 130 165 .5 .2 .1 LO 90 58 56 2660 12.0 130 751 2.2 4.0 1.5 92 60 58 1330 12.0 130 1174 -3.3 4.5 3.4 94 . 62 60 1130 8.0 130 419 2.7 4.1 3.6 8 6 12 96 66 52 2640 12.0 130 129E 3.7 10.9 4.1 97 68 54 2640 12.0 130 1401 4.0 12.5 4.7 98 70 56 2640 12.0 130 1451 4.1 13.3 5.1 99 72 58 2640 8.0 130 457 2.9 11.3 4.3 100 72 58 2640 B.0 130 457 2.9 11.3 4.3 101 74 60 2640 . 12.0 130 1117 3.2 8.2 3.1 102 BO 62 3200 12.0 120 589 1.7 3.5 1.1 104 04 64 2B50 12.0 70 530 1.5 7.0 2.5 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:12 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOS9--- NO FROM TO Feet Inches H-W C Spa Fps CK it W 1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 B4 64 2800 16.0 130 2119 3.4 7.0 2.5 108 50 66 5250 30.0 120 28 .0 LO .0 .0 LO 110 68 66 2640 30.0 120 2145 1.0 .4 .1 112 70 68 2680 30.0 120 3816 1.7 1.1 .4 114 70 68 2680 12.0 130 371 1.1 1.1 .4 116 72 70 26i10 12.0 130 523 1.5 2.0 .B 118 72 70 2600 30.0 120 5377 2.4 2.0 .8 120 74 72 1450 30.0 120 6257 2.8 1.5 1.0 122 76 74 600 30.0 120 7037 3.2 .8 1.3 124 76 78 150 B.0 130 467 3.0 .7 4.5 126 78 80 1050 12.0 130 467 1.3 .7 .6 128 B2 BO 1150 12.0 130 121 .3 .1 .1 LO 130 84 82 1250 12.0 130 392 1.1 .6 .4 132 50 98 5300 12.0 130 393 1.1 2.4 .4 ..134 66 100 2580 12.0 130 320 .9 .8 .3 136 6B 102 2640 12.0 130 134 .4 .2 .1 LO 138 104 70 2630 12.0 130 224 .6 .4 .2 140 86 72 1320 12.0 130 780 2.2 2.1 1.6 142 86 106 1320 12.0 130 50 .1 .0 .0 LO 144 88 86 1450 14.0 120 1014 2.1 2.1 1.4 146 108 88 1280 12.0 130 918 2.6 2.8 2.2 146 90 88 650 14.0 120 1276 2.7 1.4 2.2 149 88 74 1350 12.0 130 882 2.5 2.7 2.0 151 90 76 1300 30.0 120 10407 4.7 3.4 2.6 152 90 96 3150 42.0 120 3056 .7 .2 .1 LO 150 100 98 2680 12.0 130 456 1.3 1.6 .6 160 102 100 2680 12.0 130 355 1.0 1.0 .4 162 104 102 2750 12.0 130 461 1.3 1.7 .6 164 106 104 2590 12.0 130 732 2.1 3.7 1.4 166 108 106 1500 12.0 130 1140 3.2 4.8 3.2 16B 110 10B 700 12.0 130 2334 6.6 8.5 12.2 HI 170 112 90 950 21.0 120 9634 8.9 12.1 12.8 HI 171 112 90 950 16.0 130 5105 8.1 12.1 12.9 HI 172 112 110 350 21.0 120 6665 6.2 2.3 6.5 174 110 116 750 21.0 120 4331 4.0 2.2 2.9 176 114 96 3400 42.0 120 4901 1.1 .4 .1 178 118 104 2640 12.0 130 301 .9 .7 .3 179 120 106 2640 8.0 130 1B2 1.2 2.0 .8 180 120 106 2640 6.0 130 85 1.0 2.0 .8 182 116 120 2550 12.0 130 1206 3.4 9.2 3.6 184 116 '122 1900 21.0 120 2816 2.6 2.5 1.3 1BB 128 114 4000 42.0 120 6171 1.4 .B .2 190 120 11B 2550 8.0 130 299 1.9 5.0 2.0 192 122 120 2150 8.0 130 394 2.4 6.7 3.1 194 122 124 600 8.0 130 409 2.6 2.1 3.5 196 131 118 2640 8.0 130 2B3 1.8 4.7 1.8 197 130 132 800 8.0 130 40 .3 .0 .0 LO 198 129 130 850 6.0 130 326 3.7 7.9 9.3 199 120 129 1250 8.0 130 326 2.1 2.9 2.3 200 120 132 2750 B.O . 130 436 2.8 10.8 3.9 201 122 134 2640 21.0 120 1678 1.6 1.3 .5 202 124 136 3250 12.0 130 114 .3 .1 .0 LO 206 140 128 700 12.0 130 62 .2 .0 .0 LO 208 142 128 1800 12.0 130 133 .4 .1 .1 LO 210 144 142 1150 12.0 130 453 1.3 .7 .6 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3.12 AM PIPE --NODES-- LENGTH D1AM -FLOW- -VELOCITY- ---HEADLOS9--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ftl1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 212 292 132 1950 8.0 130 516 3.3 10.5 5.4 214 134 132 2000 12.0 130 1868 5.3 16.1 0.1 216 134 136 1200 12.0 130 524 1.5 .9 .8 21B 136 138 2050 12.0 130 490 1.4 1.4 .7 220 164 146 2200 12.0 130 270 .0 .5 .2 222 142 140 1800 12.0 130 126 .4 .1 .1 LO 224 146 128 4200 42,0 120 6201 1.4 .8 .2 226 10 10 650 24.0 120 668 .5 .0 .0 LD 228 152 131 2700 8.0 130 310 2.0 5.6 2.1 230 132 154 3150 B.0 130 1149 7.3 74.4 23.6 HI 232 156 134 2640 21.0 120 945 .9 .5 .2 - 234 158 136 2640 12.0 130- 103 .3 .1 .0 LD 236 160 150 1400 12.0 130 21 .1 LO .0 .0 LO 238 150 148 700 14.0 130 21 .0 LO .0 .0 LO 240 14B 138 500 12.0 130 21 .1 LO .0 .0 LO 242 162 140 2640 12.0 130 261 .7 .6 .2 244 164 146 2120 42.0 120 6850 1.6 .5 .2 246 152 154 2640 B.0 130 1404 9.0 90.5 34.3 HI 248 156 154 2640 B.0 130 1409 9.0 91.0 34.5 HI 250 156 158 1300 12.0 130 599 1.7 1.3 1.0 252 158 160 2000 12.0 130 515 1.5 1.5 .7 254 162 160 2660 12.0 130 30 .1 LO .0 .0 LD 256 164 162 2660 12.0 130 303 .9 .7 .3 257 180 164 2700 12.0 130 333 .9 .9 .3 25B 164 166 2640 12.0 130 717 2.0 3.6 1.4 260 168 152 2550 12.0 130 2221 6.3 28.3 11.1 H1 261 168 170 2330 21.0 120 7105 6.6 17.0 7.3 262 170 154 3050 8.0 130 1385 8.8 101.9 33.4 HI 263 170 172 2000 21.0 120 4627 4.3 6.6 3.3 264 172 156 2650 21.0 120 3169 2.9 4.3 1.6 265 172 174 1350 16,0 130 795 1.3 .6 .4 266 174 15B 2650 B.0 130 295 1.9 5.0 1.9 267 174 176 1950 16.0 130 1145 1.8 1.6 .B 269 176 178 2640 16.0 130 1390 2.2 3.0 1.1 270 17B 162 2700 12.0 130 503 1.4 1.9 .7 271 17B 180 2700 16.0 120 353 .6 .3 .1 272 180 164 2700 42.0 120 8302 1..9 .9 .3 273 180 182 1150 16.0 120 154E 2.5 1.9 l.b 274 166 184 2680 12.0 130 362 1.0 1.0 .4 275 182 184 1550 16.0 125 1976 3.2 3.7 2.4 277 184 186 2650 16.0 125 1831 2.9 5.5 2.1 279 186 190 2750 16.0 125 1002 1.6 1.9 .7 280 190 192 1340 16.0 125 313 .5 .1 .1 LO 2B2 192 194 3200 14.0 130 219 .5 .2 .1 LO 284 21B 194 5300 14.0 130 380 .8 1.1 .2 286 196 170 2660 B.0 130 335 2.1 6.4 2.4 288 198 174 2640 12.0 130 974 2.8 6.4 2.4 290 200 176 2500 12.0 130 557 1.6 2.1 .9 292 202 204 2700 9.0 130 251 1.6 3.8 1.4 294 17B 204 800 12.0 130 3 .0 LO .0 .0 LO 296 206 1B0 2700 36.0 120 1015B 3.2 2.8 1.0 298 206 1B2 3800 12.0 130 673 1.9 4.6 1.2 300 194 20B 2640 12.0 130 150 .4 .2 .1 LO 301 210 186 2640 B.0 130 27 .2 .1 .0 LD 302 190 212 2640 12.0 130 332 .9 .9 .3 CITY OF HUNTINGTON BEACH FRI, SEP 4, 19871 3:12 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK it ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 304 196 19B 3300 8.0 130 317 2.0 7.2 2.2 306 198 200 2700 12.0 130 .914 2.6 5.B 2.1 308 200 202 2640 12.0 130 426 1.2 1.4 .5 310 202 206 2640 12.0 130 418 1a 1.3 .5 312 206 208 2640 12.0 130 113B 3.2 0.5 3.2 314 208 210 2640 12.0 130 B72 2.5 5.2 2.0 316 210 212 200 12.0 130 622 13 2.8 1.1 318 212 214 1300 12.0 130 b27 1.8 1.4 1.1 320 222 196 2700 12.0 130 1408 4.0 12.9 4.8 322 272 224 1320 12.0 130 955 2.7 3.t 2.3 324 228 NO 2b40 12.0 130 757 2.1 4.0 1.5 326 230 202 3000 12.0 130 57B 1.6 2.8 .9 327 232 20b 2644 12.D 130 bBO 1.9 3.3 1.2 328 232 206 2640 36.0 120 11283 3.6 3.3 1.2 330 236 210 2700 12.0 130 969 2.7 6.5 2.4 332 214 216 1000 10.0 130 260 1.1 .5 .5 334 238 216 2100 B.0 130 387 2.5 6.6 3.2 336 302 220 4500 20.0 130 1234 1.3 1.4 .3 # 338 220 218 1250 14.0 130 B53 1.8 1.1 .9 # 340 288 224 t700 12.0 130 1970 5.6 15.1 8.9 342 224 228 2000 12.0 130 1703 4.B 13.6 6.8 344 228 230 2640 12.0 130 602 1.7 2.6 1.0 346 230 232 2640 12.0 130 320 .9 .8 .3 348 232 234 2640 20.0 130 3383 3.5 5.3 2.0 # 150 N4 236 2640 20.0 130 3345 3.4 5.2 2.0 # 352 236 23B 5030 20.0 130 211 12 4.5 .9 0 354 224 226 1300 12.0 130 587 1.7 1.2 .9 356 240 22B 2700 12.0 130 B9 .3 .1 .0 LO 358 242 230 2700 12.0 130 617 1.8 2.8 1.0 360 244 232 2700 36.0 120 15686 4.9 6.2 2.3 362 246 234 2700 12.0 130 123 .3 .1 .1 LO 364 250 236 2680 12.0 130 381 1.1 1.1 .4 366 226 240 3800 B.0 130 392 2.5 12.3 3.2 36B 242 240 2640 10.0 130 67 .3 .1 .0 LO 370 244 242 2660 10.0 130 366 1.5 2.6 1.0 372 244 246 2550 12.0 130 1354 3.8 11.3 4.4 374 246 248 1500 12.0 130 590 1.7 1.4 1.0 376 248 250 1200 10.0 130 590 2.4 2.8 2.3 37B 252 242 2540 12.0 130 771 2.2 4.0 1.6 380 254 244 2640 36.0 120 17924 5.b 7.7 2.9 3B2 256 246 2540 12.0 130 74 .2 .1 .0 LO 3B4 258 250 2640 12.0 130 1 .0 LO .0 .0 LO 3B6 278 252 1750 12.0 130 1172 3.3 6.0 3.4 3BB 254 256 2600 12.0 130 1771 5.0 19.0 7.3 390 256 258 2640 12.0 130 793 2.2 4.3 1.6 392 260 254 2600 36.0 120 20554 6.5 9.8 3.8 394 262 260 150 36.0 130 8688 2.7 .1 .7 PECK. RES. 395 266 260 i00 36.0 130 12392 3.9 .1 1.3 396 264 266 250 12.0 130 3392 9.6 6.1 24.4 HI WELL 7 400 270 169 970 12.0 130 3219 9.1 21.4 22.1 HI WELL 5 402 274 272 200 12.0 130 3139 8.9 4.2 21.1 HI WELL 6 404 272 198 1380 12.0 130 2184 6.2 14.9 10.8 HI 406 276 27B 170 . 8.0 130 816 5.2 2.1 12.5 HI WELL 1 40B 254 278 900 12.0 130 356 1.0 .3 .4 414 2B4 168 1990 16.0 130 3449 5.5 12.3 6.2 WELL 9 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:12 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Sp® Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 416 2BB 222 1600 12.0 130 1327 3.8 6.9 4.3 418 2B6 2B8 1050 16.0 130 3297 5.3 6.0 5.7 WELL 10 420 290 292 1400 6.0 120 490 5.6 32.1 22.9 HI DYKE WELL 422 131 292 750 8.0 130 26 .2 .0 .0 LO 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 924 2.6 6.2 2.2 452 300 168 5300 22.0 120 3576 3.0 9.6 1.6 OC9 500 301 112 100 36.8 120 21404 6.5 .4 3.6 Overmyer Res. 501 238 302 2000 20.0 130 1234 1.3 .6 .3 # 502 95 84 1000 16.0 130 1771 2.8 1.8 1.8 503 96 95 452 24.0 120 7956 5.6 2.1 4.7 504 304 266 10 36.0 130 9000 2.8 .0 .7 OC35 510 95 84 1000 20.0 130 3184 3.3 1.9 1.0 DOWNTOWN LOOP 511 84 305 4400 20.0 130 1605 1.6 2.2 .5 DOWNTOWN LOOP 512 305 306 7200 . 20.0 130 1605 1.6 3.6 .5 DOWNTOWN LOOP 513 306 46 2000 20.0 130 B47 .9 .3 .2 DOWNTOWN LOOP 514 62 46 2900 20.0 130 1915 2.0 2.0 .7 DOWNTOWN LOOP 515 76 62 3200 20.0 130 2903 3.0 4.9 1.5 DOWNTOWN LOOP 516 114 115 3490 12.0 130 1270 3.6 13.8 3.9 517 64 115 6B50 12.0 130 344 1.0 2.4 .4 521 132 154 3150 8.0 130 1149 7.3 74.4 23.6 HI # 522 170 154 3050 B.0 130 1385 B.B 101.9 33.4 HI # 523 196 170 2660 8.0 130 335 2.1 6.4 2.4 # 530 306 315 450 8.0 130 758 4.8 4.9 10.9 HI # 531 315 34 225 6.0 130 758 B.6 10.0 44.4 HI # r CITY OF HUNTINGTON BEACH FRI, 5EP 4, 1987, 3;12 AM GROUND ELY FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -462.43 107.0 102.0 44 50 4 5 -218.21 107.4 102.4 44 50 6 5 -3B5.40 106.9 101.9 44 50 Banning 8 5 541.4E 105.4 100.4 43 51 10 4 -912.47 103.4 99.4 43 52 12 4 -2BB.68 104.5 100.5 43 51 14 6 -594.62 109.4 103.4 44 49 16 7 -420.BB 10B.6 101.6 44 50 18 4 -429.87 107.9 103.9 45 49 20 2 -352.11 107.7 105.7 45 49 22 4 -362.80 104.5 100.5 43 51 24 6 -411.89 115.2 109.2 47 46 26 8 -546.02 113.E 105.8 45 47 28 4 -353.81 113.3 109.3 47 47 30 4 -737.99 113.1 109.1 47 47 32 6 -1000.92 113.9 107.9 46 47 34 30 -697.41 132.8 102.8 44 43 36 8 -646.3E 126.4 118.4 51 41 38 9 -560.84 123.2 114.2 49 43 40 6 -637.39 121.9 115.8 50 43 42 6 -706.16 121.6 115.6 50 43 44 18 -463.99 121.8 103.8 44 46 46 36 -591.71 147.4 111.4 49 36 48 36 -1227.88 145.6 109.6 47 37 50 12 -853.66 148.6 136.6 59 31 52. 10 -649.7E 137.7 127.7 55 36 54 7 -454.90 136.5 129.5 56 36 56 10 -488.67 136.7 126.7 54 37 58 25 -724.63 140.7 115.7 50 37 60 35 -362.07 145.3 110.3 47 37 62 40 -700.33 149.4 109.4 47 36 64 75 -2070.60 146.5 71.5 31 LO 47 66 10 -554.28 148.6 138.6 60 31 68 B -507.14 149.0 141.0 61 30 70 10 -484.79 150.1 140.1 60 30 72 55 -224.29 152.0 97.0 42 37 74 50 -544.56 153.5 103.5 44 35 76 50 .00 154.3 104.3 45 35 78 50 .00 153.6 103.6 44 35 80 50 .00 152.9 102.9 44 36 82 75 -270.22 153.0 78.0 33 LO 42 B4 75 -309.34 153.6 7B.6 34 LO 42 86 57 -184.19 154.2 97.2 42 37 BB 50 -298.65 156.2 106.2 46 34 90 60 .00 157.6 97.6 42 35 95 103 -.001.54 155.4 52.4 22 LO 51 Reservoir Hill 96 95 .00 157.5 62.5 27 LO 46 98 16 -849.04 146.2 130.2 56 33 100 15 -219.19 147.0 132.E 57 32 Flounder 102 12 -240.33 148.8 136.8 59 31 104 14 347.98 150.5 136.5 59 30 106 5B -724.63 154.1 96.1 41 37 108 55 -276.29 159.0 104.0 45 33 110 60 .00 167.5 107.5 46 28 112 60 .00 169.8 109.8 47 27 r. CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:12 AM GROUND ELU FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet 6pm Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 114 93 .00 157.9 64.9 28 LO 45 115 35 -1614.01 144.1 109.1 47 38 116 60 -307.BB 165.3 105.3 45 30 118 13 -281.15 151.2 138.2 59 30 120 55 -262.44 156.2 101.2 43 35 122 35 -345.30 162.9 127.9 55 27 124 25 -295.73 160.0 135.8 58 27 128 5 -225.26 158.7 153.7 66 25 129 45 .00 153.3 108.3 46 34 130 45 -2B5.52 145.4 100.4 43 39 131 45 .00 155.9 110.9 48 33 132 55 -562.55 145.4 90.4 39 LO 42 134 50 -231.34 161.5 111.5 48 30 136 50 -249.80 160.6 110.6 47 31 13B 40 -511.76 159.2 119.2 51 30 140 2 -324.89 158.7 156.7 67 25 142 2 -193.67 158.0 156.8 67 25 144 2 -215.78 159.4 157.4 68 24 146 2 -250.05 159.5 157.5 68 24 148 40 .00 159.2 119.2 51 30 150 40 .00 159.2 119.2 51 30 152 28 -506.65 161.5 133.5 57 27 154 25 -7880.17U 71.OF 46.0 19 LO 75 156 25 -216.03 162.0 137.0 59 26 158 30 -276.78 160.7 130.7 56 27 160 5 -523.67 159.2 154.2 66 25 162 3 -514.92 159.2 156.2 67 24 164 2 -496.21 160.0 158.0 68 24 166 2 -355.02 156.4 154.4 66 26 168 27 -917.81 189.E 162.8 70 11 170 26 -379.OB 112.9 146.9 63 20 172 25 -663.39 166.3 141.3 61 24 174 25 -328.54 165.8 140.E 61 24 176 12 -312.26 164.2 152.2 65 23 17B 5 -531.44 161.2 156.2 67 24 ISO 5 -327.08 160.9 155.9 67 24 iB2 5 -245.43 159.0 154.0 66 25 1B4 5 -356.97 155.3 150.3 65 27 186 34 -855.60 149.9 115.9 50 34 190 35 -356.72 148.0 113.0 48 35 192 55 -94.29 147.9 92.9 40 40 194 5 -598.75 147.7 142.7 61 30 196 25 -420.BB 179.3 154.3 66 17 198 17 -612.36 172.1 155.1 67 20 200 14 -688.66 166.3 152.3 66 22 Heil 202 10 -335.10 165.0 155.0 67 23• 204 10 -253.45 161.1 151.1 65 24 206 9 -412.13 163.6 154.6 67 23 208 14 -415.53 155.1 141.1 61 28 210 15 -1191.43 149.9 134.9 58 31 212 9 -327.81 147.1 13B.1 59 31 214 9 -366.20 145.8 136.8 59 32 216 9 -647.84 145.2 136.2 59 32 21B 5 -472.64 148.7 143.7 62 30 220 5 -381.75 149.8 144.8 62 29 s CITY OF HUNTINGTON BEACH FRI, SEP 4, 1997, 3:12 AM GROUND ELY FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 222 26 -942.72 192.2 166.2 72 10 224 21 -635.20 1B3.9 162.9 70 14 226 23 -194.89 182.7 159.7 69 15 228 20 -432.7B 170.3 150.3 65 21 230 12 -320.76 167.7 155.7 67 21 232 10 -659.74 166.9 156.9 68 22 234 12 -161.35 161.6 149.6 64 24 236 15 -572.27 156.4 141.4 61 27 Scenario 238 5 -563.27 151.9 146.9 63 28 240 21 -370.33 170.4 149.4 64 21 242 IS -453:92 170.5 155.5 67 20 244 16 -518.08 173.1 157.1 be 19 246 14 -715.64 161.7 147.7 64 25 248 14 .00 160.3 146.3 63 25 250 13 -209.95 157.5 144.5 62 27 252 22 -400.95 174.5 152.5 66 19 254 18 -502.04 180.E 162.8 70 15 256 17 -913.68 161.0 144.E 62 25 258 17 -782.22 157.5 140.5 60 27 260 23 -526.34 190.6 167.6 72 10 262SP 34 8688.20U 190.7 156.7 67 11 PECK RES. 2645P 18 3392.26U 196.8 178.8 77 7 WELL 7 266 23 .00 190.7 167.7 72 10 270SP 27 3219.35U 211.3 184.3 79 0 WELL 5 272 25 .00 1B7.0 162.0 70 13 274SP 19. 3139:4BU 191.2 172.2 74 10 WELL 6 276SP 17 815.661) 192.6 165.6 71 14 WELL 1 27B 19 .00 180.4 161.4 69 16 2B4SP 27 3448.54U 202.1 175.1 75 4 WELL 9 286SP 19 3296.90U 205.0 IB6.0 80 HI 3 WELL 10 2B8 22 .00 199.1 177.1 76 6 290SP 44 489.61U 1B7.9 143.9 62 13 DYKE WELL 292 48 .00 155.9 107.9 46 33 294 12 6700.00 151.1 139.1 60 30 OC44,AdaMs 300 25 4500.00 198.5 173.5 75 6 OC9 3018P 65 21404.10U 170.2 105.2 45 28 Overmyer Res, 302 5 .00 151.2 146.2 63 29 304 25 9000.00 190.7 1b5.7 71 11 OC35 305 40 .00 151.3 111.3 48 34 306 30 .00 147.7 117.7 51 35 315 34 .00 142.8 108.8 47 38 Maximum Unbalanced Head = .00002 208 r CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:12 AM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH HGL LIFT PUMP NODE GPM Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 301SP 21404 50.0 170.2 120.2 20 Overmyer Res. 262SP 8688 20.0 190.7 170.7 30 PECK RES. 290SP 490 -34.0 187.9 221.9 11 DYKE WELL 276SP 816 -98.0 102.6 2BO.6 1 WELL 1 270SP 3219 -62.0 211.3 273.3 5 WELL 5 274SP 3139 -59.0 191.2 250.2 6 WELL 6 264SP 3392 -89.0 196.8 285.8 7 WELL 7 284SP 3449 -64.0 202.1 266.1 9 WELL 9 286SP 3297 -55.0 205.0 260.0 10 WELL 10 154 -7880 71.0 SOURCE PUMPS Node Pump# 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000. 20650. 21B75. 22525. 22B75. 23350. 23775. 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000. 15800. 16100. 16250. 16500. 16750. 290 11 Head 330 306 256 1BO 72 0 0 0 Flow 0. 200. 400. 600. 800. 0. 0. 0. 276 1 Head 440 399 348 311 287 205 9B 0 Flow 0. 200, 400. 600. 800. 1000. 1200. 0. 270 5 Head 471 359 337 292 224 143 9B 0 Flow 0. 1882. 2259. 3012. 3765. 4518. 4894. 0. 274 6 Head 488 318 296 287 257 206 148 0 Flow 0. 1761. 2201. 2641. 3081. 3521. 3962. 0. 264 7 Head 397 299 291 26B 23B 208 174 0 Flow 0. 2817. 3286. 3756, 4225. 4695. 5164. 0. 284 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745. 4214. 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859. 2324. 2789. 3253. 3718. 0. 0. Iteration= 1, Flow Correction= 24B929.200 Iteration= 2, Flow Correction= 1312BB.500 Iteration= 3, Flow Correction= 84456.950 Iteration= 4, Flow Correction= 42393.180 Iteration= 5, Flow Correction= 28850.410 Iteration= 6, Flow Correction= 13453.130 iteration= 7, Flow Correction= 13329.090 Iteration= 8, Flow Correction= 12335.020 Iteration= 9, Flow Correction= 11100.400 Iteration= 11, Flow Correction= 6054.160 Iteration= 12, Flow Correction= 3328.786 Iteration= 13, Flow Correction= 3375.673 Iteration= 14, Flow Correction= 565.992 Iteration= 15, Flow Correction= 20.819 Iteration= 16, Flow Correction= .262 Iteration= 17, Flow Correction= .000 r. CITY- OF HUNTINGTON BEACH FRI, SEP 4, 1987, 2:28 AM ULTIMATE SYSTEM -- MAXIMUM DAY ULTIMATE DEMANDS 4 FIRE @ NODE 220 INPUT FILE NAME MDUFR220 NUMBER OF PIPES 245 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gpm MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF f-) FIXED DEMANDS = .00 SUM OF !+} FIXED DEMANDS = 20200.00 SUM OF PEAKABLE DEMANDS =-24905.51 SUM OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -60520.38 SUM OF ALL DEMANDS --------- -40320.38 Solution reached in 11 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987. 2:28 AM PIPE --NODES-- LENGTH. DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C 8pm Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 520 .8 .5 .2 4 2 6 2000 12.0 130 57 .2 .0 .0 LO 6 4 6 1600 12.0 130 318 .9 .5 .3 8 6 8 2600 12.0 130 460 1.3 1.6 .6 10 8 10 2900 12.0 130 499 1.4 2.0 .7 12 12 10 970 10.0 130 413 1.7 1.2 1.2 14 14 4 2900 16.0 130 1056 1.7 2.0 .7 16 16 6 2620 12.0 130 470 1.3 1.6 .6 18 18 8 2640 12.0 130 581 1.7 2.5 .9 20 20 12 2350 12.0 130 708 2.0 3.1 1.3 22 12 22 2280 12.0 130 6 .0 LO .0 .0 LO 24 14 16 2600 12.0 130 330 .9 .8 .3 26 16 18 2610 12.0 130 299 .8 .7 .3 28 18 20 2510 12.0 130 162 .5 .2 .1 LO 30 24 14 2620 16.0 130 1980 3.2 5.8 2 2 32 26 16 2700 12.0 130 860 2.4 5.2 1.9 34 28 18 2700 12.0 130 879 2.5 5.4 2.0 36 30 20 2570 12.0 130 899 2.5 5.4 2.1 38 32 22 3430 8.0 130 356 2.3 9.3 2.7 40 24 26 2680 12.0 130 436 1.2 1.5 .5 42 26 28 2640 12.0 130 246 .7 .5 .2 44 28 30 2670 12.0 130 172 .5 .3 .1 LO 46 32 30 2550 12.0 130 318 .9 .8 .3 48 34 32 2800 12.0 130 1675 4.8 18.5 6.6 50 36 24 2640 16.0 130 2928 4.5 11.3 4.3 52 38 26 2600 12.0 130 1217 3.5 9.5 3.6 54 40 28 2580 12.0 130 115E 3.3 8.6 3.3 56 42 30 2640 12.0 130 1147 3.3 8.6 3.3 58 46 34 2320 12.0 130 1621 4.6 14.4 6.2 60 36 38 2640 12.0 130 681 1.9 3.3 1.2 62 38 40 2640 12.0 130 428 1.2 1.4 .5 64 40 42 2700 12.0 130 157 .4. .2 .1 LO 66 44 42 2550 12.0 130 137 .4 .2 .1 LO 68 46 48 700 12.0 130 1022 2.9 1.9 2.6 70 50 36 2550 16.0 130 4156 6.6 22.3 9.7 72 52 38 2640 12.0 130 1524 4.3 14.6 5.5 74 54 40 2650 12.0 130 1525 4.3 14.7 5.5 76 56 42 2620 12.0 130 1558 4.4 15.1 5.8 78 58 44 2640 8.0 130 601 3.8 18.8 7.1 80 62 46 2950 12.0 120 468 . 1.3 2.1 .7 82 64 48 5300 12.0 130 205 .6 .7 .1 84 50 52 2700 12.0 130 1289 3.7 11.0 4.1 86 52 54 2600 12.0 130 419 1.2 1.3 .5 88 56 54 2640 12.0 130 151 .4 .2 .1 LO 90 58 56 2660 12.0 130 740 2.1 3.9 1.5 92 60 58 1330 12.0 130 1151 3.3 4.4 3.3 94 62 60 1130 8.0 130 400 2.6 3.8 3.3 8 6 12 96 66 52 2640 12.0 130 1305 3.7 11.0 4.2 97 68 54 2640 12.0 130 1410 4.0 12.6 4.8 98 70 56 2640 12.0 130 1458 4.1 13.5 5.1 99 72 58 2640 8.0 130 457 2.9 11.3 4.3 100 72 58 2640 8.0 130 457 2.9 11.3 4.3 101 74 60 2640 12.0 130 1114 3.2 8.2 3.1. 102 80 62 3200 12.0 120 572 1.6 3.3 1.0 104 84 64 2850 12.0 70 528 1.5 7.0 2.4 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 2:29 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C spa Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 2110 3.4 7.0 2.5 108 50 66 5250 30.0 120 12 .0 LO .0 .0 LO 110 68 66 2640 30.0 120 2152 1.0 .4 .1 112 70 68 26BO 30.0 120 3691 1.7 1.0 .4 114 70 68 2680 12.0 130 359 1.0 1.0 .4 116 72 70 2600 12.0 130 486 1.4 1.7 .7 118 72 70 2600 30.0 120 4990 2.3 1.7 .7 120 74 72 1450 30.0 120 '5650 2.6 1.2 .B 122 76 74 600' 30.0 120 .. 6363 2.9 .6 1.0 124 76 78 150 8.0 130 532 3.4 .9 5.7 126 78 80 1050 12.0 130 532 1.5 .8 .8 128 82 80 1150 12.0. 130 40 .1 .0 .0 LO 130 84 82 1250 12.0 130 310 .9 .4 .3 132 50 98 5300 12.0 130 . 389 1.1 2.3 .4 134 66 100 25BO 12.0 130 305 .9 .7 .3 136 102 68 2640 12.0 130 18 .1 LO .0 .0 LO 138 104 70 2630 12.0 130 518 1.5 2.0 .7 140 86 72 1320 12.0 130 965 2.7 3.1 2.4 142 106 86 1320 12.0 130 403 1.1 .6 .5 144 88 86 1450 14.0 120 745 1.6 1.2 .8 146 108 88 1280 12.0 130 1194 3.4 4.5 3.5 14B 90 B8 650 14.0 120 796 1.7 .6 .9 149 88 74 1350 12.0 130 945 2.7 3.1 2.3 151 90 76 1300 30.0 120 9852 4.5 3.0 2.3 152 90 96 3150 42.0 120 6180 1.4 .6 .2 158 100 98 26BO 12.0 130 460 1.3 1.6 .6 160 102 100 26BO 12.0 130 374 1.1 1.1 .4 162 104 102 2750 12.0 130 633 1.8 3.0 1.1 164 106 104 2580 12.0• 130 715 2.0 3.5 1.4 166 108 106 1500 12.0 130 1166 3.3 5.1 3.4 168 110 108 700 12.0 130 2636 7.5 10.7 15.3 HI 170 112 90 950 21.0 120 10999 10.2 HI 15.5 16.3 HI 171 112 96 950 16.0 130 5B28 9.3 15.5 16.3 HI 172 112 110 350 21.0 120 4113 3.B .9 2.6 174 110 116 750 21.0 120 1477 1.4 .3 .4 176 114 96 3400 42.0 120 1637 .4 .1 .0 LO 178 118 104 2640 12.0 130 784 2.2 4.3 1.6 179 120 106 2640 0'0 130 461 2.9 11.5 4.4 180 120 106 2640 6.0 130 216 2.5 11.5 4.4 182 116 120 2550 12.0 130 767 2.2 4.0 1.6 184 116 122 1900 21.0 120 402' .4 .1 .0 LO 188 128 114 4000 42.0 120 2BB9 .7 .2 .0 LO 190 120 118 2550 8.0 130 452 2.9 10.7 4.2 192 122 120 2150 8.0 130 287 ' 1.8 3.9 1.8 194 122 124 600 8.0 130 413 2.6 2.1 3.5 196 131 118 2640 0.0 130 613 3.9 19.5 7.4 197 132 130 800 8.0 130 383 2.4 2.5 3.1 19B 130 129 850 6.0 130 97 1.1 .8 1.0 199 129 120 1250 8.0 130 97 .6 .3 .2 200 132 120 2750 9.0 130 241 1.5 3.6 1.3 201 134 122 2640 21.0 120 642 .6 .2 .1 LO 202 124 136 3250 12.0 130 117 .3 .2 . .0 LO 206 140 128 700 12.0 130 104 .3 .0 .0 LO 208 142 129 1800 12.0 130 53 .2 .0 .0 LO 210 144 142 1150 12.0 130 217 .6 .2 .1 CITY OF HUNTINGTON BEACH FRI, SEP 4. 1987, 2:28 AM PIPE --NODES-- LENGTH OIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 212 292 132 1950 8.0 130 356 2.3 5.3 2.7 214 -134 132 2000 12.0 130 285 .8 .5 .2 216 134 136 1200 12.0 130 901 2.6 2.5 2.1 219 136 13B 2050 12.0 130 897 2.5 4.3 2.1 220 164 146 2200 12.0 130 138 .4 .1 .1 LO 222 140 142 1800 12.0 130 30 .1 LO .0 .0 LO 224 146 128 4200 42.0 120 2956 .7 .2 .0 LO 226 146 144 650 24.0 120 433 .3 .0 .0 LO 228 152 131 2700 8.0 130 527 3.4 15.1 5.6 230 154 132 3150 8.0 130 272 1.7 5.2 .1.6 232 156 134 2640 21.0 120 2060 1.9 1.9 .7 234 158 136 2640 12.0 130 129 .4 .2 .1 LO 236 150 160 1400 12.0 130 386 1.1 .6 .4 238 148 150 700 14.0 130 386 .8 .1 .2 240 138 148 500 12.0 130 386 1.1 .2 .4 242 162 140 2640 12.0 130 460 1.3 1.6 .6 244 164 146 2120 42.0 120 3501 .8 .1 .1 LO 246 152 154 2640 8.0 130 533 3.4 15.0 5.7 248 154 156 2640 8.0 130 213 1.4 2.7 1.0 250 156 158 1300 12.0 130 1154 3.3 4.3 3.3 252 158 160 2000 12.0 130 1032 2.9 5.4 2.7 254 160 162 2660 12.0 130 893 2.5 5.5 2.1 256 162 164 2660 12.0 130 405 1.1 1.3 .5 257 190 164 2700 12.0 130 195 .6 .3 .1 258 164 166 2640 12.0 130 1332 3.8 11.4 4.3 260 168 152 2550 12.0 130 1567 4.4 14.9 5.8 261 168 170 2330 21.0 120 7082 6.6 16.9 7.2 262 170 154 3050 8.0 130 456 2.9 13.0 4.3 263 170 172 2000 21.0 120 6209 5.8 11.3 5.7 264 172 156 2650 21.0 120 3217 3.0 4.4 1.7 265 172 174 1350 16.0 130 2329 3.7 4.0 3.0 266 174 158 2650 8.0 130 284 1.8 4.7 1.8 267 174 176 1950 16.0 130 2426 3.9 6.3 3.2 269 176 178 2640 16.0 130 2260 3.6 7.5 2.8 270 178 162 2700 . 12.0 130 486 1.4 1.8 .7 271 178 180 2700 16.0 120 1198 1.9 2.7 1.0 272 180 164 2700 42.0 120 4866 1.1 .3 .1. 273 180 182 1150 16.0 120 3036 4.8 6.5 5.7 274 166 184 2680 12.0 130 977 2.8 6.5 2.4 275 182 184 1550 16.0 125 3694 5.9 11.7 7.6 277 184 186 2650 16.0 125 3906 6.2 22.2 8.4 279 186 190 2750 16.0 125 3094 4.9 15.0 5.4 280 190 192 1340 16.0 125 2693 4.3 5.6 4.2 282 192 194 3200 14.0 130 2599 5.4 22.5 7.0 284 194 218 5300 14.0 130 2000 4.2 22.9 4.3 286 196 170 2660 8.0 130 209 1.3 2.7 1.0 288 198 174 2640 12.0 130 710 2.0 3.5 1.3 290 200 176 2500 12.0 130 147 .4 .2 .1 LO 292 202 204 2700 8.0 130 209 1.3 2.7 1.0 294 178 204 800 12.0 130 45 .1 .0 .0 LO 296 206 190 2700 36.0 120 7227 2.3 1.5 .5 298 206 182 3800 12.0 130 903 2.6 9.0 2.1 300 184 208 2640 12.0 130 407 1.2 1.3 .5 301 210 186 2640 8.0 130 44 .3 .1 .1 LO 302 190 212 2640 12.0 130 45 .1 .0 .0 LO I CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 2:28 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 304 196 199 3300 8.0 130 463 3.0 14.5 4.4 306 198 200 2700 12.0 130 1204 3.4 9.7 3.6 308 200 202 2640 12.0 130 849 2.4 4.9 1.9 310 202 206 2640 12.0 130 754 2.1 4.0 1.5 312 206 209 2640 12.0 130 1852 5.3 21.0 7.9 314 208 210 2640 12.0 130 1844 5.2 20.8 7.9 316 210 212 2640 12.0 130 1553 4.4 15.1 5.7 318 212 214 1300 12.0 130 1270 3.6 5.1 3.9 320 222 196 2700 12.0 130 1303 3.7 11.2 4.1 322 272 224 1320 12.0 130 1017 2.9 3.5 2.6 324 228 200 2640 12.0 130 482 1.4 1.7 .7 326 230 202 3000 12.0 130 448 1.3 1.7 .6 327 232 206 2640 12.0 130 548 1.6 2.2 .8 328 232 206 2640 36.0 120 9093 2.9. 2.2 .8 330 236 210 2700 12.0 130 945 2.7 6.2 2.3 332 214 216 1000 10.0 130 904 3.7 5.1 5.1 334 216 238 2100 8.0 130 256 1.6 3.1 1.5 336 302 220 4500 20.0 130 6263 6.4 28.3 6.3 # 339 218 220 1250 14.0 130 1527 3.2 3.3 2.6 1 340 288 224 1700 12.0 130 2248 6.4 19.3 11.4 HI 342 224 228 2000 12.0 130 1972 5.6 17.8 8.9 344 228 230 2640 12.0 130 850 2.4 5.0 1.9 346 230 232 2640 12.0 130 703 2.0 3.5 1.3 348 232 234 2640 20.0 130 6564 6.7 18.1 6.9 # 350 234 236 2640 20.0 130 6851 7.0 19.6 7.4 # 352 236 23B 5030 20.0 130 6570 6.7 34.6 6.9 # 354 224 226 1300 12,0 130 658 1.9 1.5 1.2 356 228 240 2700 12.0 130 207 .6 .4 .1 358 242 230 2700 12.0 130 622 1.8 2.8 1.1 360 244 232 2700 36.0 120 . 16161 5.1 6.5 2.4 362 246 234 2700 12.0 130 448 1.3 1.6 .6 364 250 236 2680 12.0 130 1236 3.5 10.1 3.8 366 226 240 3800 8.0 130 463 3.0 16.7 4.4 368 240 242 2640 10.0 130 300 1.2 1.7 .7 370 244 242 2660 10.0 130 90 .4 .2 .1 LO 372 244 246 2550 12.0 130 1989 5.6 23.1 9.1 374 246 248 1500 12.0 130 996 2.8 3.8 2.5 376 248 250 1200 10.0 130 996 4.1 7.3 6.1 378 252 242 2540 12.0 130 686 1.9 3.2 1.3 380 254 244 2640 36.0 120 1875B 5.9 8.4 3.2 392 256 246 2540 12.0 130 172 .5 .2 .1 LO 384 258 250 2640 12.0 130 449 1.3 1.5 .6 386 278 252 1750 12.0 130 1087 3.1 5.2 3.0 388 254 256 2600 12.0 130 2317 6.6 31.3 12.0 HI 390 256 258 2640 12.0 130 1232 3.5 9.8 3.7 392 260 254 2600 36.0 120 21B45 6.9 11.0 4.2 394 262 260 150 36.0 130 9972 3.1 .1 ..9 PECK RES. 395 266 260 100 36.0 130 12399 3.9 .1 113 396 264 266 250 12.0 130 3399 9.6 6.1 24.4 HI WELL 7 400 270 168 970 12.0 130 3029 8.6 19.1 19.7 HI WELL 5 402 274 272 200 12.0 130 3079 8.7 4.1 20.4 HI WELL 6 404 272 198 1380 12.0 130 2062 5.8 13.4 9.7 406 276 278 170 8.0 130 919 5.2 2.1 12.6 HI WELL 1 408 254 278 900 12.0 130 268 .8 .2 .2 44 284 168 1990 16.0 130 3253 5.2 11.0 5.6 WELL 9 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 2:28 AM PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpm Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 416 288 222 1600 12.0 130 931 2.6 3.6 2.2 418 286 288 1050 16.0 130 3179 5.1 5.6 5.3 WELL 10 420 290 292 1400 6.0 120 442 5.0 26.5 19.0 HI DYKE WELL 422 292 131 750 8.0 130 85 .5 .1 .2 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1214 3.4 10.4 3.6 452 300 16B 5300 22.0 120 3286 2.8 7.4 1.4 OC9 500 301 112 100 36.8 120 20939 6.3 .4 3.5 Overmyer Res. 501 238 302 2000 20.0 130 6263 6.4 12.6 6.3 4 502 95 84 1000 16.0 130 1721 2.1 1.7 1.7 503 96 95 452 24.0 120 7816 5.5 2.0 4.5 504 304 266 10 36.0 130 9000 2.8 .0 .7 GC35 510 95 84 1000 20.0 130 3094 3.2 1.7 1.7 DOWNTOWN LOOP 511 84 305 4400 20.0 130 1558 1.6 2.1 .5 DOWNTOWN LOOP 512 305 306 7200 20.0 130 1558 1.6 3.4 .5 DOWNTOWN LOOP 513 306 46 2000 20.0 130 B06 .8 .3 .1 DOWNTOWN LOOP 514 62 46 2900 20.0 130 1961 2.0 2.1 :7 DOWNTOWN LOOP 515 76 62 3200 20.0 130 2957 3.0 5.0 1.6 DOWNTOWN LOOP 516 114 115 3490 12.0 130 1252 3.6 13.4 3.8 517 64 115 6850 12.0 130 362 1.0. 2.6 .4 521 154 132 3150 8.0 130 272 1.7 5.2 1.6 t 522 170 154 3050 8.0 130 456 2.9 13.0 4.3 i 523 . 196 170 2660 8.0. 130 209 1.3 2.7 1.0. i 530 306 315 450 8.0 130 751 4:8 4.B 10.8 HI # 531 315 34 225 6.0 130 751 8.5 9.8 43.7 HI 4 r CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 2:28 AM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GP® Feet Feet Psi CK % DROP--CK ---- ----- ------ ------ ------ ------ -- ------ -- 2 5 -462.43 110.5 105.5 45 52 4 5 -218.21 110.9 105.9 45 52 6 5 -385.40 110.5 105.5 45 52 Banning B 5 -547.48 108.9 103.9 45 53 10 4 -912.47 106.9 102.9 44 54 12 4 -288.68 109.0 104.0 45 53 14 6 -594.62 112.9 106.9 46 51 16 7 -420.88 112.1 105.1 45 52 18 4 429.87 111.4 107.4 46 52 20 2 -352.11 111.2 109.2 47 51 22 4 -362.90 108.0 104.0 45 53 24 6 -411.89 118.7 112.7 48 49 26 8 -546.02 117.3 109.3 47 50 28 4 -353.81 116.8 112.8 48 49 30 4 -737.99 116.5 112.5 48 49 32 6 -1000.92 117.3 111.3 48 49 34 30 -697.41 135.8 105.9 45 46 36 8 -646.38 130.1 122.1 52 44 38 9 -560:84 126.8 117.8 51 46 40 6 -637.39 125.4 119.4 51 46 42 6 -706.16 125.1 119.1 51 46 44 18 -463.89 125.3 107.3 46 49 46 36 -591.71 150.1 114.1 49 40 48 36 -1221.BB 148.3 112.3 48 41 50 12 -853.66 152.3 140.3 60 35 52 10 -649.78 141.4 131.4 56 39 54 7 -454.90 140.1 133.1 57 39 56 10 -488.67 140.3 130.3 56 40 58 25 -724.63 144.1 119.1 51 41 60 35 -362.07 148.5 113.5 49 41 62 40 -700.33 152.3 112.3 48 40 64 75 -2070.60 149.0 74.0 32 LO 51 66 10 -554.28 152.3 142.3 61 34 68 8 -507.14 152.7 144.7 62 34 70 10 -484.79 153.7 143.7 62 34 72 55 -224.29 155.5 100.5 43 42 74 50 -544.56 156.7 106.7 46 40 76 50 .00 157.3 107.3 46 39 78 50 .00 156.4 106.4 46 40 80 50 .00 155.6 105.6 45 40 82 75 -270.22 155-.6 80.6 34 LO 47 84 75 -309.34. 156.0 81.0 35 LO 47 86 57 -184.19 158.6 101.6 44 40 Be 50 -298.65 159.8 109.8 47 38 90 60 .00 160.3 100.3 43 40 95 103 -3001.54 157.7 54.7 23 LO 56 Reservoir Hill 96 95 .00 159.7 64.7 28 LO 51 98 16 -849.04 150.0 134.0 58 36 100 15 -219.19 151.6 136.6 59 36 Flounder 102 12 -240.33 152.7 140.7 60 35 104 14 -347.98 155.7 141.7 61 33 106 58 -724.63 159.2 101.2 43 40 108 55 -276.29 164.3 109.3 47 37 110 60 .00 174.9 114.9 49 31 112 60 .00 175.9 115.9 50 31 CITY OF HUNTINGTON BEACH FRI, SEP 4, 19B7, 2:28 AM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 114 93 .00 159.8 66.B 28 LO 50 115 35 -1614.01 146.4 111.4 48 42 116 60 -307.88 174.6 114.6 49 31 11B 13 -281.15 160.0 147.0 63 31 120 55 -262.44 170.7 115.7 50 33 122 35 345.30 174.6 139.6 60 27 124 25 -295.73 172.5 141.5 63 27 128 5 -225.26 160.0 155.0 67 30 129 45 .00 171.0 126.0 54 31 130 45 -285.52 171.8 126.8 54 30 131 45 .00 179.4 134.4 58 26 132 55 -562.55 174.3 119.3 51 31 134 50 -231.34 174.8 124.E 54 30 136 50 -249.80 172.3 122.3 53 31 138 40 -511.76 168.0 128.0 55 32 140 2 -324.89 160.0 158.0 68 .30 142 2 -193.67 160.0 158.0 68 30 144 2 -215.78 160.2 158.2 68 30 146 2 -250.05 160.2 158.2 68 30 148 40 .00 161.E 127.9 55 32 150 40 .00 167.7 127.7 55 32 152 28 -506.65 194.5 166.5 72 16 154 25 -688.18 179.5 154.5 66 24 156 25 -216.03 176.7 151.7 65 25 159 30 -276.78 172.4 142.4 61 28 160 5 -523.67 167.1 162.1 70 27 162 3 -514.92 161.6 15B.6 68 29 164 2 -496.21 160.3 158.3 68 30 166 2 -355.02 149.0 147.0 b3 35 168 27 -917.81 209.4 182.4 79 9 170 26_ -379.OB 192.5 166.5 72 17 172 25 -663.39 181.2 156.2 67 23 174 25 -328.54 177.2 152.2 65 25 176 12 -312.26 170.9 158.9 68 26 178 5 -531.44 163.4 158.4 68 29 180 5 -327.08 160,7 155.7 67 30 In 5 -245.43 154.2 149.2 64 33 184 5 -356.97 142.4 137.4 59 38 186 34 -855.60 120.2 86.2 37 LO 55 190 35 -356.72 105.3 70.3 30 LO 63 192 55 -94.28 99.6 44.6 19 LO 74 194 5 -598.75 77.2 72.2 31 LO 67 196 25 -420.88 195.2 170.2 73 16 199 17 -612.36 180.7 163.7 70 22 200 14 -698.66 171.0 157.0 68 26 Heil 202 10 -335.10 166.1 156.1 67 28 204 10 253.45 163.4 153.4 66 29 206 9 -412.13 162.1 153.1 66 30 208 14 -415.53 141.2 127.2 55 40 210 15 -1191.43 120.4 105.4 45 50 212 9 -327.81 105.3 96.3 41 56 214 9 -366.20 100.1 91.1 39 LO 58 216 9 -647.94 95.0 96.0 37 LO 60 218 5 -472.64 54.3 49.3 21 LO 77 220 5 -7790.20U 51.OF 46.0 19 LO 79 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1997, 2:28 AM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 222 26 -842.72 206.4 180.4 78 10 224 21 -635.20 190.6 169.6 73 1B 226 23 -194.89 189.1 166.1 72 19 228 20 -432.78 172.8 152.8 66 26 230 12 -320.76 167.8 155.8 67 28 232 10 -659.74 164.3 154.3 66 29 234 12 -161.35 146.2 134.2 5B 38 236 15 -572.27 126.6 111.6 48 47 Scenario 238 5 -563.27 91.9 86.9 37 LO 61 240 21 -370.33 172.4 151.4 65 27 242 15 -453.92 170.7 155.7 67 27 244 16 -518.08 170.8 154.9 67 27 246 14 -715.64 147.7 133.7 57 37 248 14 .00 144.0 130.0 56 39 250 13 -209.95 136.6 123.6 53 42 252 22 -400..95 173.9 151.9 65 26 254 18 -502.04 179.2 161.2 69 23 256 17 -913.68 148.0 131.0 56 38 258 17 782.22 138.1 121.1 52 42 260 23 -526.34 190.2 167.2 72 18 262SP 34 9971.76U 190.3 156.3 67 19 PECK RES. 264SP 18 3399.35U 196.5 179.5 17 15 WELL 7 266 23 .00 190.3 167.3 72 18 270SP 27 3028.35U 228.5 201.5 87 HI 0 WELL 5 272 25 .00 194.1 169.1 73 16 274SP 19 3078.94U 198.1 179.1 77 14 WELL 6 276SP 17 819.04U 181.2 164.2 71 22 WELL 1 278 19 .00 179.0 160.0 69 23 284SP 27 3252.93U 220.4 193.4 83 HI 4 WELL 9 286SP 19 3179.12U 215.5 196.5 85 HI 6 WELL 10 288 22 .00 209.9 197.9 81 HI 8 290SP 44 441.80U 206.1 162.1 70 12 DYKE WELL 292 48 .00 179.6 131.6 57 27 . 294 12 6700.00 154.9 142.9 61 34 OC44,Adams 300 25 4500.00 216.7 191.7 83 HI 5 OC9 301SP 65 20939.29U 176.2 111.2 48 31 Overmyer Res. 302 5 .00 79.3 74.3 32 LO 66 304 25 9000.00 190.3 165.3 71 18 OC35 305 40 .00 153.9 113.9 49 39 306 30 .00 150.4 120.4 52 39 315 34 .00 145.6 111.6 48 42 Maximum Unbalanced Head = .00001 208 r CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 2:28 AM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION H8L DISCH HSL LIFT PUMP NODE GPM Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 262SP 9972 20.0 190.3 170.3 30 PECK RES. 301SP 20939 50.0 176.2 126.2 20 Overmyer Res. 290SP 442 -34.0 206.1 240.1 11 DYKE WELL 276SP 819 -98.0 181.2 279.2 1 WELL 1 270SP 3028 -62.0 228.5 290.5 5 WELL 5 274SP 3079 -59.0 198.1 257.1 6 WELL 6 264SP 3399 -89.0 196.5 285.5 7 WELL 7 284SP 3253 -64.0 220.4 2B4.4 9 WELL 9 286SP 3179 -55.0 215.5 270.5 10 WELL 10 220 -1790 51.0 SOURCE PUMPS Node Pump# 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000. 15800. 16100. 16250. 16500. 16750. 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000, 20650. 21975. 22525. 22875. 23350. 23775. 290 11 Head 330 306 256 1BO 72 0 0 0 Flow 0. 200. 400. 600. 800. 0. 0. 0. 2276 1 Head 440 399 348 311 287 205 98 0 Flow 0. 200. 400. 600. 000. 1000. 1200. 0. . 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012. 3765. 4519. 4894. 0. 274 6 Head 488 318 296 287 257 206 148 0 Flow 0. 1761. 2201. 2641. 3OB1. 3521. 3962. 0. 264 7 Head 397 299 291 268 238 208 174 0 Flow 0. 2917. 3296. 3756. 4225. 4695. 5164. 0. 284 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745. 4214. 0. 0. 2B6 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859. 2324. 2789. 3253. 3718. 0. 0. Iteration= 1, Flow Correction= 18761.120 Iteration= 2, Flow Correction= 7919.506 Iteration= 3, Flow Correction= 2840.691 Iteration= 4, Flow Correction= 609.782 Iteration= 5, Flow Correction= 526.064 Iteration= 6, Flow Correction= 391.163 Iteration= 7, Flow Correction= 191.151 Iteration= 8, Flow Correction= 18.429 itoratinn= 9_ Flnw rnrrartinn= L OR1 Iteration= 10, Flow correction= .UUS Iteration= 11, Flow-Correction= .000 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 2:59 AM ULTIMATE SYSTEM -- MAXIMUM DAY ULTIMATE DEMAND & FIRE @ NODE 222 INPUT FILE NAME MDUFR222 NUMBER OF PIPES 245 NUMBER OF NODES 151 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK. VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gpe MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF i-f FIXED DEMANDS = .00 SUM OF I+1 FIXED DEMANDS = 20200.00 SUM OF PEAKABLE DEMANDS =-24715.80 SUM OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -60059.41 SUM OF ALL DEMANDS --------- -39859.41 Solution reached in it iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 2:59 AM PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Bpi Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 519 .8 .5 .2 4 2 6 2000 12.0 130 56 .2 .0 .0 LO 6 4 6 1600 12.0 130 317 .9 .5 .3 8 6 8 2600 12.0 130 459 1.3 1.6 .6 10 8 10 2900 12.0 130 498 1.4 2.0 .7 12 12 10 970 10.0 130 414 1.7 1.2 1.2 14 14 4 2900 16.0 130 1054 1.7 2.0 .7 16 16 6 2b20 12.0 130 470 1.3 1.6 .6 iB 18 8 2640 12.0 130 597 1.7 2.5 .9 20 20 12 2350 12.0 130 708 2.0 3.1 1.3 22 12 22 22BO 12.0 130 5 .0 LD .0 .0 LO 24 14 16 2600 12.0 130 329 .9 .8 .3 26 16 18 2610 12.0 130 298 .8 .7 .3 28 18 20 2510 12.0 130 160 .5 .2 .1 LO 30 '4 14 2620 16.0 130 1978 3.2 5.8 2.2 32 26 16 2700 12.0 130 B60 2.4 5.2 1.9 34 '6 18 2700 12.0 130 879 2.5 5.4 2.0 36 30 20 2570 12.0 130 900 2.6 5.4 2.1 38 32 22 3430 B4O 130 35B 2.3 9.3 2.7 40 24 26 2680 12.0 130 434 1.2 1.4 .5 42 26 28 2640 12.0 130 242 .7 .5 .2 44 28 30 2670 12.0 130 166 .5 .2 .1 LO 46 32 30 2550 12.0 130 328 .9 .8 .3 48 34 32 2B00 12.0 130 1696 4.8 18.7 6.7 50 36 24 2640 16.0 130 2B23 4.5 11.3 4.3 52 38 26 2600 12.0 130 1215 3.4 9.5 3.6 54 40 28 25BO 12.0 130 1157 3.3 0.6 3.3 56 42 30 2640 12.0 130 1144 3.2 8.6 3.3 58 46 34 2320 12.0 130 1629 4.6 14.5 6.3 60 36 38 2640 12.0 130 679 1.9 3.3 1.2 62 3B 40 2640 12.0 130 425 1.2 1.4 .5 64 40 42 2700 12.0 130 154 .4 .2 .1 LO 66 44 42 2550 12.0 130 139 .4 .2 .1 LO 68 46 48 700 12.0 130 1004 2.9 1.B 2.6 70 50 36 2550 16.0 130 4149 6.6 22.2 8.7 72 52 38 2640 12.0 130 1522 4.3 14.6 5.5 74 54 40 2650 12.0 130 1523 4.3 14.7 5.5 76 56 42 2620 12.0 130 1557 4.4 15.1 5.8 78 58 44 2640 8.0 130 603 3.8 18.9 7.2 80 62 46 2950 12.0 120 461 1.3 2.1 .7 B2 64 48 5300 12.0 130 224 .6 .8 .2 B4 50 52 2700 12.0 130 1285 3.6 10.9 4.0 86 52 54 2600 12.0 130 415 1.2 1.3 .5 88 56 , 54 2640 12.0 130 159 .5 .2 .1 LO 90 58 56 2660 12.0 130 750 2.1 4.0 1.5 92 60 58 1330 12.0 130 1164 3.3 4.5 3.4 94 62 60 1130 8.0 130 411 2.6 4.0 3.5 B & 12 96 66 52 2640 12.0 130 1301 3.7 10.9 4.1 97 68 54 2640 12.0 130 1405 4.0 12.6 4.8 98 70 56 2640 12.0 130 1454 - 4.1 13.4 5.1 99 72 58 2640 8.0 130 457 2.9 11.3 4.3 100 72 58 2640 8.0 130 457 2.9 11.3 4.3 101 74 60 2640 12.0 130 1115 3.2 8.2 3.1 102 80 62 3200 12.0 120 583 1.7 3.5 1.1 104 84 64 2850 12.0 70 530 1.5 7.0 2.5 r CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 2:59 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2900 16.0 130 2116 3.4 7.0 2.5 108 50 66 5250 30.0 120 22 .0 LO .0 .0 LD 110 68 66 2640 30.0 120 2144 1.0 .4 .1 112 70 68 2680 30.0 120 3766 1.7 1.1 .4 114 70 68 2680 12.0 130 367 1.0 1.1 .4 116 72 70 2600 12.0 130 506 1.4 1.9 .7 118 72 70 2600 30.0 120 5200 2.4 1.9 .7 120 74 72 1450 30.0 120 59BO 2.7 1.3 .9 122 76 74 600 30.0 120 673B 3.1 .7 1.2 124 76 78 150 B.0 130 489 3.1 .7 4.9 126 7B 80 1050 12.0 130 489 1.4 .7 .7 128 82 B0 1150 12.0 130 94 .3 .0 .0 LO 130 84 82 1250 12.0 130 365 1.0 .5 .4 132 50 98 5300 12.0 130 390 1.1 2.4 .4 134 66 100 2580 12.0 130 311 .9 .8 .3 136 6B 102 2640 12.0 130 77 .2 .1 .0 LD 138 104 70 2630 12.0 130 366 1.0 1.0 .4 140 B6 72 1320 12.0 130 864 2.5 2.6 1.9 142 106 86 1320 12.0 130 159 .4 .1 .1 LO 144 88 B6 1450 14.0 120 B89 1.9 1.6 1.1 146 IOB. 88 12BO 12.0 130 980 2.8 3.1 2.4 148 90 88 650 14.0 120 1109 2.3 1.1 1.7 149 Be 74 1350 12.0 130 901 2.6 2.8 2.1 151 90 76 1300 30.0 120 10146 4.6 3.2 2.5 152 90 96 3150 42.0 120 3986 .9 .3 .1 LO 158 100 9B 2680 12.0 130 459 1.3 1.6 .6 160 102 100 2680 12.0 130 367 1:0 1.1 .4 162 104 102 2750 12.0 130 531 1.5 2.2 .8 164 106 104 2580 12.0 130 712 2.0 3.5 1.4 166 108 106 1500 12.0 130 1113 3.2 4.6 3.1 168 110 108 700 12.0 130 2369 6.7 8.8 12.5 HI 170 112 90 950 21.0 120 9963 9.2 12.9 13.6 HI 171 112 90 950 16.0 130 5279 8.4 12.9 13.6 HI 172 112 110 350 21.0 120 6444 6.0 2.1 6.1 174 110 116 750 21.0 120 4076 3.8 1.9 2.6 176 114 96 3400 42.0 120 3923 .9 .3 .1 LD 178 118 104 2640 12.0 130 533 1.5 2.1 .8 179 120 106 2640 8.0 130 329 2.1 6.1 2.3 180 120 106 2640 6.0 130 154 1.7 6.1 2.3 182 116 120 2550 12.0 130 B99 2.6 5.3 2.1 184 116 122 1900 21.0 120 2B69 2.7 2.6 1.4 1B8 128 114 4000 42.0 120 5107 1.2 .6 .1 110 120 118 2550 8.0 130 374 2.4 7.5 3.0 192 122 120 2150 B.0 130 237 1.5 2.7 1.3 194 122 124 600 B.0 130 483 3.1 2.9 4.8 196 131 118 2640 B.0 130 440 2.0 10.5 4.0 197 132 130 800 8.0 130 215 1.4 .9 1.1 190 129 130 B50 6.0 130 70 .8 .5 .5 199 120 129 1250 8.0 130 70 .4 .2 .1 200 132 120 2150 8.0 130 53 .3 .2 .1 LO 201 122 134 2640 21.0 120 1803 1.7 1.5 .6 202 124 136 3250 12.0 130 188 .5 .4 .1 206 128 140 700 12.0 130 5 .0 LO .0 .0 LO 208 142 128 1800 12.0 130 100 .3 .1 .0 LO 210 144 142 1150 12.0 130 394 1.1 .5 .5 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 2:59 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 212 292 132 1950 8.0 130 283 1.8 3.4 1.8 214 134 132 2000 12.0 130 416 1.2 1.0 .5 216 134 136 1200 12.0 130 732 2.1 1.7 1.4 218 136 138 2050 12.0 130 580 1.6 1.9 .9 22tt 164 146 2200 12.0 130 234 .7 .4 .2 222 142 140 1800 12.0 130 100 .3 .1 .0 LD 224 146 128 420E 42.0 120 5316 1.2 .6 .1 226 146 144 650 24.0 120 610 .4 .0 .0 LO 21 152 131 2700 B.0 130 242 1.5 3.6 1.3 230 154 132 3150 8.0 130 66 .4 .4 .1 232 134 156 2640 21.0 120 423 .4 .1 .0 LO 234 136 158 2640 12.0 130 90 .3 .1 .0 LD 236 150 160 1400 12.0 130 68 .2 .0 .0 LO 238 148 150 700 14.0 130 68 .1 .0 .0 LO 240 138 148 500 12.0 130 68 .2 .0 .0 LO 242 162 140 2640 12.0 130 220 .6 .4 .2 244 164 146 2120 42.0 120 5942 1.4 .4 .2 246 152 154 2640 8.0 130 323 2.1 6.0 2.3 24B 156 154 2640 8.0 130 87 .6 .5 .2 250 156 158 1300 12.0 130 696 2.0 1.7 1.3 252 15B 160 2000 12.0 130 581 1.6 1.9 .9 254 160 162 2660 12.0 130 125 .4 .1 .1 LO 256 164 162 2660 12.0 130 267 .8 .6 .2 257 180 164 2700 12.0 130 296 .8 .7 .3 258 164 166 2640 12.0 130 722 2.0 3.7 1.4 260 168 152 2550 12.0 130 1072 3.0 7.4 2.9 261 168 170 2330 21.0 120 5443 5.0 10.3 4.4 262 170 154 3050 9.0 130 205 1.3 3.0 1.0 263 110 172 2000 21.0 120 2604 2.4 2.3 1.1 264 172 156 2650 21.0 120 575 .5 .2 .1 LD 265 172 174 1350 16.0 130 1366 2.2 1.5 1.1 266 174 158 2650 B.0 130 71 .5 .4 .1 267 174 176 1950 16.0 130 BIB 1.3 .8 .4 269 176 17B 2640 16.0 130 568 .9 .6 .2 270 178 162 2700 12.0 130 343 1.0 .9 .3 271 180 178 2700 16.0 120 400 .6 .4 .1 272 180 164 2700 42.0 120 7366 1.7 .7 .3 273 180 22 1150 16.0 120 1537 2.5 1.0 1.6 274 166 IB4 2680 12.0 130 367 1.0 1.1 .4 275 192 184 . 1550 16.0 125 1953 3.1 3.6 2.3 277 184 lBb 2650 16.0 125 1811 2.9 5.3 2.0 279 186 190 2750 16.0 125 989 1.6 1.8 .7 280 190 192 1340 16.0 125 302 .5 .1 .1 LO 282 192 194 3200 14.0 130 207 .4 .2 .1 LO 284 218 194 5300 14.0 130 391 .8 1.1 .2 286 170 196 2660 B.0 130 1025 6.5 50.9 19.1 HI 288 174 19B 2640 12.0 130 148 .4 .2 .1 LD 290 200 176 2500 12.0 130 62 .2 .0 .0 LD 292 202 204 2700 8.0 130 161 1.0 1.7 .6 294 178 204 BOO 12.0 130 93 .3 .0 .0 LO 296 206 IBO 2700 36.0 120 9925 3.1 2.6 1.0 298 206 182 3800 12.0 130 662 1.9 4.5 1.2 300 184 208 2640 12.0 130 152 .4 .2 .1 LO 301 210 186 2640 8.0 130 34 .2 .1 .0 LO 302 190 212 2640 12.0 130 331 .9 .9 .3 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 2:59 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Bps Fps CK ft ft11000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 304 198 196 3300 8.0 130 873 5.6 46.9 14.2 HI 306 198 200 2700 12.0 130 271 .B .6 .2 308 202 200 2640 12.0 130 364 1.0 1.0 .4 310 206 202 2640 12.0 130 423 1.2 1.4 .5 312 206 208 2640 12.0 130 1122 3.2 8.3 3.1 314 208 '210 2640 12.0 130 859 2.4 5.1 1.9 316 210 212 2640 12.0 130 620 1.8 2.9 1.0 318 212 214 1300 12.0 130 623 1.8 1.4 1.1 320 196 222 2700 12.0 130 2502 7.1 37.4 13.9 HI 322 272 224 1320 12.0 130 1719 4.9 9.1 6.9 324 22B 200 2640 12.0 130 116 .3 .1 .0 LO 326 230 202 3000 12.0 130 437 1.2 1.6 .5 327 232 206 2640 12.0 130 713 2.0 3.6 1.4 32B 232 206 2640 36.0 120 11B31 3.7 3.6 1.4 330 236 210 2700 12.0 130 986 2.B 6.7 2.5 332 214 216 1000 10.0 130 257 1.0 .5 .5 334 238 216 2100 8.0 130 391 2.5 6.7 3.2 336 302 220 4500 20.0 130 1246 1.3 1.4 .3 # 338 220 218 1250 14.0 130 864 1.8 1.1 .9 # 340 224 2B8 1700 12.0 130 1126 3.2 5.4 3.2 342 228 224 2000 12.0 130 174 .5 .2 .1 LO 344 230 228 2640 12.0 130 593 1.7 2.5 1.0 346 232 230 2640 12.0 130 6B2 1.9 3.3 1.2 348 232 234 2640 20.0 130 3285 3.4 5.0 1.9 # 350 234 236 2640 MO 130 3347 3.4 5.2 2.0 # 352 236 238 5030 20.0 130 2200 2.2 4.6 .9 # 354 224 226 1300 12.0 130 131 .4 .1 .1 LO 356 240 228 2700 12.0 130 130 .4 .2 .1 LO 358 242 230 2700 12.0 130 668 1.9 3.2 1.2 360 244 232 2700 36.0 120 17171 5.4 7.3 2.7 362 246 234 2700 12.0 130 223 .6 .4 .2 364 250 236 2680 12.0 130 412 1.2 1.3 .5 366 240 226 3800 B.0 130 64 .4 .4 .1 368 242 240 2640 10.0 130 564 2.3 5.6 2.1 370 244 242 2660 10.0 130 648 2.6 7.3 2.8 372 244 246 2550 12.0 130 1390 3.9 11.9 4.7 374 246 24B 1500 12.0 130 59B 1.7 1.5 1.0 376 248 250 1200 10.0 130 598 2.4 2.9 2.4 378 252 242 2540 12.0 130 1039 2.9 6.9 2.7 380 254 244 2640 36.0 120 19727 6.2 9.2 3.5 382 256 246 2540 12.0 130 146 .4 .2 .1 LO 3B4 25B 250 2640 12.0 130 24 .1 LO .0 .0 LO 386 278 252 1750 12.0 130 1440 4.1 8.7 5.0 388 254 256 2600 12.0 130 1866 5.3 20.9 8.1 390 256 258 2640 12.0 130 B06 2.3 4.5 1.7 392 260 254 2600 36.0 120 22711 7.2 11.8 4.5 394 262 260 150 36.0 130 1OB33 3.4 .1 1.0 PECK RES. 395 266 260 100 36.0 130 12404 3.9 .1 1.3 396 264 266 250 12.0 130 3404 9.7 6.1 24.5 81 WELL 7 400 270 166 970 12.0 130 3406 9.7 23.8 24.5 HI WELL 5 402 274 272 200 12.0 130 3327 9.4 4.7 23.5 HI WELL 6 404 272 198 1380 12.0 130 1609 4.6 8.4 6.1 406 276 278 170 8.0 130 823 5.3 2.2 12.8 HI WELL 1 408 254 278 900 12.0 130 616 1.7 .9 1.0 414 284 169 1990 16.0 130 3631 5.8 13.5 6.8 WELL 9 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 2:59 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Bp® Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 416 288 222 1600 12.0 130 4943 14.0 HI 78.3 48.9 HI 419 286 289 1050 16.0 130 3817 6.1 7.8 7.5 WELL 10 420 290 292 1400 6.0 120 481 5.5 31.0 22.1 HI DYKE WELL 422 292 131 750 8.0 130 197 1.3 .7 .9 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2B50 12.0 130 4104 11.6 HI 98.B 34.7 HI 452 300 168 5300 22.0 120 396 .3 .1 .0 LD OC9 500 301 112 100 36.8 120 21686 6.5 .4 3.7 Overmyer Res. 501 238 302 2000 20.0 134 1246 1.3 .6 .3 4 502 95 84 1000 16.0 130 1754 2.8 1.9 1.8 503 96 95 452 24.0 120 7109 5.6 2.1 4.6 504 304 266 10 36.0 130 9000 2.8 .0 .7 OC35 510 95 84 1000 20.0 130 3154 3.2 1.9 1.8 DOWNTOWN LOOP 511 84 3D5 4400 20.0 130 158B 1.6 2.2 .5 DOWNTOWN LOOP 512 305 306 7200 20.0 130 1588 1.6 3.6 .5 DOWNTOWN LOOP 513 306 46 2000 20.0 130 B33 .9 .3 .2 DOWNTOWN LOOP 514 62 46 2900 20.0 130 1930 2.0 2.1 .7 DOWNTOWN LOOP 515 76 62 3200 20.0 130 2919 3.0 4.9 1.5 DOWNTOWN LOOP 516 114 115 3490 12.0 130 1263 3.6 13.6 3.9 517 64 115 6850 12.0 130 351 1.0 2.5 .4 521 154 132 3150 810 130 66 .4 .4 .1 # 522 170 154 3050 B.0 130 205 1.3 3.0 1.0 1 523 170 196 2660 8.0 130 1025 6.5 50.9 19.1 HI # 530 306 315 450 8.0 130 755 4.8 4.9 10.9 HI 1 531 315 34 225 6.0 130 755 8.6 9.9 44.1 HI # r CITY OF HUNTINGTON BEACH FRI, 5EP 4, 1987. 2:59 AM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GP® Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -462.43 102.9 97.9 42 48 4 5 -218.21 103.3 98.3 42 48 6 5 -3B5.40 102.9 97.9 42 48 Banning 8 5 -547.4E 101.3 96.3 41 49 10 4 -912.47 99.3 95.3 41 50 12 4 -288.6B 100.4 96.4 41 49 14 6 -594.62 105.3 99.3 43 47 16 7 -420.BB 104.5 97.5 42 4B 18 4 -429.87 103.8 99.8 43 48 20 2 -352.11 103.6 101.6 44 47 22 4 -362.80 100.4 96.4 41 49 24 6 -411.89 111.1 105.1 45 44 26 8 -546.02 109.7 101.7 44 45 28 4 -353.81 109.2 105.2 45 45 30 4 -737.99 109.0 105.0 45 45 32 6 -1000.92 109.9 103.8 44 45 34 30 -697.41 128.5 9B.5 42 40 36 8 -646.3B 122.4 114.4 49 39 38 9 -560.84 119.1 110.1 47 41 40 6 -637.39 117.8 111.8 48 41 42 6 -706.16 117.5 111.5 4B 41 44 18 -463.89 117.7 99.7 43 44 46 36 -591.71 143.0 107.0 46 33 48 36 -1227.88 141.2 105.2 45 34 50 12 -853.66 144.6 132.6 57 28 52 10 -649.78 133.7 123.7 53 33 54 7 -454.90 132.4 125.4 54 33 56 10 -48B.67 132.6 122.6 53 34 58 25 -724.63 136.6 111.6 4B 34 60 35 -362.07 141.1 106.1 45 34 62 40 -700.33 145.0 105.0 45 32 64 75 -2070.60 142.0 67.0 29 LO 44 66 10 -554.28 144.6 134.6 5B 27 68 8 -507.14 145.0 137.0 59 27 70 10 -484.79 146.0 136.0 58 26 72 55 -224.29 147.9 92.9 40 34 74 50 -544.56 149.3 99.3 43 32 76 50 .00 150.0 100.0 43 31 78 50 .00 149.2 99.2 43 32 BO 50 .00 148.5 99.5 42 32 82 75 -270.22 148.6 73.6 31 LO 39 B4 75 -309.34 149.0 74.0 32 LO 38 86 57 -184.19 150.5 .93.5 40 32 B8 50 -298.65 152.1 102.1 44 30 90 60 .00 153.2 93.2 40 31 95 103 -3001.54 150.8 47.B 20 LO 48 Reservoir Hill 96 95 .00 152.9 57.9 25 LO 42 9B 16 -949.04 142.3 126.3 54 29 100 15 -219.19 143.9 12B.9 55 28 Flounder 102 12 -240.33 144.9 132.9 57 27 104 14 -347.98 147.1 133.1 57 26 106 58 -724.63 150.6 92.6 40 33 108 55 -276.29 155.2 100.2 43 29 110 60 .00 164.0 104.0 45 23 112 60 .00 166.1 106.1 45 22 CITY OF HUNTINGTON BEACH FRI, SEP 41 1907, 2:59 AM GROUND ELY FLOW HSL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 114 93 .00 153.2 60.2 26 LO 41 115 35 -1614.01 139.5 104.5 45 35 116 60 -307.88 162.0 102.0 44 25 118 13 -281.15 149.2 136.2 59 25 120 55 -262.44 156.7 101.7 44 27 122 35 -345.30 159.4 .124.4 53 22 124 25 -295.73 156.6 131.6 57 23 128 5 -225.26 153.7 14B.7 64 22 129 45 .00 156.5 111.5 4B 26 130 45 -285.52 156.1 111.1 48 26 131 45 .00 159.7 114.7 49 24 132 55 -562.55 156.9 101.9 44 27 134 50 -231.34 157.9 107.9 46 26 136 50 -249.80 156.2 106.2 46 27 139 40 -511.76 154.3 114.3 49 26 140 2 -324.89 153.7 151.7 65 21 142 2 -193.67 153.0 151.8 65 21 144 2 -215.78 154.3 152.3 66 21 146 2 -250.05 154.4 152.4 66 21 140 40 .00 154.3 114.3 49 26 150 40 .00 154.3 114.3 49 26 152 28 -506.65 163.3 135.3 5B 19 154 25 -6BB.18 157.3 132.3 57 22 156 25 -216.03 157.8 132.E 57 22 15B 30 -276.7B 156.1 126.1 54 24 160 5 -523.67 154.3 149.3 64 21 162 3 -514.92 154.1 151.1 65 21 164 2 -496.21 154.7 152.7 66 21 166 2 -355.02 151.1 149.1 64 23 168 27 -917.81 170.6 143.6 62 15 170 26 -379.08 160.3 134.3 58 21 172 25 -663.39 158.0 133.0 57 22 174 25 -328.54 156.5 131.5 57 23 176 12 -312.26 155.7 143.7 62 22 178 5 -531.44 155.1 150.1 65 21 180 5 -327.OB 155.4 150.4 65 21 iB2 5 -245.43 153.6 148.6 64 22 184 5 -356.97 150.0 145.0 62 24 lB6 34 -855.60 144.7 110.7 47 31 190 35 -356.72 142.8 107.E 46 33 192 55 -94.28 142.7 87.7 38 LO 37 194 5 -598.75 142.5 137.5 59 28 196 25 -420.88 109.4 84.4 36 LO 50 199 17 -612.36 156.3 139.3 60 22 200 14 -68B.66 155.7 141.7 61 22 Heil 202 10 -335.10 156.7 146.7 63 21 204 10 -253.45 155.1 145.1 62 22 206 9 -412.13 158.1 149.1 64 20 208 14 -415.53 149.8 135.8 5B 25 210 15 -1191.43 144.7 129.7 56 28 212 9 -327.81 142.0 133.0 57 2B 214 9 -366.20 140.6 131.6 57 29 216 9 -647.84 140.1 131.1 56 29 218 5 -472.64 143.7 138.7 60 27 220 5 -3B1.75 144.8 1393 60 26 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 2:59 AM GROUND ELV FLOW H6L EL HEAD ------- PRESSURE ------ NODE Feet GP® Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 222 26 -11548.96U 72.OF 46.0 19 LO 72 224 21 -635.20 155.6 134.6 58 23 226 23 -194.89 155.6 132.6 57 23 229 20 -432.78 155.9 135.8 5B 22 230 12 -320.76 158.4 146.4 63 20 232 10 -659.74 161.7 151.7 65 18 234 12 -161.35 156.6 144.6 62 21 236 15 -572.27 151.4 136.4 59 24 Scenario 238 5 -563.27 146.9 141.9 61 25 240 21 -370.33 156.0 135.0 58 22 242 15 -453.92 161.6 146.6 63 19 244 16 -51B.08 169.0 153.0 66 15 246 14 -715.64 157.1 143.1 62 21 248 14 .00 155.6 141.6 61 22 250 13 -209.95 152.7 139.7 60 23 252 22 -400.95 168.5 146.5 63 15 254 18 -502.04 178.2 160.2 69 10 256 17 -913.6B 157.2 140.2 60 21 258 17 -782.22 152.7 135.7 5B 24 260 23 -526.34 190.0 167.0 72 3 262SP 34 10833.27U 190.1 156.1 67 3 PECK RES. 264SP IB 3404.15U 196.2 17B.2 77 0 WELL 7 266 23 .00 190.1 167.1 72 3 270SP 27 3405.91U 194.4 167.4 72 1 WELL 5 272 25 .00 164.8 139.8 60 18 274SP 19 3327.27U 169.5 150.5 65 15 WELL 6 276SP 17 823.3BU 179.4 162.4 70 9 WELL 1 278 19 .00 177.2 158.2 6B 10 2B4SP 27 3631.36U 1B4.2 157.2 6B 7 WELL 9 286SP 19 3816.65U 15B.1 139.1 60 21 WELL 10 288 22 .00 150.3 12B.3 55 26 290SP 44 480.57U 191.4 147.4 63 3 DYKE WELL 292 48 .00 160.4 112.4 46 24 294 12 6700.00 147.1 135.1 5B 26 OC44,Adams 300 25 4500.00 170.8 145.E 63 14 OC9 301SP 65 21685.80U 166.5 101.5 43 22 Overmyer Res. 302 5 .00 146.2 141.2 61 26 304 25 9000.00 190.1 165.1 71 3 OC35 305 40 .00 146.9 106.9 46 31 306 30 .00 143.3 113.3 49 31 315 34 .00 138.4 104.4 45 35 Maximum Unbalanced Head = .00003 208 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 2:59 AM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH H61. LIFT PUMP NODE Gpa Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 301SP 21686 50.0 166.5 116.5 20 Overmyer Res. 262SP 1OB33 20.0 190.1 170.1 30 PECK RES. 290SP 481 -34.0 191.4 225.4 11 DYKE WELL 2766P 823 -98.0 179.4 277.4 1 WELL 1 270SP 3406 -62.0 194.4 256.4 5 WELL 5 274SP 3327 -59.0 169.5 228.5 6 WELL 6 264SP 3404 -89.0 196.2 285.2 7 WELL 7 284SP 3631 -64.0 184.2 24B.2 9 WELL 9 286SP 3817 -55.0 158.1 213.1 10 WELL 10 222 -11549 72.0 SOURCE PUMPS Node Pump# 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000. 20650. 21B75. 22525. 22B75. 23350. 23775. 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000. 15B00. 16100. 16250. 16500. 16750. 290 I1 Head 330 306 256 180 72 0 0 0 Flow 0. 200. 400. 600. 800. 0. 0. 0. 276 1 Head 440 399 349 311 287 205 98 0 Flow 0. 200, 400. 600. 800. 1000. 1200. 0. 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012. 3765. 4518. 4B94. 0. 274 6 Head 48B 31B 296 287 257 206 148 0 Flow 0. 1761. 2201. 2641. 30B1. 3521. 3962. 0. 264 7 Head 397 299 291 268 238 208 174 0 Flow 0. 2817. 3286. 3756. 4225. 4695. 5164. 0. 284 9 Head 544 424; 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745. 4214, 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1B59. 2324. 2789. 3253. 3718. 0. 0. Iteration= 1, Flow Correction= 365BB.430 Iteration= 2, Flow Correction= 19488.260 Iteration= 3, Flow Correction= 6229.180 Iteration= 4, Flow Correction= 2376.814 Iteration= 5, Flow Correction= 992.899 Iteration= 6, Flow Correction= 728.BB8 Iteration= 7, Flow Correction= 322.280 Iteration= 8, Flow Correction= 46.849 Iteration= 91 Flow Correction= 5.053 TF-'i•:nn- In [l- AA 1 Iteration= 11, Flop Correction= .001 C HUNTINGTON BEACH WATER MASTER PLAN PROJECTED WATER USE FOR BOLSA CHICA DEVELOPMENT 1. DETERMINE AVERAGE DENSITY 5700 Units = 17 Units Per Acre 343 Acres From H. B. General Plan (Land Use Element) , 15 - 35 Units/Acre - HIGH DENSITY RESIDENTIAL (HDR) 2. MEASURE ACREAGE (refer to 5/11/87 Map from The Taylor Group) WATER NODE HDR COMM PAR TOTAL USE (ACRES) (GPM) 309 168.2 22.2 5.2 195.6 488.7 311 67.3 0 0 67 .3 181.7 312 107.8 33.7 13.9 155.4 350.7 Total 343.3 35.9 19.1 418.3 1,020.6 Land Use Coefficients (Refer to Spread Sheet 11198611) High Density Residential - HDR: 2.7 Commercial - COMM. 1.3 open space/park - PARR: 1.1 NOTES: 1) Bolsa Chica also includes 114 Acres of Marina Waters, 418.3 + 114 = 532.3 Acres. 2) Area does not include streets. 3) Node 309 is Phase I of the Development. OC-H10-300-00 NEW WORKFILE TITLE CITY OF HUNTINGTON BEACH ULTIMATE SYSTEM -- MAX DAY ULTIMATE DEMAND & FIRE @ NODE 28 W/BOLSA ********FILENAME=DUFR28B UNITS 0 0 0 0 0 0 0 FACTORS 2 . 43 1 . 0 LIMITS 100 . 1 . 1 10 . 1 10 40 80 UNKNOWNS 301 50 20 *Overmyer Res . 262 20 30 *Peck Res 290 -34 11 276 -98 1 270 -62 5 274 -59 6 264 -89 7 284 -64 9 286 -55 10 28 50 *FIRE FLOW PIPES 2 2 4 2480 16 130 4 6 2 2000 12 130 6 6 4 1600 12 130 8 8 6 2600 12 130 10 8 10 2900 12 130 12 12 10 970 10 130 14 14 4 2900 16 130 16 16 6 2620 12 130 18 18 8 2640 12 130 20 20 12 2350 12 130 22 22 12 2280 12 130 24 16 14 2600 12 130 26 16 18 2610 12 130 28 20 18 2510 12 130 30 24 14 2620 16 130 32 26 16 2700 12 130 34 28 18 2700 12 130 36 30 20 2570 12 130 38 22 32 3430 8 130 40 26 24 2680 12 130 42 26 28 2640 12 130 44 30 28 2670 12 130 46 30 32 2550 12 130 48 32 34 2800 12 130 50 36 24 2640 16 130 52 38 26 2600 12 130 54 40 28 2580 12 130 56 42 30 2640 12 130 58 46 34 2320 12 130 60 36 38 2640 12 130 62 38 40 2640 12 130 64 40 42 2700 12 130 66 44 42 2550 12 130 68 46 48 700 12 130 70 50 36 2550 16 130 72 52 38 2640 12 130 74 54 40 2650 12 130 76 56 42 2620 12 130 78 58 44 2640 8 130 80 62 46 . 2950 12 120 82 64 48 5300 12 130 84 50 52 2700 12 130 86 52 54 2600 12 130 88 54 56 2640 12 130 90 56 58 2660 12 130 92 58 60 1330 12 130 94 60 62 1130 8 130*8 & 12 96 66 52 2640 12 130 97 68 54 2640 12 130 98 70 56 2640 12 130 99 58 72 2640 8 130 100 58 72 2640 8 130 101 74 60 2640 12 130 102 80 62 3200 12 120 104 64 84 2850 12 70 106 64 84 2800 16 130 108 50 66 5250 30 120 110 68 66 2640 30 120 112 68 70 2680 30 120 114 68 70 2680 12 130 116 70 72 2600 12 130 118 70 72 2600 30 120 120 74 72 1450 30 120 122 74 76 600 30 120 124 76 78 150 8 130 126 80 78 1050 12 130 128 82 80 1150 12 130 130 82 84 1250 12 130 132 50 98 5300 12 130 134 66 100 2580 12 130 136 102 68 2640 12 130 138 104 70 2630 12 130 140 86 72 1320 12 130 142 106 86 1320 12 130 144 86 88 1450 14 120 146 108 88 1280 12 130 148 88 90 650 14 120 149 88 74 1350 12 130 151 76 90 1300 30 120 152 90 96 3150 42 120 158 98 100 2680 12 130 160 100 102 2680 12 130 162 102 104 2750 12 130 164 104 106 2580 12 130 166 106 108 1500 12 130 168 108 110 700 12 130 170 112 90 950 21 120 171 112 90 950 16 130 172 110 112 350 21 120 174 116 110 750 21 120 176 96 114 3400 42 120 178 118 104 2640 12 130 179 106 120 2640 8 130 180 120 106 2640 6 130 182 120 116 2550 12 130 184 122 116 1900 21 120 188 128 114 4000 42 120 190 118 120 2550 8 130 192 120 122 2150 8 130 194 122 124 600 8 130 196 131 118 2640 8 130 197 132 130 800 8 130 198 130 129 850 6 130 199 129 120 1250 8 130 200 132 120 2750 8 130 201 134 122 2640 21 120 202 136 124 3250 12 130 206 140 128 700 12 130 208 128 142 1800 12 130 210 142 144 1150 12 130 212 292 132 1950 8 130 214 132 134 2000 12 130 216 134 136 1200 12 130 218 136 138 2050 12 130 220 146 164 2200 12 130 222 140 142 1800 12 130 224 128 146 4200 42 120 226 146 144 650 24 120 228 131 152 2700 8 130 230 154 132 3150 8 130 521 154 132 3150 8 130*# 232 156 134 2640 21 120 234 158 136 2640 12 130 236 160 150 1400 12 130 238 150 148 700 14 130 240 148 138 500 12 130 242 162 140 2640 12 130 244 164 146 2120 42 120 246 152 154 2640 8 130 248 156 154 2640 8 130 250 156 158 1300 12 130 252 158 160 2000 12 130 254 160 162 2660 12 130 r 256 162 164 2660 12 130 257 180 164 2700 12 130 258 164 166 2640 12 130 260 168 152 2550 12 130 261 168 170 2330 21 120 262 170 154 3050 8 130 522 170 154 3050 8 130*# 263 172 170 2000 21 120 264 172 156 2650 21 120 265 172 174 1350 16 130 266 174 158 2650 8 130 267 174 176 1950 16 130 269 176 178 2640 16 130 270 178 162 2700 12 130 271 178 180 2700 16 120 272 180 164 2700 42 120 273 180 182 1150 16 120 274 166 184 2680 12 130 275 182 184 1550 16 125 277 18P 184 2650 16 125 278 1' 308 1400 12 130*# 279 1 . 186 2750 16 125 280 190 192 1340 16 125 282 194 192 3200 14 130 284 194 218 5300 14 130 286 196 170 2660 8 130 523 196 170 2660 8 130*# 288 198 174 2640 12 130 290 200 176 2500 12 130 292 202 204 2700 8 130 294 204 178 800 12 130 296 206 180 2700 36 120 298 206 182 3800 12 130 300 208 184 2640 12 130 301 186 210 2640 8 130 302 212 190 2640 12 ' 130 304 196 198 3300 8 130 306 198 200 2700 12 130 308 200 202 2640 12 130 310 202 206 2640 12 130 312 206 208 2640 12 130 314 208 210 2640 12 130 316 212 210 2640 12 130 318 212 214 1300 12 130 320 196 222 2700 12 130 322 224 272 1320 12 130 324 228 200 2640 12 130 326 230 202 3000 12 130 328 232 206 2640 36 120 330 236 210 2700 12 130 332 216 214 1000 10 130 334 238 216 2100 8 130 336 302 220 4500 20 130*# 338 220 218 1250 14 130*# 340 288 224 1700 12 130 342 224 228 2000 12 130 344 228 230 2640 12 130 346 230 232 2640 12 130 348 232 234 2640 20 130*# 350 234 236 2640 20 130*# 352 236 238 5030 20 130*1$ 354 226 224 1300 12 130 356 240 228 2700 12 130 358 242 230 2700 12 130 360 244 232 2700 36 120 362 246 234 2700 12 130 364 250 236 2680 12 130 366 226 240 3800 8 130 368 240 242 2640 10 130 370 242 244 2660 10 130 372 244 246 2550 12 130 374 246 248 1500 12 130 376 248 250 1200 10 130 378 242 252 2540 12 130 380 254 244 2640 36 120 382 256 246 2540 12 130 384 258 250 2640 12 130 386 252 278 1750 12 130 388 254 256 2600 12 130 390 256 258 2640 12 130 392 254 260 • 2600 36 120 327 232 206 2640 12 130 408 278 254 900 12 130 406 278 276 170 8 130*WELL 1 400 270 168 970 12 130*WELL 5 414 284 168 1990 16 130*WELL 9 396 264 266 250 12 130*WELL 7 395 266 260 100 36 130 394 262 260 150 36 130*PECK RES. 418 286 288 1050 16 130*WELL 10 416 288 222 1600 12 130 402 272 274 200 12 130*WELL 6 404 272 198 1380 12 130 420 292 290 1400 6 120*DYKE WELL 422 292 131 750 8 130 424 294 50 2200 30 120*OC44 450 222 300 2850 12 130 452 168 300 5300 22 120*OC9 500 301 112 100 36 . 8 120*Overmyer Res . 501 238 302 2000 20 130*# 502 84 95 1000 16 130 503 95 96 452 24 120 504 304 266 10 36 130*OC35 510 95 84 1000 20 130*DOWNTOWN LOOP 511 84 305 4400 20 130*DOWNTOWN LOOP 512 305 306 7200 20 130*DOWNTOWN LOOP 513 306 46 2000 20 130*DOWNTOWN LOOP 514 46 62 2900 20 130*DOWNTOWN LOOP 515 62 76 3200 20 130*DOWNTOWN LOOP 516 114 115 3490 12 130 517 115 64 6850 12 130 530 306 315 450 8 130*# 531 315 34 225 6 130*# 524 309 308 700 12 130*Bolsa Chica 525 310 308 400 24 130*# BOLSA CHICA RES. 526 309 311 1300 16 130*Bolsa Chica 527 311 312 3200 16 130*Bolsa Chica 528 312 313 3100 16 130*Bolsa Chica 529 313 144 1500 24 120*Bol8a Chica NODES 2 0 5 0 51600 8020 4 0 5 0 53160 10000 6 0 5 0 51600 10000*Banning 8 0 5 0 48920 10000 10 0 4 0 46570 10000 12 0 4 0 45820 10500 14 0 6 0 54240 12640 16 0 7 0 51600 12640 18 0 4 0 48960 12640 20 0 2 0 46320 12640 22 '0 4 0 43720 12050 24 0 6 0 54240 15280 26 0 8 0 51600 15280 28 0 4 0 48960 15280 30 0 4 0 46320 15280 32 0 6 0 43720 15280 34 0 30 0 41300 15280 36 0 8 0 54240 17920 38 0 9 0 51600 17920 40 0 6 0 48960 17920 42 0 6 0 46320 17920 44 0 18 0 43720 17920 46 0 36 0 41300 17630 48 0 36 0 40600 17630 50 0 12 0 54240 20560 52 0 10 0 51600 20560 54 0 7 0 48960 20560 56 0 10 0 46320 20560 58 0 25 0 43720 20560 60 0 35 0 42400 20560 62 0 40 0 41300 20560 64 0 75 0 36640 21100 66 0 10 0 51600 23200 68 0 8 0 48920 23200 70 0 10 0 46320 23200 72 0 55 0 43720 23200 74 0 50 0 42400 23300 76 0 50 0 41700 23300 78 0 50 0 41700 23000 80 0 50 0 40870 23000 82 0 75 0 39970 23200 84 0 75 0 38480 23200 86 0 57 0 43720 24490 88 0 50 0 42400 24490 90 0 60 0 41700 24490 96 0 95 0 38340 24840 98 0 16 0 54240 25840 100 0 15 0 51600 25840*Flounder 102 0 12 0 48960 25840 104 0 14 0 46320 25840 106 0 58 0 43720 25840 108 0 55 0 42400 25840 110 0 60 0 41700 25840 112 0 60 0 41700 25500 114 0 93 0 35840 25840 116 0 60 0 41700 26640 118 0 13 0 46320 28480 120 0 55 0 43720 28480 122 0 35 0 41700 28480 '124 0 25 0 41120 28340 128 0 5 0 35840 29920 129 0 45 0 44000 29680 130 0 45 0 44000 30420 131 0 45 0 46320 31120 132 0 55 ' 0 43720 31120 134 0 50 0 41700 31120 136 0 50 0 40420 31120 138 0 40 0 38480 31120 140 0 2 0 35840 31120 142 0 2 0 34190 30820 144 0 2 0 33200 31120 146 0 2 0 33200 31570 148 0 40 0 38480 31620 150 0 40 0 38480 32120 152 0 28 0 46320 33720 154 0 25 0 43720 33720 156 0 25 0 41700 33720 158 0 30 0 40420 33720 160 0 5 0 38480 33720 162 0 3 0 35840 33720 164 0 2 0 33200 33720 166 0 2 0 30560 33720 168 0 27 0 46320 36320 170 0 26 0 43720 36320 172 0 25 0 41700 36320 174 0 25 0 40420 36320 176 0 12 0 38480 36320 178 0 5 0 35840 36320 180 0 5 0 33200 36320 182 0 5 0 31910 36320 184 0 5 0 30560 36320 186 0 34 0 27920 36320 190 0 35 0 25280 36320 192 0 55 0 25280 34970 194 0 5 0 22350 34970 196 0 25 0 43720 38960 198 0 17 0 40420 38960 200 0 14 0 38480 38960*Heil 202 0 10 0 35840 38960 204 0 10 0 35840 37320 206 0 9 0 33200 38960 208 0 14 0 30560 38960 210 0 15 0 27920 38960 212 0 9 0 25280 38960 214 0 9 0 24180 38960 216 0 9 0 24130 40050 218 0 5 0 18200 38270 220 0 5 0 17250 .39500 222 0 26 0 43720 41600 224 0 21 0 40420 41600 _ 226 0 23 0 40420 42800 228 0 20 0 38480 41600 230 0 12 0 35840 41600 232 0 10 0 33200 41600 234 0 12 0 30560 41600 236 0 15 0 27920 41600*Scenario 238 0 5 0 23080 41600 240 0 21 0 38480 44240 242 0 15 0 35840 44240 244 0 16 0 33200 44240 246 0 14 0 30560 44240 248 0 14 0 29160 44240 250 0 13 0 27920 44240 252 0 22 0 35840 46880 254 0 18 0 33200 46880 256 0 17 0 30560 46880 258 0 17 0 27920 46880 260 0 23 0 33200 49200 276 0 17 0 34100 46200*WELL 1 264 0 18 0 32600 50000*WELL 7 266 0 23 0 33200 50000 262 0 34 0 32400 49200*PECK RES. 270 0 27 0 47300 36320*WELL 5 284 0 27 0 48300 36700*WELL 9 286 0 19 0 42120 40200*WELL 10 288 0 22 0 42120 41600 290 0 44 0 45570 29720*DYKE WELL 278 0 19 0 34100 46880 292 0 48 0 45570 31120 294 0 12 0 56440 20560*OC44 ,Adams 300 0 25 0 46320 41600*OC9 274 0 19 0 40000 40340*WELL 6 272 0 25 0 40420 40340 301 0 65 0 41200 25500*Overmyer Res . 302 0 5 0 21080 41600 95 0 103 0 38480 24200*Reservoir Hill 304 0 25 0 33200 50400*OC35 305 0 40 0 35640 19960 306 0 30 0 40900 15830 115 0 35 0 32600 24640 308 0 50 0 27920 34920*Bolsa Chica 309 0 25 0 27920 33920*Bolsa Chica 310 0 50 0 28320 34920*BOLSA CHICA RES. 311 0 25 0 28120 33220*Bolsa Chica 312 0 20 0 30260 31000*Bolsa Chica 313 0 20 0 32660 29920*Bolsa Chica 315 0 34 0 41050 15280 COORDINATE PIPES 112 48720 23000 46520 23000 114 48720 23400 46520 23400 116 46120 23000 43920 23000 118 46120 23400 43920 23400 102 40700 22560 40700 21760 41300 21760 104 38480 22600 176 38340 25740 186 38340 25800 152 41000 25100 154 41300 24800 39200 24800 208 34960 30220 222 34300 31120 224 35500 31000 34300 31000 34300 31570 202 40420 28420 284 21400 34920 18800 37720 336 19800 41600 366 40700 43240 40700 44240 334 23530 40600 24130 40450 298 32840 38520 32840 37320 31910 36970 327 33700 41000 33700 39300 257 33700 36000 33700 34000 108 53800 21000 53800 23200 276 27920 35120 10 48320 8950 14 54100 11550 53800 10700 20 46320 11050 126 41300 22900 128 40470 23200 220 33700 32000 33700 33000 414 46520 36700 171 41900 25300 41900 24600 99 44000 20760 44000 23000 179 44000 26040 44000 28280 197 44000 30920 199 44000 28680 510 38280 24000 38280 23400 511 38280 23200 36440 21100 513 41100 16080 41100 17430 514 41100 17830 41100 20360 515 41100 20760 41100 23000 41500 23000 516 34200 25840 517 32600 23340 34640 21190 512 40700 15480 523 43920 38760 43920 36520 522 43920 36120 43920 33920 521 43920 33520 43920 31320 520 43920 30920 43920 28680 519 43920 28280 43920 26040 528 31960 29420 529 33200 30520 530 41050 15730 PUMP CURVES 11 0 330 200 306 400 256 600 180 800 72 1 0 440 200 399 400 348 600 311 800 287 1000 205 1200 98 5 0 471 1882 359 2259 337 3012 292 3765 224 4518 143 4894 98 6 0 488 1761 318 2201 296 2641 287 3081 257 3521 206 3962 148 7 0 397 2817 299 3286 291 3756 268 4225 238 4695 208 5164 174 9 0 544 1170 424 1873 366 3277 283 3745 237 4214 173 10 0 562 1859 369 2324 341 2789 305 3253 264 3718 222 20 0 132 10000 131 20650 130 21875 114 22525 106 22875 100 23350 93 23775 8le 30 0 172 7500 171 15000 169 15800 157 16100 151 16250 146 16500 141 16750 13E FIXED DEMAND 294 6700 *OC44 300 4500 *OC9 304 9000 *OC35 DEMANDS 2 —190 . 3 4 —89 . 8 6 —158 . 6 8 —225 . 3 10 —375 . 5 12 —118 . 8 14 —244. 7 16 —173 . 2 18 —176 . 9 20 —144. 9 22 —149 . 3 24 —169 . 5 26 —224 . 7 28 -145 . 6 30 -303 . 7 32 -411 . 9 34 -287 . 0 36 -266 . 0 38 -230 . 8 40 -262 . 3 42 -290 . 6 44 -190 . 9 46 -243 . 5 48 -505 . 3 50 -351 . 3 52 -267 . 4 54 -187 . 2 56 -201 . 1 58 -298 . 2 60 -149 . 0 62 -288 . 2 64 -852 . 1 66 -228 . 1 68 -208 . 7 70 -199 . 5 72 -92 . 3 74 -224 . 1 76 . 0 78 . 0 80 . 0 82 -111 . 2 84 -127 . 3 86 -75 . 8 88 -122 . 9 90 . 0 92 . 0 94 . 0 95 -1235 . 2 96 . 0 98 -349 . 4 100 -90 .2 102 -98 .9 104 -143 . 2 106 -298 . 2 108 -113 . 7 110 . 0 112 . 0 115 -664 . 2 116 -126 . 7 118 -115 . 7 120 -108 . 0 122 -142 . 1 124 -121 . 7 126 . 0 128 -92 . 7 130 -117 . 5 132 -231 . 5 134 -95 . 2 136 -102 . 8 138 -210 . 6 140 -133 . 7 142 -79 . 7 144 -88 . 8 146 -102 . 9 148 . 0 150 . 0 152 -208 . 5 154 -283 . 2 156 -88 . 9 158 -113 . 9 160 -215 . 5 162 -211 .9 164 -204 . 2 166 -146 . 1 168 -377 . 7 170 -156 . 0 172 -273 . 0 174 -135 . 2 176 -128 . 5 178 -218 . 7 180 -134. 6 182 -101 . 0 184 -146 . 9 186 -352 . 1 190 -146 . 8 192 -38 . 8 194 -246 . 4 196 -173 . 2 198 -252 . 0 200 -283 . 4 202 -137 . 9 204 -104. 3 206 -169 . 6 208 -171 . 0 210 -490 . 3 212 -134. 9 214 -150 . 7 216 -266 . 6 218 -194. 5 220 -157 . 1 222 -346 . 8 224 -261 . 4 226 -80 . 2 228 -178 . 1 230 -132 . 0 232 -271 . 5 234 -66 . 4 236 -235 . 5 238 -231 . 8 240 -152 . 4 242 -186 . 8 244 -213 . 2 246 -294. 5 248 . 0 250 -86 . 4 252 -165 . 0 254 -206 . 6 256 -376 . 0 258 -321 . 9 260 -216 . 6 309 -490 . 0 311 -180 . 0 312 -350 . 0 RUN END e CITY OF HUNTINGTON BEACH TUE, OCT 13, 1987, 3:37 PM ULTIMATE SYSTEM -- MAX DAY ULTIMATE DEMAND & FIRE @ NODE 28 W/BOLSA INPUT FILE NAME DUFR28B NUMBER OF PIPES 252 NUMBER OF NODES 157 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gpm MAXIMUM NUMBER OF ITERATIONS 100 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet 11000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-) FIXED DEMANDS .= .00 SUM OF (+) FIXED DEMANDS = 20200.00 SUM OF PEAKABLE DEMANDS =-25937.00 SUM OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -63026.93 SUM OF ALL DEMANDS --------- -42826.93 Solution reached in 79 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH TUE, OCT 13, 1987, 3:41 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 707 1.1 .8 .3 4 2 6 2000 12.0 130 245 .7 .4 .2 6 4 6 1600 12.0 130 515 1.5 1.2 ./ 8 6 8 2600 12.0 130 795 2.3 4.3 1.7 10 8 10 2900 12.0 130 505 1.4 2.1 .7 12 12 10 970 10.0 130 407 1.7 1.1 1.2 14 14 4 2900 16.0 130 1440 2.3 3.6 1.2 16 16 6 2620 12.0 130 420 1.2 1.3 .5 18 1B 8 2640 12.0 130 258 .7 .5 .2 20 20 12 2350 12.0 130 546 1.5 1.9 .8 22 22 12 2280 12.0 130 150 .4 .2 .1 LO 24 14 16 2600 12.0 130 701 2.0 3.4 1.3 26 16 18 2610 12.0 130 868 2.5 5.1 2.0 28 20 18 2510 12.0 130 239 .7 .5 .2 30 24 14 2620 16.0 130 2736 4.4 10.6 4.0 32 26 16 2700 12.0 130 1008 2.9 7.0 2.6 34 18 28 2700 12.0 130 420 1.2 1.4 .5 36 30 20 2570 12.0 130 1137 3.2 8.3 3.2 38 32 22 3430 8.0 130 513 3.3 1B.2 5.3 40 24 26 2680 12.0 130 1017 2.9 7.0 2.6 42 26 28 2640 12.0 130 1456 4.1 13.4 5.1 44 30 28 2670 12.0 130 1241 3.5 10.1 3.8 46 32 30 2550 12.0 130 1133 3.2 8.2 3.2 48 34 32 2800 12.0 130 2647 7.5 43.1 15.4 HI 50 36 24 2640 16.0 130 4166 6.6 23.2 9.8 ' 52 38 26 2600 12.0 130 1993 5.7 23.6 9.1 54 40 28 2580 12.0 130 2427 6.9 33.8 13.1 HI 56 42 30 2640 12.0 130 1982 5.6 23.8 9.0 58 46 34 2320 12.0 130 2288 6.5 27.2 11.7 HI 60 36 38 2640 12.0 130 988 2.8 6.5 2.5 62 3B 40 2640 12.0 130 680 1.9 3.3 1.2 64 42 40 2700 12.0 130 91 .3 .1 .0 LO 66 44 42 2550 12.0 130 439 1.2 1.4 .6 68 46 48 700 12.0 130 810 2.3 1.2 1.7 70 50 36 2550 16.0 130 5800 9.3 41.3 16.2 HI 72 52 38 2640 12.0 130 2245 6.4 29.9 11.3 HI 74 54 40 2650 12.0 130 2294 6.5 31.3 11.8 HI 76 56 42 2620 12.0 130 2340 6.6 32.1 12.2 HI 78 58 44 2640 8.0 130 903 5.8 39.9 15.1 HI 80 62 46 2950 12.0 120 530 1.5 2.7 .9 82 64 48 5300 12.0 130 418 1.2 2.7 .5 84 50 52 2700 12.0 130 1680 4.8 17.9 6.6 86 52 54 2600 12.0 130 517 1.5 1.9 .7 88 56 54 2640 12.0 130 335 1.0 .9 .3 90 58 56 2660 12.0 130 1188 3.4 9.3 3.5 92 60 58 1330 12.0 130 1631 4.6 8.3 6.3 94 62 60 1130 8.0 130 586 3.7 7.7 6.8 8 & 12 96 66 52 2640 12.0 130 1732 4.9 19.5 - 7.0 97 6B 54 2640 12.0 130 1896 5.4 21.9 8.3 98 70 56 2640 12.0 130 1976 5.6 23.6 9.0 99 72 58 2640 8.0 130 592 3.B 18.3 6.9 100 72 58 2640 8.0 130 592 3.8 18.3 6.9 101 74 60 2640 12.0 130 1407 4.0 12.6 4.9 102 80 62 3200 12.0 120 718 2.0 5.1 1.6 1`04 84 64 2850 12.0 70 557 1.6 7.7 2.7 CITY OF HUNTINGTON BEACH TUE, OCT 13, 1987, 3:41 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ - ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 2225 3.6 7.7 2.7 108 66 50 5250 30.0 120 1967 .9 .6 .1 110 . 68 66 2640 30.0 120 4472 2.0 1.4 .5 112 70 68 2680 30.0 120 6137 2.8 2.6 1.0 114 70 68 2680 12.0 130 597 1.7 2.6 1.0 116 72 70 2600 12.0 130 755 2.1 3.9 1.5 118 72 70 2600 30.0 120 7759 3.5 3.9 1.5 120 74 72 1450 30.0 120 8648 3.9 2.7 1.B 122 76 74 600 30.0 120 9386 4.3 1.3 2.1 124 76 78 150 8.0 130 426 2.7 .6 3.8 126 78 80 1050 12.0 130 426 1.2 .5 .5 128 82 80 1150 12.0 130 292 .8 .3 .3 130 84 82 1250 12.0 130 562 1.6 1.1 .9 132 50 9B 5300 12.0 130 334 .9 1.8 .3 134 66 100 2580 12.0 130 21B .6 .4 .2 136 102 68 2640 12.0 130 141 .4 .2 .1 LO 138 104 70 2630 12.0 130 681 1.9 3.3 1.2 140 B6 72 1320 12.0 130 1275 3.6 5.3 4.0 142 106 86 1320 12.0 130 380 1.1 .6 .4 144 88 86 1450 14.0 120 1079 2.2 2.3 1.6 146 108 88 1280 12.0 130 1236 3.5 4.8 3.8 148 90 BB 650 14.0 120 1355 2.8 1.6 2.4 149 88 74 1350 12.0 130 1213 3.4 4.9 3.6 151 90 76 1300 30.0 120 13131 6.0 5.2 4.0 152 90 96 3150 42.0 120 2909 .7 .1 .0 LO 159 100 98 26BO 12.0 130 516 1.5 2.0 .7 160 102 100 2680 12.0 130 517 1.5 2.0 .7 162 104 102 2750. 12.0 130 898 2.5 5.7 2.1 164 106 104 2580 12.0 130 993 2.8 6.5 2.5 166 108 106 1500 12.0 130 1342 3.8 6.6 4.4 168 110 108 700 12.0 130 2854 8.1 12.4 17.7 HI 170 112 90 950 21.0 120 11370 10.5 HI 16.5 17.4 HI 171 112 90 950 16.0 130 6024 9.6 16.5 17.4 HI 172 112 110 350 21.0 120 4058 3.9 .9 2.6 174 110 116 750 21.0 120 1203 1.1 .2 .3 176 114 96 3400 42.0 120 5742 1.3 .6 .2 178 118 104 2640 12.0 130 934 2.7 5.9 2.2 179 120 106 2640 8.0 130 514 3.3 14.1 5.3 180 120 106 2640 6.0 130 241 2.7 14.1 5.3 182 116 120 2550 12.0 130 840 2.4 4.7 1.8 194 116 122 1900 21.0 120 56 .1 LO .0 .0 LO 188 128 114 4000 42.0 120 7063 1.6 1.0 .2 190 120 118 2550 8.0 130 535 3.4 14.6 5.7 192 122 120 2150 8.0 130 317 2.0 4.7 2.2 194 122 124 600 8.0 130 361 2.3 1.7 2.8 196 131 118 2640 8.0 130 681 4.3 23.7 9.0 197 132 130 800 8.0 130 408 2.6 2.8 3.5 198 130 129 850 6.0 130 123 1.4 1.3 1.5 199 129 120 1250 8.0 130 123 .8 .5 .4 200 132 120 2750 8.0 130 273 1.7 4.5 1.7 201 134 122 2640 21.0 120 968 .9 .5 .2 202 124 136 3250 12.0 130 66 .2 .1 .0 LO 206 140 128 700 12.0 130 273 .8 .2 .2 208 142 128 1800 12.0 130 164 .5 .2 .1 LO 210 144 142 1150 12.0 130 354 1.0 .4 .4 CITY OF HUNTINGTON BEACH TUE, OCT 13, 1987, 3:41 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpm Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ----=- ------ -- --- ------- -- 212 292 132 1950 8.0 130 338 2.2 4.8 2.4 214 134 132 2000 12.0 130 319 .9 .6 .3 216 134 136 1200 12.0 130 839 2.4 2.2 1.8 218 136 138 2050 12.0 130 861 2.4 3.9 1.9 220 164 146 2200 12.0 130 368 1.0 .9 .4 222 140 142 1800 12.0 130 4 .0 LO .0 .0 LO 224 146 128 4200 42.0 120 6B51 1.6 1.0 .2 226 146 144 650 24.0 120 2621 1.9 .4 .6 228 152 131 2700 8.0 130 563 3.6 17.0 6.3 230 154 132 3150 8.0 130 294 1.9 5.9 1.9 232 156 134 2640 21.0 120 2356 2.2 2.5 .9 234 158 136 2b40 12.0 130 206 .6 .4 .1 236 150 160 1400 12.0 130 349 1.0 .5 .4 238 148 150 700 14.0 130 349 .7 .1 .2 240 139 148 500 12.0 130 349 1.0 .2 .4 242 162 140 2640 12.0 130 602 1.7 2.6 1.0 244 164 146 2120 42.0 120 9354 2.2 .9 .4 246 152 154 2640 8.0 130 543 3.5 15.6 5.9 248 154 156 2640 9.0 130 217 1.4 2.8 1.1 250 156 158 1300 12.0 130 1158 3.3 4.3 3.3 252 158 160 2000 12.0 130 1003 2.8 5.1 2.6 254 160 162 2660 12.0 130 828 2.4 4.8 1.8 256 162 164 2660 12.0 130 341 1.0 .9 .3 257 180 164 2700 12.0 130 410 1.2 1.3 .5 258 164 166 2640 12.0 130 728 2.1 3.7 1.4 260 168 152 2550 12.0 130 1612 4.6 15.7 6.1 261 168 170 2330 21.0 120 7163 6.6 17.2 7.4 262 170 154 3050 8.0 130 475 3.0 14.0 4.6 263 170 172 2000 21.0 120 6297 5.8 11.6 5.8 264 172 156 2650 21.0 120 3513 3.3 5.2 2.0 265 172 174 1350 16.0 130 2120 3.4 3.4 2.5 266 174 158 2650 8.0 130 329 2.1 6.2 2.3 267 174 176 1950 . 16.0 130 2258 3.6 5.5 2.8 269 176 178 2640 16.0 130 2285 3.6 7.6 2.9 270 179 162 2700 12.0 130 629 1.8 2.9 1.1 271 179 180 2700 16.0 120 1145 1.9 2.5 .9 272 180 164 2700 42.0 120 10196 2.4 1.3 .5 273 180 182 1150 16.0 120 1611 2.6 2.0 1.8 274 166 184 2680 12.0 130 373 1.1 1.1 .4 275 182 184 1550 16.0 125 2099 3.3 4.1 2.7 277 184 186 2650 16.0 125 2019 3.2 6.5 2.5 278 186 308 1400 12.0 130 427 1.2 .7 .5 i 279 186 190 2750 16.0 125 858 1.4 1.4 .5 290 190 192 1340 1b.0 125 221 .4 .1 .0 LO 282 192 194 3200 14.0 130 127 .3 .1 .0 LO 284 218 194 5300 14.0 130 472 1.0 1.6 .3 286 196 170 2660 9.0 130 231 1.5 3.2 1.2 288 198 174 2640 12.0 130 796 2.3 4.4 1.7 290 200 176 2500 12.0 130 339 1.0 .9 .3 292 202 204 2700 9.0 130 274 1.7 4.5 1.7 294 204 178 800 12.0 130 20 .1 LO .0 .0 LO 296 206 190 2700 36.0 120 11399 3.6 3.4 1.3 298 206 182 3800 12.0 130 734 2.1 5.4 1.4 300 184 208 2640 12.0 130 96 .3 .1 .0 LO 301 210 186 2640 8.0 130 122 .8 1.0 .4 CITY OF HUNTINGTON BEACH TUE, OCT 13, 1987, 3:41 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 302 190 212 2640 12.0 130 290 .8 .6 .2 304 196 199 3300 8.0 130 452 2.9 13.9 4.2 306 198 200 2700 12.0 130 1162 3.3 9.0 3.3 308 200 202 2640 12.0 130 757 2.1 4.0 1.5 310 202 206 2640 12.0 130 713 2.0 3.6 1.4 312 206 .208 2640 12.0 130 1217 3.5 9.6 3.6 314 208 210 2640 12.0 130 897 2.5 5.5 2.1 316 210 212 2640 12.0 130 649 1.8 3.0 1.1 318 212 214 1300 12.0 130 602 1.7 1.3 1.0 320 222 196 2700 12.0 130 1335 3.8 11.7 4.3 322 272 224 1320 12.0 130 986 2.8 3.3 2.5 324 228 200 2640 12.0 130 622 1.8 2.8 1.1 326 230 202 3000 12.0 130 565 1.6 2.6 .9 327 232 206 2640 12.0 130 741 2.1 3.8 1.5 328 232 206 2640 36.0 120 12308 3.9 3.8 1.5 330 236 210 2700 12.0 130 1065 3.0 7.7 2.9 332 214 216 1000 10.0 130 235 1.0 .4 .4 334 238 216 2100 8.0 130 413 2.6 7.4 3.5 336 302 220 4500 . 20.0 130 1327 1.4 1.6 .4 # 338 220 218 1250 14.0 130 945 2.0 1.3 1.1 # 340 298 224 1700 12.0 130 2215 6.3 18.8 11.1 HI 342 224 228 2000 12.0 130 1924 5.5 17.0 8.5 344 228 230 2640 12.0 130 771 2.2 4.1 1.6 346 230 232 2640 12.0 130 571 1.6 2.4 .9 348 232 234 2640 20.0 130 3476 3.5 5.6 2.1 # 350 234 236 2640 20.0 130 3503 3.6 5.7 2.1 # 352 236 238 5030 20.0 130 2302 2.4 5.0 1.0 # 354 224 226 1300 12.0 130 643 1.8 1.5 1.1 356 228 240 2700 12.0 130 97 .3 .1 .0 LO 358 242 230 2700 12.0 130 685 1.9 3.4 1.3 360 244 232 2700 36.0 - 120 16614 5.2 b.9 2.5 362 246 234 2700 12.0 130 189 .5 .3 .1 364 250 236 2680 12.0 130 437 1.2 1.5 .5 366 226 240 . 3800 8.0 130 448 2.9 15.7 4.1 368 240 242 2640 10.0 130 175 .7 .6 .2 370 244 242 2660 10.0 130 231 .9 1.1 - .4 372 244 246 2550 12.0 130 1405 4.0 12.1 4.8 374 246 248 1500 12.0 130 612 1.7 1.5 1.0 376 248 250 1200. 10.0 130 612 2.5 3.0 2.5 378 252 242 2540 12.0 130 733 2.1 3.6 1.4 380 254 244 2640 36.0 120 18768 5.9 B.4 3.2 381 256 246 2540 12.0 130 111 .3 .1 .0 LO 384 258 250 2640 12.0 130 35 .1 LO .0 .0 LO 386 27B 252 1750 12.0 130 1134 3.2 5.6 3.2 38B 254 256 2600 12.0 130 1842 5.2 20.4 7.9 390 256 258 2640 12.0 130 817 2.3 4.6 1.7 392 260 254 2600 36.0 120 21428 6.8 10.6 4.1 394 212 261 151 36.0 130 9557 3.0 .1 .8 PECK RES, 395 266 260 100 36.0 130 12397 3.9 .1 1.3 396 264 266 250 12.0 130 3397 9.6 6.1 24.4 HI WELL 7 400 270 169 970 12.0 130 3070 9.7 19.6 20.2 HI WELL 5 402 274 272 200 12.0 130 3103 8.8 4.1 20.7 HI WELL 6 404 272 198 1380 12.0 130 2117 6.0 14.0 10.2 HI 406 276 278 170 8.0 130 818 5.2 2.1 12.6 HI WELL 1 468 254 278 900 12.0 130 316 .9 .3 .3 CITY OF HUNTIN6TON BEACH TUE, OCT 13, 1987, 3:41 PM PIPE --NODES-- LEN6TH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C 6pm Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 414 284 168 1990 16.0 130 3303 5.3 11.4 5.7 WELL 9 416 288 222 1600 12.0 130 998 2.8 4.0 2.5 418 286 288 1050 16.0 130 3213 5.1 5.7 5.4 WELL 10 420 290 292 1400 6.0 120 456 5.2 28.1 20.1 HI DYKE WELL 422 292 131 750 8.0 130 118 .8 .3 .3 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1180 3.3 9.8 3.4 452 300 169 5300 22.0 120 3320 2.8 7.5 1.4 OC9 500 301 112 100 36.8 120 21452 6.5 .4 3.1 Overmyer Res. 501 239 302 2000 20.0 130 1327 1.4 .7 .4 1 502 95 84 1000 16.0 130 2019 3.2 2.3 2.3 503 96 95 452 24.0 120 8651 6.1 2.5 5.5 504 304 266 10 36.0 130 9000 2.8 .0 .7 OC35 510 95 84 1000 20.0 130 3631 3.7 2.3 2.3 DOWNTOWN LOOP 511 84 305 4400 20.0 130 1996 2.0 3.3 .8 DOWNTOWN LOOP 512 305 306 7200 20.0 130 1996 2.0 5.5 .8 DOWNTOWN LOOP 513 306 46 2000 20.0 130 939 1.0 .4 .2 DOWNTOWN LOOP 514 62 46 2900 20.0 130 2220 2.3 2.7 .9 DOWNTOWN LOOP 515 76 62 3200 20.0 130 3318 3.4 6.2 1.9 DOWNTOWN LOOP 516 114 115 3490 12.0 130 1321 3.7 14.8 4.2 517 64 115 6850 12.0 130 293 .8 1.8 .3 521 154 132 3150 8.0 130 294 1.9 5.9 1.9 # 522 170 154 3050 8.0 130 475 3.0 14.0 4.6 # 523 196 170 2660 9.0 130 231 1.5 3.2 1.2 # 524 308 309 700 12.0 130 427 1.2. .4 .5 Balsa Chica 525 310 309 400 24.0 130 0 .0 LO .0 .0 LO # BOLSA CHICA RES. 526 311 309 1300 16.0 130 763 1.2 .5 .4 Balsa Chica 527 312 311 3200 16.0 130 1201 1.9 2.9 .9 Balsa Chica 528 313 312 3100 16.0 130 2051 3.3 7.3 2.4 Balsa Chica 529 144 313 1500 24.0 120 2051 1.5 .6 .4 Balsa Chica 530 306 315 450 8.0 130 1057 6.7 9.1 20.3 HI # 531 315 34 225 6.0 130 1057 12.0 HI 18.5 82.2 HI # CITY OF HUNTINGTON BEACH TUE, OCT 13, 1987, 3:41 PM GROUND ELV FLOW HBL EL HEAD ------ PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -462.43 55.5 50.5 21 LO 77 4 5 -218.21 56.3 51.3 22 LO 76 6 5 -385.40 55.1 50.1 21 LO 77 Banning 8 5 -547.48 50.8 45.8 19 LO 79 10 4 -912.47 48.7 44.7 19 LO 79 12 4 -288.68 49.9 45.9 19 LO 79 14 6 -594.62 59.9 53.9 23 LO 75 16 7 -420.98 56.5 49.5 21 LO 77 IB 4 -429.87 51.4 47.4 20 LO 7B 20 2 -352.11 51.9 49.8 21 LO 77 22 4 -362.80 50.1 46.1 19 LO 79 24 6 -411.89 70.4 64.4 27 LO 70 26 B -546.02 63.4 55.4 24 LO 74 28 4 -5542.58U 50.OF 46.0 19 LO 79 30 4 -737.99 60.1 56.1 24 LO 74 32 6 -1000.92 68.3 b2.3 26 LD 71 34 30 -697.41 111.3 B1.3 35 LO 58 36 8 -646.38 93.6 85.6 37 LO 60 38 9 -560.84 87.1 78.1 33 LO 63 40 6 -637.39 83.8 77.8 33 LO 64 42 6 -706.16 83.9 77.9 33 LO 64 44 18 -463.89 85.3 67.3 29 LO 67 46 36 -591.71 138.6 102.6 44 45 48 36 -1227.89 137.4 101.4 43 46 50 12 -853.66 134.9 122.9 53 42 52 10 -649.79 117.0 107.0 46 50 54 7 -454.90 115.1 108.1 46 50 56 10 -488.67 115.9 105.9 45 50 58 25 -724.63 125.2 100.2 43 49 60 35 -362.07 133.6 9B.6 42 48 62 40 -700.33 141.2 101.2 43 45 64 75 -2070.60 140.0 65.0 28 LD 56 66 10 -554.28 135.5 125.5 54 41 68 8 -507.14 137.0 129.0 55 40 70 10 -484.79 139.6 129.6 56 39 72 55 -224.29 143.5 88.5 38 LO 47 74 50 -544.56 146.2 96.2 41 44 76 50 .00 .147.5 97.5 42 44 78 50 .00 146.9 96.9 42 44 80 50 .00 146.3 96.3 41 44 82 75 -270.22 146.6 71.6 31 LO 52 84 75 -309.34 147.7 '72.7 31 LO 51 86 57 -184.19 148.8 91.8 39 LD 45 Be 50 -298.65 151.1 101.1 43 42 90 60 .00 152.7 92.7 40 43 95 103 -3001.54 150.0 47.0 20 LD 61 Reservoir Hill 96 95 .00 152.5 57.5 24 LO 55 98 16 -849.04 133.1 117.1 50 43 100 15 -219.19 135.1 120.1 52 42 Flounder 102 12 -240.33 137.1 125.1 54 41 104 14 -347.98 142.9 128.9 55 3B 106 58 -724.63 149.3 91.3 39 LO 45 108 55 -276.29 155.9 100.9 43 40 110 60 .00 168.3 108.3 46 34 112 60 .00 169.2 109.2 47 33 CITY OF HUNTINGTON BEACH TUE, OCT 13, 198/, 3:41 PM GROUND ELU FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GP® Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 114 93 .00 153.1 60.1 26 LO 54 115 35 -1614.01 138.3 103.3 44 45 116 60 -307.88 168.1 108.1 46 34 118 13 -281.15 148.8 135.8 58 35 120 55 -262.44 163.4 108.4 46 36 122 35 -345.30 168.1 133.1 57 29 124 25 -295.73 166.4 141.4 61 29 128 5 -225.26 154.1 149.1 64 32 129 45 .00 163.9 118.E 51 33 130 45 -285.52 165.1 120.1 52 33 131 45 .00 172.4 127.4 55 29 132 55 -562.55 167.9 112.9 48 33 134 50 -231.34 168.5 118.5 51 32 136 50 -249.80 166.3 116.3 50 33 138 40 -511.76 162.4 122.4 53 33 140 2 -324.89 154.2 152.2 65 31 142 2 -193.67 154.2 152.2 65 31 144 2 -215.78 154.6 152.6 66 31 146 2 -250.05 155.0 153.0 66 31 148 40 .00 162.2 122.2 52 33 150 40 .00 162.1 122.1 52 33 152 28 -506.65 189.4 161.4 69 17 154 25 -688.18 173.9 148.9 64 25 156 25 -216.03 171.0 146.0 63 26 158 30 -276.78 166.7 136.7 59 29 160 5 -523.67 161.6 156.6 67 28 162 3 -514.92 156.8 153.8 66 30 164 2 -496.21 155.9 153.9 66 30 166 2 -355.02 152.2 150.2 65 32 168 27 -917.81 205.1 178.1 77 9 170 26 -379.08 197.9 161.9 70 18 172 25 -663.39 176.3 151.3 65 24 174 25 -328.54 172.9 147.9 64 25 176 12 -312.26 167.4 155.4 67 26 178 5 -531.44 159.7 154.7 67 29 180 5 -327.08 157.2 152.2 65 30 182 5 -245.43 155.2 150.2 65 31 184 5 -356.97 151.1 146.1 63 33 186 34 -855.60 144.6 110.6 47 42 190 35 -356.72 143.2 108.2 46 42 192 55 -94.29 143.1 88.1 38 LO 48 194 5 -598.75 143.0 139.0 59 37 196 25 -420.88 191.1 166.1 72 16 198 17 -612.36 177.2 160.2 69 22 200 14 -688.66 168.2 154.2 66 26 Heil 202 10 -335.10 164.2 154.2 66 28 204 10 -253.45 159.7 149.7 64 30 206 9 -412.13 160.6 151.6 65 29 208 14 . -415.53 151.0 137.0 59 34 210 15 -1191.43 145.5 130.5 56 37 212 9 -327.81 142.5 133.5 57 38 214 9 -366.20 141.2 132.2 57 38 216 9 -647.84 140.8 131.9 57 38 218 5 -472.64 144.6 139.6 60 36 220 5 -381.75 146.0 141.0 61 35 CITY OF HUNTINGTON BEACH TUE, OCT 13, 1987, 3:41 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet 6pm Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 222 26 -B42.72 202.8 176.8 76 11 224 21 -635.20 188.0 167.0 72 18 226 23 -194.B9 186.6 163.6 70 18 229 20 432.78 171.0 151.0 65 26 230 12 320.76 166.9 154.9 67 27 232 10 -659.74 164.5 154.5 66 28 234 12 -161.35 159.9 146.9 63 30 236 15 -572.27 153.2 138.2 59 34 Scenario 238 5 -563.27 148.3 143.3 62 34 240 21 -370.33 170.9 149.9 64 26 242 15 -453.92 170.3 155.3 67 25 244 16 -518.08 171.3 155.3 67 25 246 14 -715.64 159.2 145.2 62 31 248 14 .00 157.7 143.7 62 31 250 13 -209.95 154.7 141.7 61 33 252 22 -400.95 173.9 151.9 65 25 254 18 -502.04 179.8 161.8 70 21 256 17 -913.68 159.3 142.3 61 31 259 17 -782.22 154.7 137.7 59 33 260 23 -526.34 190.3 167.3 72 17 262SP 34 9557.34U 190.5 156.5 67 17 PECK RES. 264SP 18 3397.05U 196.6 178.6 77 13 WELL 7 266 23 .00 190.5 167.5 72 16 270SP 27 3070.27U 224.7 197.7 85 HI 0 WELL 5 272 25 .00 191.3 166.3 72 16 274SP 19 3103.29U 195.4 176.4 76 14 WELL 6 276SP 17 B17.99U 181.6 164.6 71 20 WELL 1 279 19 .00 179.5 160.5 69 21 294SP 27 3302.85U 216.5 189.5 82 HI 4 WELL 9 286SP 19 3213.04U 212.5 193.5 83 HI 5 WELL 10 298 22 .00 206.8 184.8 80 HI 8 290SP 44 455.78U 200.8 156.8 67 13 DYKE WELL 292 48 .00 172.7 124.7 54 29 294 12 6700.00 137.4 125.4 54 41 OC44,Adams 300 25 4500.00 212.6 197.6 B1 HI 6 DC9 301SP 65 21451.85U 169.5 104.5 45 34 Overmyer Res. 302 5 .00 147.6 142.6 61 35 304 25 9000.00 190.5 165.5 71 17 OC35 305 40 .00 144.4 104.4 45 43 306 30 .00 138.9 108.9 47 44 308 50 .00 143.8 93.8 40 46 Balsa Chita 309 25 -1190.70 143.5 118.5 51 40 Balsa Chica 310 50 .00 143.8 93.8 40 46 BOLSA CHICA RES. 311 25 -437.40 143.9 118.9 51 40 Balsa Chica 312 20 -850.50 146.7 126.7 54 38 Balsa Chica 313 20 .00 154.1 134.1 58 34 Balsa Chica 315 34 .00 129.8 95.8 41 49 Maximum Unbalanced Head = .00001 210 CITY OF HUNTINGTON BEACH TUE, OCT 13, 1987, 3:41 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH H8L LIFT PUMP NODE Bps Feet Feet Feet NUMBER 301SP 21452 50.0 169.5 119.5 20 Overmyer Res, 262SP 9557 20.0 190.5 170.5 30 PECK RES. 290SP 456 -34.0 200.8 234.8 11 DYKE WELL 276SP BIB -98.0 181.6 279.6 1 WELL 1 270SP 3070 -b2.0 224.7 2Bb.7 5 WELL 5 274SP 3103 -59.0 195.4 254.4 6 WELL 6 264SP 3397 -89.0 196.6 285.E 7 WELL 7 284SP 3303 -64.0 216.5 280.5 9 WELL 9 286SP 3213 -55.0 212.5 267.5 10 WELL 10 28 -5543 50.0 SOURCE PUMPS Node Pumpt 301 20 Head 132 131 130 114 106 100 93 8 Flow 0. 10000. 20650. 21875. 22525. 22875. 23350. 23775. 262 30 Head 172 171 169 157 151 146 141 13 Flow 0. 7500. 15000. 15800. 16100. lb250. 16500. 16750. 290 11 Head 330 306 256, 180 72 0 0 0 Flow 0. 200. 400. 600. 800. 0. 0. 0. 276 1 Head 440 399 348 311 287 205 98 0 Flow 0. 200. 400. 600. 800. 1000. 1200. 0. 270 5 Head 471 359' 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012. 3765. 4518. 4894. 0. 274 b Head 488 318 296 287 257 206 148 0 Flow 0. 1761. 2201. 2641. 3081. 3521. 3962. 0. 264 7 Head 397 299 291 268 238 208 174 0 Flow 0. 2917. 3286. 3756. 4225. 4695, 5164. 0. 284 9 Head 544 424 366 ' 283 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745. 4214. 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859. 2324. 2789. 3253. 3718. 0. 0. Iteration= 1, Flow Correction= 199617.100 Iteration= 2, Flow Correction= 73440.380 Iteration= 3, Flow Correction= 59727.980 Iteration= 4, Flow Correction= 26875.590 Iteration= 5, Flow Correction= 11209.470 Iteration= 6, Flow Correction= 4896.195- Iteration= 7, Flow Correction= 3973.823 Iteration= 8, Flow Correction= 2667.923 Iteration= 9, Flow Correction= 209.811 Iteration= 10, Flow Correction= 2595.339 ri- r�rrzrtinn= 10867.790 CITY OF HUNTINGTON BEACH FRI, SEP 4, 19871 3:37 AM ULTIMATE SYSTEM -- MAX DAY ULTIMATE DEMAND 6 FIRE @ NODE 220 W/BOLSA INPUT FILE NAME DUFR220B NUMBER OF PIPES 252 NUMBER OF NODES 157 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gpm MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10, Feet /1000 PRESSURE CHECK - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-) FIXED DEMANDS = .00 SUM OF (+) FIXED DEMANDS = 20200.00 SUM OF PEAKABLE DEMANDS =-25925.51 SUM OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -62998.98 SUM OF ALL DEMANDS --------- -42798.98 Solution reached in 12 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:37 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 520 .8 .5 .2 4 2 6 2000 12.0 130 57 .2 .0 .0 LO 6 4 6 1600 12.0 130 318 .9 .5 .3 8 6 8 2600 12.0 130 460 1.3 1.6 .6 10 8 10 2900 12.0 130 499 1.4 2.0 .7 12 12 10 970 10.0 130 413 1.7 1.2 1.2 14 14 4 2900 16.0 130 1056 1.7 2.0 .7 16 16 6 2620 12.0 130 470 1.3 1.6 .6 1S 18 8 2640 12.0 130 5B7 1.7 2.5 .9 20 20 12 2350 12.0 130 708 2.0 3.1 1.3 22 12 22 2280 12.0 130 7 .0 LO .0 .0 LO 24 14 16 2600 12.0 130 330 .9 .8 .3 26 16 18 2610 12.0 130 300 .9 .7 .3 28 18 20 2510 12.0 130 162 .5 .2 .1 LO 30 24 14 2620 16.0 130 1981 3A 5A 12 32 26 16 2700 12.0 130 861 2.4 5.2 1.9 34 2B 18 2700 12.0 130 879 2.5 5.4 2.0 36 30 20 2570 12.0 130 899 2.5 5.3 2.1 38 32 22 3430 8.0 130 356 2.3 9.3 2.7 40 24 26 2680 12.0 130 437 1.2 1.5 .5 42 26 28 2640 12.0 130 247 .7 .5 .2 44 28 30 2670 12.0 130 173 .5 .3 .1 LO 46 32 30 2550 12.0 130 316 .9 .8 .3 V 34 32 2800 12.0 130 1673 4.7 18.4 6.6 50 36 24 250 16.0 130 2829 4.5 11.3 4.3 52 38 26 2600 12.0 130 1217 31 9.5 16 54 40 28 2580 12.0 130 1159 3.3 9.6 3.3 56 42 30 2"0 12.0 130 1"7 3A 8.6 3.3 58 46 34 2320 12.0 130 1620 4.6 14.4 6.2 60 36 38 2640 12.0 130 682 1.9 3.3 1.2 62 38 40 2640 12.0 130 429 1.2 1.4 .5 64 40 42 2700 12.0 130 158 .4 .2 .1 LO 66 44 42 2550 12.0 130 137 .4 .2 .1 LO 6B 46 48 700 12.0 130 1026 2.9 1.9 2.7 70 50 36 2550 16.0 130 4157 6.6 22.3 8.7 72 52 38 2640 12.0 130 1525 4.3 14.6 5.5 74 54 40 2650 12.0 130 1525 4.3 14.7 5.5 76 56 42 2620 12.0 130 1559 4.4 15.1 5.9 78 58 44 2640 8.0 130 601 3.8 18.8 7.1 BO 62 46 2950 12.0 120 470 1.3 2.1 .7 82 64 48 5300 12.0 130 201 .6 .7 .1 84 50 52 2700 12.0 130 12B9 3.7 11.0 4.1 86 52 54 2600 12.0 130 420 1.2 1.3 .5 88 56 54 2640 12.0 130 150 .4 .2 .1 LO 90 58 56 2660 12.0 130 739 2.1 3.8 1.4 92 60 58 1330 12.0 .130 1149 3.3 4.4 3.3 94 62 60 1130 8.0 130 398 2.5 3.7 3.3 8 & 12 96 66 52 2640 12.0 130 1365 3.7 11.0 4.2 97 6B 54 2640 12.0 130 1410 4.0 12.7 4.8 98 70 56 2640 12.0 130 1459 4.1 13.5 5.1 99 72 58 2640 8.0 130 458 2.9 11.3 4.3 100 72 58 2640 8.0 130 458 2.9 11.3 4.3 101 74 60 2640 12.0 130 1114 3.2 8.2 3.1 102 80 62 3200 12.0 120 569 1.6 3.3 1.0 104 B4 64 2B50 12.0 70 529 1.5 7.0 2.4 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:37 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpm Fps CK ft W1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 2109 3.4 7.0 2.5 108 50 66 5250 30.0 120 11 .0 LO .0 .0 LO 110 68 66 2640 30.0 120 2153 1.0 .4 .1 112 70 68 26BO 30.0 120 3683 1.7 1.0 .4 114 70 68 . 2680 12.0 130 358 1.0 1.0 .4 116 72 70 2600 12.0 130 483 1.4 1.7 .7 118 72 70 2600 30.0 120 4967 2.3 1.7 .7 120 74 72 1450 30.0 120 5612 2.5 1.2 .8 122 76 74 600 30.0 120 6317 2.9 .6 1.0 124 76 78 150 8.0 130 542 3.5 .9 5.9 126 78 80 1050 12.0 130 542 1.5 .9 .8 128 82 80 1150 12.0 130 26 .1 LO .0 .0 LO 130 84 82 1250 12.0 130 297 .8 .3 .3 132 50 98 5300 12.0 130 389 1.1 2.3 .4 134 66 100 2580 12.0 130 305 .9 .7 .3 136 102 68 2640 12.0 130 29 .1 LO .0 .0 LO 138 104 70 2630 12.0 130 534 1.5 2.1 .8 140 86 72 1320 12.0 130 978 2.8 3.2 2.4 142 106 86 1320 12.0 130 435 1.2 .7 .5 144 88 86 1450 14.0 120 72B 1.5 1.1 .8 146 108 88 1280 12.0 130 1236 3.5 4.8 3.8 148 90 BB 650 14.0 120 744 1.6 .5 .8 149 88 74 1350 12.0 130 953 2.7 3.1 2.3 151 90 76 1300 30.0 120 9827 4.5 3.0 2.3 152 90 96 3150 42.0 120 6730 1.6 .7 .2 158 100 98 2680 12.0 130 460 1.3 1.6 .6 160 102 100 2680 12.0 130 375 1.1 1.1 .4 162 104 102 2750 12.0 130 644 1.8 3.1 1.1 164 106 104 2580 12.0 130 720 2.0 3.6 1.4 166 108 106 1500 12.0 130 1185 3.4 5.2 3.5 168 110 108 700 12.0 130 2697 7.6 11.1 15.9 HI 170 112 90 950 21.0 120 11309 10.5 HI 16.3 17.2 HI 171 112 90 950 16.0 130 5992 9.6 16.3 17.2 HI 172 112 110 350 21.0 120 4093 3.8 .9 2.6 174 110 116 750 21.0 120 1396 1.3 .3 .4 176 114 96 3400 42.0 120 1064 .2 .0 .0 LO 178 118 104 2640 12.0 130 806 2.3 4.5 1.7 179 120 106 2640 8.0 130 473 3.0 12.0 4.6 180 120 106 2640 6.0 130 222 2.5 12.0 4.6 182 116 120 2550 12.0 130 775 2.2 4.0 1.6 184 116 122 1900 21.0 120 313 .3 .0 .0 LO 188 128 114 4000 42.0 120 2315 .5 .1 .0 LO 190 120 118 2550 8.0 130 461 2.9 11.1 4.4 192 122 120 2150 B.0 130 291 1.9 4.0 1.9 194 122 124 600 8.0 130 410 2.6 2.1 3.5 196 131 118 2640 8.0 130 626 4.0 20.3 7.7 197 132 130 800 8.0 130 389 2.5 2.5 3.2 198 130 129 850 6.0 130 103 1.2 .9 1.1 199 129 120 1250 8.0 130 103 .7 .3 .3 200 132 120 2750 8.0 130 249 1.6 318 1.4 201 134 122 2640 21.0 120 733 .7 .3 .1 202 124 136 3250 12.0 130 115 .3 .1 .0 LO 206 140 128 700 12.0 130 4 .0 LO .0 .0 LO 208 128 142 1800 12.0 130 197 .6 .2 .1 210 142 144 1150 12.0 130 200 .6 .1 .1 CITY OF HUNTINGTON BEACH FRI, SEP 41 19B7, 3:37 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 212 292 132 1950 B.0 130 364 2.3 5.5 2.8 214 24 02 2000 12.0 130 274 A .5 .2 216 134 136 1200 12.0 130 907 2.6 2.5 2.1 218 136 138 2050 12.0 130 913 2.6 4.4 2.1 220 164 146 2200 12.0 130 233 .7 .4 .2 222 140 142 1800 12.0 130 197 .6 .2 .1 224 146 128 4200 42.0 120 2733 .6 .2 .0 LO 226 146 144 650 24.0 120 3163 2.2 .6 .8 228 152 131 2700 B.0 130 538 3.4 15.6 5.8 230 154 132 3150 8.0 130 281 K 8 15 1.7 232 156 134 2640 21.0 120 2146 10 i 1 .8 234 158 136 2640 12.0 130 141 .4 .2 .1 LO 236 150 160 1400 12.0 130 401 1.1 .7 .5 -238 148 150 700 14.0 130 401 .8 .2 .2 240 13B 148 500 12.0 130 401 1.1 .2 .5 242 162 140 2640 12.0 130 526 1.5 2.0 .8 244 164 146 2120 42.0 120 5913 1A .4 .2 246 152 154 2640 8.0 130 542 3.5 15.5 5.9 248 154 156 2640 8.0 130 220 1.4 2.9 1.1 250 156 158 1300 1210 130 1176 3.3 4.5 3.4 252 158 160 2000 12.0 130 1056 3.0 5.6 2.8 254 160 162 2660 12.0 130 934 2.6 5.9 2.2 256 162 164 2660 12.0 130 441 1.3 1.5 .6 257 180 164 2700 12.0 130 286 .8 .7 .3 259 164 166 2640 12.0 130 1213 3.4 9.6 3.6 260 168 152 2550 12.0 130 1586 4.5 15.2 6.0 261 16B 00 2330 21.0 120 7172 6.6 17.3 7.4 262 170 154 3050 8.0 130 464 3.0 13.4 4.4 263 170 172 2000 21.0 120 6303 5.8 11.7 5.8 264 172 156 2650 21.0 120 3318 3.1 4.7 1.8 265 172 174 1350 16.0 130 2322 3A 4.0 3.0 266 174 158 2650 8.0 130 298 1.9 5.1 1.9 267 174 176 1950 16.0 130 2440 3.9 6.4 3.3 269 176 178 2640 16.0 130 2363 3.8 8.1 3.1 270 178 162 2700 12.0 130 548 1.6 2.2 .8 271 178 180 2700 16.0 120 1273 2.0 3.1 1.1 272 180 164 2700 42.0 120 712E 1.7 .7 .3 273 180 182 1150 16.0 120 2745 4.4 5.4 4.7 274 166 184 26BO 12.0 130 859 2.4 5.1 1.9 275 182 184 1550 16.0 125 3386 14 Ito 6.4 277 184 186 2650 16.0 125 349E 5.6 18.1 6.8 278 308 186 1400 12.0 130 669 1.9 1.7 1.2 A 279 186 190 2750 16.0 125 3163 5.0 15.6 5.7 280 190 192 1340 16.0 125 2691 4.3 5.6 4.2 282 192 194 3200 14.0 130 2597 5.4 22.4 7.0 284 194 21B 5300 14.0 130 1998 4.2 22.9 4.3 286 196 170 2660 8.0 130 219 1.4 2.9 1.1 289 198 174 2640 12.0 130 745 2.1 3.9 1.5 290 200 176 2500 12.0 130 234 .7 .4 .2 292 202 204 2700 9.0 130 243 1.6 3.6 1.3 294 17B 204 800 12.0 130 10 .0 LO .0 .0 LO 296 206 180 2700 36.0 120 9214 2.9 2.3 .9 298 206 182 3900 12.0 130 886 2.5 7.7 2.0 300 184 208 2640 12.0 130 390 1.1 1.2 .4 3A 186 210 2640 9.0 130 148 .9 1.4 .5 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:37 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 302 190 212 2640 12.0 130 115 .3 .1 .0 LO 304 196 198 3300 8.0 130 467 3.0 14.7 4.5 306 198 200 2700 12.0 130 1214 3.4 9.8 3.6 308 200 202 2640 12.0 130 849 2.4 4.9 1.9 310 202 206 2640 12.0 130 792 2.2 4.3 1.6 312 206 208 2640 12.0 130 1749 5.0 18.8 7.1 314 208 210 2640 12.0 130 1723 4.9 18.3 6.9 316 210 212 2640 12.0 130 1507 4.3 14.3 5.4 318 212 214 1300 12.0 130 1294 33 13 4.1 320 222 196 2700 12.0 130 1325 3.8 11.5 4.3 322 272 224 1320 12.0 130 1013 2.9 3.4 2.6 324 228 200 2640 12.0 130 558 1.6 2.3 .9 326 230 202 3000 12.0 130 521 1.5 2.3 .8 327 232 206 2640 12.0 130 652 1.8 3.0 1.1 328 232 206 2640 36.0 120 10817 3.4 3.0 1.1 330 236 210 2700 12.0 130 827 2.3 4.8 1.8 332 214 216 1000 10.0 130 928 3.8 5.4 5.4 334 216 238 2100 8.0 130 280 1.8 3.6 1.7 336 302 220 4500 20.0 130 6165 6.3 27.5 6.1 # 338 218 220 1250 14.0 130 1526 3.2 3.3 2.6 # 340 288 224 1700 12.0 130 2262 14 116 11.5 HI 342 224 228 2000 12.0 130 1982 5.6 18.0 9.0 344 228 230 2640 12.0 130 848 2.4 4.9 1.9 346 230 232 2640 12.0 130 715 2.0 3.6 1.4 348 232 234 2640 20.0 130 6308 6.4 16.9 6.4 # 350 234 236 2640 20.0 130 6641 6.B 18.5 7.0 # 352 236 238 5030 20.0 130 6448 6.6 33.4 6.6 # 354 224 226 1300 12.0 130 658 1.9 1.5 1.2 356 228 240 2700 12.0 130 144 .4 .2 .1 LO 358 242 230 2700 12.0 130 709 2.0 3.6 1.3 360 244 232 2700 36.0 '120 17722 5.6 7.7 2.9 362 246 234 2700 12.0 130 494 1.4 1.9 .7 364 250 236 2680 12.0 130 1207 3.4 9.6 3.6 366 226 240 3800 8.0 130 463 3.0 16.7 4.4 36B 240 242 2640 10.0 130 236 1.0 1.1 .4 370 244 242 2660 10.0 130 154 .6 .5 .2 372 244 246 2550 12.0 130 1971 5.6 22.7 8.9 374 246 248 1500 12.0 130 979 2.8 3.7 2.4 31 248 MO 1200 10.0 130 979 4.0 7.1 5.9 378 252 242 2540 12.0 130 773 2.2 4.0 1.6 380 254 244 2640 36.0 120 20365 6.4 9.8 3.7 382 256 246 2540 12.0 130 217 .6 .4 .1 384 258 250 2640 12.0 130 438 1.2 1.5 .6 396 278 252 1750 12.0 130 1174 3.3 6.0 3.4 388 254 256 2600 12.0 130 2351 6.7 32.1 12.4 HI 390 256 258 2640 12.0 130 1221 3.5 9.7 3.7 392 260 254 2600 36.0 120 23567 7.4 12.6 4.9 394 262 260 150 36.0 130 11695 3.7 .2 1.1 PECK RES. 395 266 260 100 36.0 130 12409 3.9 .1 1.3 396 264 266 250 12.0 130 3409 17 6.1 24.6 HI WELL 7 400 270 168 970 12.0 130 3074 8.7 19.7 20.3 HI WELL 5 402 274 272 200 12.0 130 3118 9.9 4.2 20.8 HI WELL 6 404 272 198 1380 12.0 130 2105 6.0 13.9 10.1 HI 406 276 278 170 - 8.0 130 825 5.3 2.2 12.8 HI WELL 1 408 254 278 900 12.0 130 349 1.0 .3 .4 CITY OF HUNTINGTON BEACH FRI, SEP 4, 19875 3:37 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 414 284 168 1990 16.0 130 3307 5.3 11.4 5.7 WELL 9 416 2B8 222 1600 12.0 130 963 2.7 3.8 2.4 418 286 288 1050 16.0 130 3226 5.1 5.7 5.5 WELL 10 420 2% 292 1400 6.0 120 453 11 218 19.9 HI DYKE WELL 422 292 131 750 8.0 130 89 .6 .2 .2 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 , 12.0 130 1205 3.4 10.2 3.6 452 300 168 5300 22.0 120 3295 2.8 7.4 1.4 OC9 500 301 112 100 36.8 120 21394 6.5 .4 3.6 Overmyer Res. 501 238 302 2000 20.0 130 6165 6.3 12.2 6.1 # 502 95 84 1000 16.0 130 1113 23 1.7 1.7 503 96 95 452 24.0 120 7794 5.5 2.0 4.5 504 304 266 10 36.0 130 9000 2.B .0 .7 OC35 510 95 84 1000 20.0 130 3080 3.1 1.7 1.7 DOWNTOWN LOOP 511 84 305 4400 20.0 130 1551 1.6 2.1 .5 DOWNTOWN LOOP 512 305 306 7200 20.0 130 1551 1.6 3.4 .5 DOWNTOWN LOOP 513 306 46 2000 20.0 130 B00 .8 .3 .1 DOWNTOWN LOOP 514 62 46 2900 20.0 130 1968 2.0 2.1 .7 DOWNTOWN LOOP 515 76 62 3200 20.0 130 2967 3.0 5.1 1.6 DOWNTOWN LOOP 516 114 115 3490 12.0 130 1250 3.5 13.4 3.8 517 64 115 6850 12.0 130 364 1.0 2.7 .4 521 154 132 3150 8.0 130 2B1 1.8 5.5 1.7 # 522 170 154 3050 8.0 130 464 3.0 13.4 4.4 1 523 196 170 2660 0.0 130 219 1.4 2.9 1.1 # 524 309 308 700 12.0 130 669 1.9 .8 1.2 Balsa Chica 525 310 308 400 24.0 130 0 .0 LO .0 .0 LO # BOLSA CHICA RES. 526 311 309 1300 16.0 130 1860 3.0 2.6 2.0 Balsa Chica 527 312 311 3200 16.0 130 2297 3.7 9.3 2.9 Balsa Chica 528 313 312 3100 16.0 130 3147 5.0 16.2 5.2 Balsa Chica 529 144 313 1500 24.0 120 3147 2.2 1.3 .8 Balsa Chica 530 306 315 450 8.0 130 751 4.8 4.8 10.7 HI # 531 315 34 225 6.0 130 751 8.5 9.0 43.6 HI # CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:37 AM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet Gpm Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ - 5 -462.43 103.7 98.7 42 54 4 5 -218.21 104.2 99.2 43 54 6 5 -385.40 103.7 98.7 42 54 Banning 8 5 -547.48 102.2 97.2 42 55 10 4 -912.47 100.1 96.1 41 56 12 4 -288.68 101.3 97.3 42 55 14 6 -594.62 106.2 100.2 43 54 16 7 -420.88 105.4 99.4 42 54 18 4 -429.97 104.7 100.7 43 54 20 2 -352.11 104.4 102.4 44 53 22 4 -362.80 101.3 97.3 42 55 24 6 -411.89 112.0 106.0 45 51 26 8 -546.02 110.6 102.6 44 52 28 4 -353.81 110.0 106.0 45 51 30 4 -737.99 109.8 105.8 45 51 32 6 -1000.92 110.6 104.6 45 52 34 30 -697.41 129.0 99.0 42 49 36 8 -646.39 123.3 115.3 49 46 38 9 -560.84 120.0 111.0 48 48 40 6 -637.39 118.6 112.6 48 48 42 6 -706.16 118.4 112.4 48 48 44 18 -463.89 118.6 100.6 43 51 46 36 -591.71 143.4 107.4 46 43 48 36 -1227.88 141.5 105.5 45 44 50 12 -853.66 .145.6 133.6 57 37 52 10 -649.78 134.7 124.7 54 41 54 7 -454.90 133.3 126.3 54 41 56 10 -488.67 133.5 123.5 53 42 58 25 -724.63 137.4 112.4 4B 43 60 35 -362.07 141.8 106.8 46 43 62 40 -700.33 145.5 105.5 45 42 64 75 -2070.60 142.2 67.2 29 LO 55 66 10 -554.28 145.6 135.6 58 36 68 8 -507.14 146.0 138.0 59 36 70 10 -484.79 147.0 137.0 59 36 72 55 -224.29 148.7 93.7 40 44 74 50 -544.56 149.9 99.9 43 42 76 50 .00 150.5 100.5 43 42 78 50 .00 149.7 99.7 43 42 80 50 .00 14B.8 9B.B 42 43 82 75 -270.22 148.8 73.8 31 LO 50 84 75 -309.34 149.1 74.1 32 LO 50 86 57 -184.19 151.9 94.9 41 43 88 50 -298.65 153.1 103.1 44 40 90 60 .00 153.6 93.6 40 43 95 103 -3001.54 150.8 47.8 20 LO 60 Reservoir Hill 96 95 .00 152.9 57.9 25 LO 55 98 16 -949.04 143.3 127.3 55 38 100 15 -219.19 144.9 129.9 56 37 Flounder 102 12 -240.33 146.0 134.0 58 36 104 14 -347.98 149.1 135.1 58 35 106 58 -724.63 152.7 94.7 41 43 108 55 -276.29 157.9 102.9 44 39 110 60 .00 169.0 109.0 47 33 112 60 .00 169.9 109.9 47 33 I CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 3:37 AM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 114 93 .00 152.9 59.9 25 LO 54 115 35 -1614.01 139.5 104.5 45 44 116 60 -307.88 168.7 108.7 47 33 118 13 -281.15 153.6 140.6 60 33 120 55 -262.44 164.7 109.7 47 35 122 35 -345.30 168.7 133.7 57 29 124 25 -295.73 166.6 141.6 61 28 128 5 -225.26 153.0 148.0 64 32 129 45 .00 165.0 120.0 52 33 130 45 -285.52 166.0 121.0 52 32 131 45 .00 173.9 128.9 55 28 132 55 -562.55 168.5 113.5 49 32 134 50 -231.34 169.0 119.0 51 31 136 50 -249.80 166.4 116.4 50 33 138 40 -511.76 162.0 122.0 52 33 140 2 -324.89 153.0 151.0 65 32 142 2 -193.67 152.8 150.8 65 32 144 2 -215.79 152.6 150.6 65 32 146 2 -250.05 153.2 151.2 65 32 148 40 .00 161.8 121.8 52 33 150 40 .00 161.7 121.7 52 34 152 28 -506.65 189.5 161.5 70 17 154 25 -688.18 174.0 149.0 64 25 156 25 -216.03 171.1 146.1 63 26 158 30 -276.78 166.6 136.6 59 29 160 5 -523.67 161.0 156.0 67 28 162 3 -514.92 155.1 152.1 65 31 164 2 -496.21 153.6 151.6 65 31 166 2 -355.02 144.0 142.0 61 36 168 27 -917.81 204.7 177.7 77 9 170 26 -379.00 187.4 161.4 69 18 172 25 -663.39 175.8 150.8 65 24 174 25 -328.54 171.8 146.8 63 26 176 12 -312.26 165.4 153.4 66 27 179 5 -531.44 157.3 152.3 66 30 180 5 -327.09 154.2 149.2 64 31 182 5 -245.43 148.8 143.8 62 34 184 5 -356.97 138.9 133.9 58 38 196 34 -855.60 120.8 86.8 37 LO 54 190 35 -356.72 105.2 70.2 30 LO 62 192 55 -94.28 99.6 44.6 19 LO 73 194 5 -598.75 77.1 72.1 31 LO 67 196 25 -420.88 190.4 165.4 71 17 198 17 -612.36 175.7 158.7 68 23 200 14 -698.66 165.8 151.8 65 27 Heil 202 10 -335.10 160.9 150.9 65 29 204 10 -253.45 157.3 147.3 63 31 206 9 -412.13 156.6 147.6 63 31 209 14 -415.53 137.7 123.7 53 41 210 15 -1191.43 119.4 104.4 45 50 212 9 -327.81 105.1 96.1 41 55 214 9 -366.20 99.8 90.8 39 LO 57 216 9 -647.84 94.4 95.4 37 LO 60 219 5 -472.64 54.3 49.3 21 LO 77 22b 5 -7690.41U 51.OF 46.0 19 LO 79 CITY OF HUNTINGTON BEACH FRI, SEP 4, 19B75 3:.37 AN GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 222 26 -842.72 201.9 175.9 76 11 224 21 -635.20 186.1 165.1 71 18 226 23 -194.09 184.6 161.6 70 19 228 20 -432.78 168.1 148.1 64 27 230 12 -320.76 163.2 151.2 65 28 232 10 -659.74 159.6 149.6 64 30 234 12 -161.35 142.7 130.7 56 38 236 15 -572.27 124.2 109.2 47 47 Scenario 238 5 563.27 90.8 85.8 37 LO 60 240 21 -370.33, 167.9 146.9 63 27 242 15 -453.92 166.8 151.8 65 27 244 16 -518.08 167.3 151.3 65 27 246 14 -715.64 144.6 130.6 56 37 248 14 .00 140.9 126.9 55 39 250 13 -209.95 133.8 120.8 52 42 252 22 -400.95 170.9 148.E 64 26 254 1B -502.04 177.1 159.1 68 22 256 17 -913.68 145.0 128.0 55 38 258 17 -792.22 135.3 118.3 51 42 260 23 =526.34 189.7 166.7 72 17 262SP 34 11684.71U 189.9 155.9 67 18 PECK RES. 264SP 18 3408.92U 196.0 178.0 77 13 WELL 7 266 23 .00 189.8 166.E 72 17 270SP 27 3074.26U 224.4 197.4 85 HI 0 WELL 5 272 25 .00 199.5 164.5 71 17 274SP 19 3117.97U 193.7 174.7 75 14 WELL 6 276SP 17 824.54U 178.9 161.9 70 21 WELL i 278 19 .00 176.8 157.8 68 23 284SP 27 3306.74U 216.1 189.1 81 HI 4 WELL 9 286SP 19 3225.66U 211.4 192.4 83 HI 6 WELL 10 289 22 .00 205.7 183.7 79 9 290SP 44 453.09U 201.E 157.8 68 12 DYKE WELL 292 48 .00 174.0 126.0 54 28 294 12 6700.00 148.2 136.2 59 . 35 OC44,Adams 300 25 4500.00 212.1 187.1 81 HI 6 OC9 301SP 65 21393.51U 170.3 105.3 45 33 Overmyer Res. 302 5 .00 7B.5 73.5 31 LO 66 304 25 9000.00 189.8 164.8 71 17 OC35 305 40 .00 147.1 107.1 46 41 306 30 .00 143.6 113.6 49 41 30B 50 .00 122.5 72.5 31 LO 58 Bolsa Chica 309 25 -1190.70 123.3 98.3 42 50 Bolsa Chica 310 50 .00 122.5 72.5 31 LO 58 BOLSA CHICA RES. 311 25 -437.40 125.9 100.9 43 49 Bolsa Chica 312 20 -850.50 135.2 115.2 49 43 Bolsa Chica 313 20 .00 151.4 131.4 56 35 Bolsa Chica 315 34 .00 138.8 104.9 45 44 Maximum Unbalanced Head = .00002 210 r. CITY OF HUNTINGTON BEACH FRI. SEP 4, 1987, 3:37 AM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION H8L DISCH HSL LIFT PUMP NODE fipm Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 301SP 21394 50.0 170.3 120.3 20 Overmyer Res. 262SP 11685 20.0 189.9 169.9 30 PECK RES. 290SP 453 -34.0 201.8 235.8 11 DYKE WELL 276SP 825 -98.0 178.9 276.9 1 WELL 1 270SP 3074 -62.0 224.4 286.4 5 WELL 5 274SP 3118 -59.0 193.7 252.7 6 WELL 6 264SP 3409 -89.0 196.0 285.0 7 WELL 7 284SP 3307 -64.0 216.1 280.1 9 WELL 9 286SP 3226 -55.0 211.4 266.4 10 WELL 10 220 -7690 51.0 SOURCE PUMPS Node Pump# 301 20 Head 132 131 130 114 106 100 93 8 Flow 0. 10000, 20650. 21875. 22525, 22875. 23350. 23775. 262 30 Head 172 171 169 157 151 - 146 141 13 Flow 0. 7500. 15000. 15800. 16100. 16250. 16500. 16750. 290 11 Head 330 306 256 190 72 0 0 0 Flow 0. 200. 400. 600. 800. 0. 0. 0. 276 1 Head 440 399 348 311 297 205 98 0 Flow 0. 200. 400. 600. 900. 1000. 1200. 0. 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1892. 2259. 3012. 3765. 4518. 4894. 0. 274 6 Head 488 318 296 297 257 206 148 0 Flow 0. 1761. 2201. 2641. 3081. 3521. 3962. 0. 264 7 Head 397 299 291 269 239 20B 174 0 Flow 0. 2817. 3286. 3756. 4225. 4695. 5164 0. 284 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745, 4214. 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859. 2324. 2789. 3253. 3718. 0. 0. Iteration= 1, Flow Correction= 16163.480 Iteration= 2, ' Flow Correction= 7682.471 Iteration= 3, Flow Correction= 2336.330 Iteration= 4, Flow Correction= 2126.140 Iteration= 5, Flow Correction= 1198.860 Iteration= 6, Flow Correction= 703.889 Iteration= 15 Flow Correction= 371.924 Iteration= 81 Flow Correction= 162.041 Iteration= 10, Flow Correction= 2.729 Iteration= 11, Flow Correction= .013 Iteration= 12, Flow Correction= .000 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 4:35 AM ULTIMATE SYSTEM -- MAX DAY ULTIMATE DEMAND k FIRE @ NODE 312 W/BOLSA INPUT FILE NAME DUFR312B NUMBER OF PIPES 252 NUMBER OF NODES 157 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gp® MAXIMUM NUMBER OF ITERATIONS s0 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet 11000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 40. Psi - HIGH BO. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-! FIXED DEMANDS = .00 SUM OF (+! FIXED DEMANDS = 20200.00 SUM OF PEAKABLE DEMANDS =-25732.61 SUM OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -62530.23 SUM OF ALL DEMANDS --------- -42330.23 Solution reached in 19 iterations " Last flow correction was .DO CITY OF HUNTINGTON BEACH FRI, SEP 4, 1997, 4:36 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gpm Fps CK ft ft/1000 CK 2 4 2 2480 16.0 130 520 .8 .5 .2 4 2 6 2000 12.0 130 57 .2 .0 .0 LO 6 4 6 1600 12.0 130 318 .9 .5 .3 8 6 8 2600 12.0 130 460 1.3 1.6 .6 10 B 10 2900 12.0 130 499 1.4 2.0 .7 12 12 10 970 10.0 130 413 1.7 1.2 1.2 14 14 4 2900 16.0 130 1056 1.7 2.0 .7 16 16 6 2620 12.0 130 470 1.3 1.6 .6 18 18 8 2640 12.0 130 587 1.7 2.5 .9 20 20 12 2350 12.0 130 708 2.0 3.1 1.3 22 12 22 22BO 12.0 130 7 .0 LO .0 .0 10 24 14 16 2600 12.0 130 330 .9 .8 .3 26 16 18 2610 12.0 130 300 .9 .7 .3 28 18 20 2510 12.0 130 162 .5 .2 .1 LO 30 24 14 2620 16.0 130 19BI 3.2 5.8 2.2 32 26 16 2700 12.0 130 861 2.4 5.2 1.9 34 2B 18 2700 12.0 130 B79 2.5 5.4 2.0 36 30 20 2570 12.0 130 898 2.5 5.3 2.1 3B 32 22 3430 B.0 130 356 2.3 9.3 2.7 40 24 26 2680 12.0 130 437 1.2 1.5 .5 42 26 28 2640, 12.0 130 248 .7 .5 .2 44 2B 30 2670 12.0 130 174 .5 .3 .1 LO 46 32 30 2550 12.0 130 315 .9 .8 .3 48 34 32 2800 12.0 130 1672 4.7 19.4 6.6 50 36 24 2"0 16.0 130 2B30 4.5 11.3 4.3 52 38 26 2600 12.0 130 1217 3.5 15 3.7 54 40 28 2580 12.0 130 1159 3.3 9.6 3.3 56 42 30 - 2640 12.0 130 114E 3.3 9.6 3.3 5B 46 34 2320 12.0 130 1619 4.6 14.4 6.2 60 36 38 2640 12.0 130 682 1.9 3.3 1.2 62 36 40 2640 12.0 130 429 1.2 1.4 .5 64 40 42 2700 12.0 130 158 .4 .2 .1 LO 66 44 42 2550 12.0 130 137 .4 .2 .1 LO 68 46 4B 700 12.0 130 1030 2.9 1.9 2.7 70 50 36 2550 16.0 130 4158 6.6 22.3 8.7 72 52 3B . 2640 12.0 130 025 4.3 14.6 5.5 74 54 40 2650 12.0 130 1526 4.3 14.7 5.5 76 56 42 2620 12.0 130 1559 4.4 15.1 5.8 78 5B 44 2640 8.0 130 601 3.8 18.8 7.1 80 62 46 2950 12.0 120 471 1.3 2.2 .7 B2 64 4B 5300 12.0 130 19B .6 .7 .1 B4 50 52 2700 12.0 130 1290 3.7 11.0 4.1 86 52 54 2b00 12.0 130 421 1.2 1.3 .5 88 56 54 2640 12.0 130 149 .4 .2 .1 LO 90 58 56 2660 12.0 130 737 2.1 3.B 1.4 92 60 58 1330 12.0 130 1148 3.3 4.4 3.3 94 62 60 1130 8.0 130 396 21 3.1 3.3 8 6 12 96 66 52 2640 12.0 130 1306 3.7 11.0 4.2 97 68 54 2640 12.0 130 1411 4.0 12.7 4.8 98 70 56 2640 12.0 130 1459 4.1 13.5 5.1 99 72 58 2640 8.0 130 458 2.9 11.3 4.3 100 72 58 2640 8.0 130 45B 2.9 11.3 4.3 101 74 60 2640 12.0 130 1114 3.2 9.2 3.1 102 80 62 3200 12.0 120 566 1.6 3.3 1.0 104 84 64 2850 12.0 70 527 1.5 7.0 2.4 CITY, OF HUNTINGTON BEACH FRI, SEP 4, 1987, 4:36 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GP® Fps CK ft ft/1000 CK. ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 2106 3.4 7.0 2.5 108 50 66 5250 30.0 120 10 .0 LO ,0 .0 LO 110 68 66 2640 30.0 120 2154 1.0 .4 .1 t12 .70 68 2680 30.0 120 3675 1.7 1.0 .4 114 70 68 2680 12.0 130 358 1.0 1.0 .4 116 72 70 2600 12.0 130 481 1.4 1.7 .7 118 72 70 2600 30.0 120 4946 2.2 1.7 .7 120 74 12 1450 30.0 120 5576 2.5 1.2 .8 122 76 74 600 30.0 120 6274 2.8 .6 1.0 124 76 78 150 9.0 130 553 3.5 .9 6.1 126 7B 80 1050 12.0 130 553 1.6 .9 .8 129 82 80 1150 12.0 130 13 .0 LO .0 A LO t30 84 B2 1250 12.0 130 283 .8 .3 .2 132 50 98 5300 12.0 130 399 1.1 2.3 .4 114 66 100 25BO 12.0 130 304 .9 .7 ,3 136 102 68 2640 12.0 130 40 .1 .0 .0 LO 138 104 70 2630 12.0 130 549 1.6 2.2 .8 140 86 72 1320 12.0 130 991 2.8 3.3 2.5 142 106 86 1320 12.0 130 465 1.3 .8 .6 144 BB 86 1450 14.0 120 710 1.5 1.1 .7 146 108 BB 1280 12.0 130 1276 3.6 5.1 4.0 148 90 88 650 14.0 120 693 1.4 .5 .7 149 88 74 1350 12.0 130 960 2.7 3.2 2.4 151 90 76 1300 30.0 120 9803 4.4 3.0 2.3 152 90 96 3150 42.0 120 7246 1.7 .8 .3 158 100 98 2680 12.0 110 460 1.3 1.6 .6 160 102 100 2680 12.0 130 376 1.1 1.1 .4 162 104 102 2750 12.0 130 656 1.9 3.2 1.2 164 106 104 2580 12.0 130 725 2.1 3.6 1.4 166 108 106 1500 12.0 130 1203 3.4 5.4 3.6 168 110 108 700 12.0 130 2755 7.8 11.6 16.6 HI 170 112 90 950 21.0 120. 11597 10.7 HI 17.1 18.0 HI 171 112 90 950 16.0 130 6145 9.8 17.1 1B.0 HI 172 112 110 350 21.0 120 4025 3.7 .9 2.5 174 110 116 750 21.0 120 1270 1.2 .2 .3 176 114 96 3400 42.0 120 527 .1 .0 .0 LO 178 118 104 2640 12.0 130 828 2.3 4.7 1.8 179 120 106 2640 BID 130 485 3.1 12.6 4.8 180 120 106 2640 6.0 130 227 2.6 12.6 4.8 182 116 120 2550 12.0 130 783 2.2 4.1 1.6 184 -116 122 1900 21.0 120 179 .2 .0 .0 LO 188 128 114 4000 42.0 120 1776 .4 .1 .0 LO 190 120 118 2550 BID 130 470 3.0 11.5 4.5 192 122 120 2150 8.0 130 295 1.9 4.1 1.9 194 122 124 600 8.0 130 401 2.6 2.0 3.4 196 131 110 2640 BID 130 639 4.1 21.1 9.0 197 132 130 BOO 8.0 130 395 2.5 2.6 3.3 198 130 129 850 ' 6.0 130 110 1.2 1.1 1.2 199 129 120 1250 8.0 130 110 .7 .4 .3 200 132 120 2750 8.0 130 257 1.6 4.1 1.5 201 134 122 2640 21.0 120 862 .8 .4 .1 202 124 136 3250 12.0 130 105 .3 .1 .0 LO 206 128 140 700 12.0 130 119 .3 .0 .0 LO 208 128 142 1B00 12.0 130 419 1.2 .9 .5 210 142 144 1150 12.0 130 636 1.8 1.3 1.1 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1997, 4:36 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 212 292 132 1950 B.0 130 371 2.4 5.7 2.9 214 134 132 2000 12.0 130 264 .7 .4 .2 216 134 136 1200 12.0 130 905 2.6 2.5 2.1 218 136 138 2050 12.0 130 923 2.6 4.5 2.2 220 164 146 2200 12.0 130 367 1.0 .9 .4 222 140 142 1800 12.0 130 411 1.2 .9 .5 224 146 128 4200 42.0 120 2539 .6 .2 .0 LO 226 146 144 650 24.0 120 6BB7 4.9 2.3 3.6 228 152 131 2700 B.0 130 548 3.5 16.2 6.0 230 154 132 3150 8.0 130 290 1.9 5.8 1.8 232 156 134 2640 21.0 120 2262 2.1 2.3 .9 234 158 136 2640 12.0 130 .163 .5 .2 .1 LO 236 150 160 1400 12.0 130 412 1.2 .7 .5 238 148 150 700 14.0 130 412 .9 .2 .2 240 13B 140 500 12.0 130 412 1.2 .2 .5 242 162 140 2640 12.0 130 616 1.7 2.7 1.0 244 164 146 2120 42.0 120 9309 2.2 .9 .4 246 152 154 2640 8.0 130 550 3.5 15.9 6.0 248 154 156 2640 B.0 130 226 1.4 3.1 1.2 250 156 158 1300 12.0 130 1197 3.4 4.6 3.5 252 15B 160 2000 12.0 130 1076 3.1 5.8 2.9 254 160 162 2660 12,0 130 964 2.7 6.3 2.4 256 162 164 2660 12.0 130 471 1.3 1.7 .6 257 190 164 2700 12.0 130 416 1.2 1.4 .5 258 164 166 2640 12.0 130 1076 3.1 7.7 2.9 260 168 152 2550 12.0 130 1605 4.6 15.5 6.1 261 Ib8 170 2330 21.0 120 7240 6.7 17.6 7.5 262 170 154 3050 8.0 130 472 3.6 13.9 4.6 263 170 172 2000 21.0 120 6379 5.9 11.9 6.0 264 172 156 2650 21.0 120 3449 3.2 5.1 1.9 265 172 174 1350 16.0 130 2266 3.6 10 2.8 266 174 158 2650 B.0 130 319 2.0 5.8 2.2 267 174 176 1950 16.0 130 2414 3.9. 6.2 3.2 269 176 178 2640 16.0 130 2459 3.9 8.7 3.3 270 17B 162 2700 12.0 130 638 1.8 3.0 1.1 271 178 180 2700 16.0 120 132E 2.1 3.3 1.2 272 180 164 2700 42.0 120 10360 2.4 1.4 .5 273 180 182 1150 16.0 120 2424 3.9 4.3 3.7 274 166 1B4 2680 12.0 130 721 2.0 3.7 1.4 275 182 184 1550 16.0 125 3094 4.9 8.4 5.4 277 184 1B6 2650 16.0 125 34B3 5.6 1B.0 6.B 278 186 300 1400 12.0 130 3296 9.4 32.3 23.1 HI 4 279 190 186 2750 16.0 125 273 .4 .2 .1 LO 280 192 190 1340 16.0 125 305 .5 .1 .1 LO 282 194 192 3200 14.0 130 399 .0 .7 .2 2B4 218 194 5300 14.0 130 998 2.1 6.3 1.2 286 196 170 2660 B.0 130 231 1.5 3.2 1.2 2B8 198 174 2640 12.0 130 796 2.3 4.4 1.7 290 200 176 2500 12.0 130 357 1.0 .9 .4 292 202 204 2700 8.0 130 292 1.9 5.0 1.9 294 204 178 BOO 12.0 130 39 .1 .0 .0 LD 296 206 180 2700 36.0 120 12200 3.B 3.9 1.4 29B 206 182 3B00 12.0 130 915 2.6 B.2 2.1 300 208 184 2640 12.0 130 25 .1 LO .0 .0 LO 301 210 186 2640 8.0 130 396 2.5 9.7 3.3 CITY OF HUNTINBTON. BEACH FRI, SEP 4, 1987, 4:36 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Bpo Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ --=--- -- --- ------- -- 302 212 190 2640 12.0 130 324 ' .9 .8 .3 304 196 198 3300 B.0 130 465 3.0 14.6 4.4 306 198 200 2700 12.0 130 1205 3.4 9.7 3.6 308 200 202 2640 12.0 130 818 2.3 4.6 1.7 310 202 206 2640 12.0 130 806 2.3 4.5 1.7 312 206' 208 2640 12.0 130 1632 4.6 16.6 6.3 314 208 210 2640 12.0 130 1191 3.4 9.3 3.5 316 210 212 , 2640 12.0 130 1078 3.1 7.7 2.9 318 212 214 1300 12.0 130 426 1.2 .7 .5 321 222 196 2700 12.0 130 1347 3.8 11.9 4.4 322 272 224 1320 12.0 130 994 2.B 3.3 2.5 324 228 NO 2640 12.0 130 659 1.9 3.1 1.2 326 230 202 3000 12.0 130 615 1a 3.1 1.0 327 232 206 2640 12.0 130 Bib 2.3 4.6 1.7 32B 232 206 2640 36.0 120 13538 4.3 4.6 1.7 330 236 210 2700 12.0 130 1475 4.2 14.1 5.2 332 214 216 1000 10.0 130 60 .2 .0 .0 LO 334 238 216 2100 B.0 130 58B 3.8 14.4 6.8 336 302 220 4500 20.0 130 1852, 1.9 3.0 .7 # 339 220 218 1250 14.0 .130 1471 3.1 3.1 2.4 # 340 28B 224 1700 12.0 130 2255 6.4 19.4 11.4 HI 342 224 228 2000 12.0 130 1963 5.6 17.7 8.8 344 228 230 2640 12.0 130 BIB 2.3 4.6 1.7 346 230 232 2640 12.0 130 647 1.8 3.0 1.1 348 232 234 2640 20.0 130 4178 4.3 7.9 3.0 # 350 234 236 2640 20.0 130 4365 4.5 8.5 3.2 4 352 236 238 5030 20.0 130 3004 3.1 8.1 1.6 # 354 224 226 1300 12.0 130 651 1.B 1.5 1.1 356 228 240 2700 12.0 130 53 .2 .0 .0 LO 358 242 230 2700 12.0 130 765 2.2 4.2 1.5 360 244 232 2700 34.0 120 18544 5.8 8.4 3.1 362 246 234 2700 12.0 - 130 349 1.0 1.0 .4 364 250 236 2690 12.0 130 686 1.9 3.4 1.3 366 226 240 3800 B.0 130 456 2.9 16.2 4.3 36B 240 242 2640 10.0 130 139 .6 .4 .2 370 244 242 2660 10.0 130 249 1.0 1.3 .5 372 244 246 2550 12.0 130 1591 4.5 15.3 6.0 374 246 24B 1500 12.0 130 721 2.0 2.1 1.4 376 248 250 1200 10.0 130 721 2.9 4.0 3.4 37B 252 242 2540 12.0 130 830 2.4 4.6 1.8 3BO 254 244 2640 36.0 120 20903 6.6 10.3 3.9 3B2 256 246 2540 12.0 130 194 .6 .3 .1 384 25B 250 2640 12.0 130 _ 174 .5 .3 .1 LO 3B6 278 252 1750 12.0 130 1231 3.5 6.5 3.7 38B 254 256 2600 12.0 130 2064 5.9 25.2 9.7 390 256 258 2640 12.0 130 956 2.7 6.2 2.3 392 260 254 2600 36.0 120 23875 7.5 12.9 5.0 394 262 260 150 36.0 130 11990 33 .2 1.2 PECK RES. 395 266 260 100 36.0 130 12411 3.9 .1 1.3 396 2b4 266 250 12.0 130 3411 9.7 b.t 24.6 HI WELL 7 400 270 168 970 12.0 130 3109 8.8 20.1 20.7 HI WELL 5 402 274 272 200 12.0 130 3143 8.9 4.2 21.1 HI WELL 6 404 272 198 1380 12.0 130 2148 6.1 14.4 10.5 HI 406 276 27B 170 B.0 130 B26 5.3 2.2 12.8 HI WELL 1 40B 254 279 900 12.0 130 405 1.1 .4 .5 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 4:36 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft . ftl1000 CK ---- ---- ---- ------ ------ ------ ------ --_--- -- --- ------- -- 414 284 168 1990 16.0 130 3341 5.3 11.6 5.8 WELL 9 416 288 222 1600 12.0 130 1002 2.9 4.1 2.5 419 286 288 1050 16.0 130 3257 5.2 5.8 5.6 WELL 10 420 290 292 1400 6.0 120 462 5.2 28.8 20.6 HI DYKE WELL 422 292 131 750 8.0 130 91 .6 .2 .2 424 294 . 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1187 3.4 9.9 3.5 452 300 168 5300 22.0 120 3313 2.8 7.5 1.4 OC9 500 301 112 100 36.B 120 21767 6.6 .4 3.8 Overmyer Res. 501 238 302 2000 20.0 130 1852 1.9 1.3 .7 # 502 95 84 1000 16.0 130 1705 2.7 1.7 1.7 503 96 95 452 24.0 120 7772 5.5 2.0 4.5 504 304 266 10 36.0 130 9000 2.8 .0 .7 OC35 510 95 84 1000 20.0 130 3066 3.1 1.7 1.7 DOWNTOWN LOOP 511 B4 305 4400 20.0 130 1544 1.6 2.1 .5 DOWNTOWN LOOP 512 305 306 7200 20.0 130 1544 1.6 3.4 .5 DOWNTOWN LOOP 513 306 46 2000 20.0 130, 794 .8 .3 .1 DOWNTOWN LOOP 514 62 46 2900 20.0 130 1975 2.0 2.2 .7 DOWNTOWN LOOP 515 76 '62 3200 20.0 130 2976 3.0 5.1 1.6 DOWNTOWN LOOP 516 114 115 3490 12.0 130 1249 3.5 13.4 3.8 517 64 115 6850 12.0 130 365 1.0 2.7 .4 521 154 132 3150 8.0 130 290 1.9 5.8 1.8 # 522 170 154 3050 8.0 130 472 3.0 13.9 4.6 4 523 196 170 2660 B.0 130 231 1.5 3.2 1.2 # 524 30B 309 700 12.0 130 3296 9.4 16.2 23.1 HI Bolsa Chica 525 310 306 400 24.0 130 0 .0 LO .0 .O LD # BOLSA CHICA RES. 526 309 311 1300 16.0 130 2106 3.4 3.2 2.5 Bolsa Chica 527 311 312 3200 16.0 130 1668 2.7 5.2 1.6 Bolsa Chica 528 313 312 3100 16.0 130 7307 11.7 HI 77.0 24.8 HI Bolsa Chica 529 144 313 1500 24.0 120 7307 5.2 6.0 4.0 Bolsa Chica 530 306 315 450 B.0 130 750 4.8 4.8 10.7 HI 4 531 315 34 225 6.0 130 750 8.5 9.8 43.6 HI # CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 4:36 AM GROUND ELY FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK 2 5 -462.43 98.1 93.1 40 56 4 5 -219.21 98.b 93.6 40 56 b 5 -385.40 98.1 93.1 40 56 Banning B 5 . -547.4B 96.5 91.5 39 LO 57 10 4 -912.47 94.5 90.5 39 LO 58 12 4 -288.68 95.7 91.7 39 LO 57 14 6 -594.62 100.6 94.6 41 56 16 7 -420.88 99.7 92.7 40 56 18 4 -429.87 99.0 95.0 41 56 20 2 -352.11 98.8 96.B 41 55 22 4 -362.80 95.7 91.7 39 LO 57 24 6 -411.89 106.4 100.4 43 53 26 8 -546.02 104.9 96.9 42 54 28 4 -353.81 104.4 100.4 43 53 30 4 -737.99 104.2 100.2 43 53 32 6 -1000.92 104.9 9B.9 42 54 34 30 -697.41 123.3 93.3 40 51 36 8 -646.3E 117.7 109.7 47 48 38 9 -560.84 114.4 105.4 45 50 40 6 -637.39 113.0 107.0 46 50 42 6 -706.16 112.8 106.E 46 50 44 18 -463.89 113.0 95.0 41 53 46 36 -591.71 137.7 101.7 44 45 49 36 -1227.88 135.8 99.8 43 46 50 12 -853.66 140:0 128.0 55 38 52 10 -649.78 129.0 119.0 51 43 54 7 -454.90 127.7 120.7 52 43 56 10 -4BB.67 127.9 117.9 51 44 58 25 -724.63 131.8 106.E 46 45 60 35 -362.07 136.1 101.1 43 45 62 40 -700.33 139.E 99.8 43 44 64 75 -2070.60 13b.4 61.4 26 LO 57 66 10 -554.28 140.0 130.0 56 3B 68 B -507.14 140.4 132.4 57 37 70 10 -484.79 141.4 131.4 56 37 72 55 -224.29 143.1 88.1 38 LO 47 74 50 -544.56 144.3 94.3 40 44 76 50 .00 144.9 94.9 41 44 78 50 .00 144.0 94.0 40 45 BO 50 .00 143.1 93.1 40 45 82 75 -270.22 143.1 6B.1 29 LD 53 B4 75 -309.34 143.4 68.4 29 LO 53 86 57 -1B4.19 146.4 89.4 38 LO 45 88 50 -298.65 147.5 97.5 42 43 90 60 .00 147.9 B7.9 38 LD 45 95 103 -.001.54 145.1 42.1 18 LO 64 Reservoir Hill 96 95 .00 147.1 52.1 22 LO 58 9B 16 -949.04 137.7 121.1 52 40 100 15 -219.19 139.3 124.3 53 39 Flounder 102 12 -240.33 140.4 12B.4 55 3B 104 14 -347.98 143.6 129.6 56 37 106 58 -724.63 147.2 89.2 3B LO 45 108 55 -276.29 152.6 97.6 42 41 110 60 .00 164.2 104.2 45 35 112 60 .00 165.0 105.0 45 34 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 4:36 AM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet Bps Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 114 93 .00 147.1 54.1 23 LO 57 115 35 -1614.01 133.8 98.8 42 46 116 60 -307.98 163.9 103.9 45 35 118 13 -2B1.15 14B.3 135.3 5B 35 120 55 -262.44 159.8 104.8 45 36 122 35 -345.30 163.9 128,9 55 30 124 25 -295.73 161.9 136.9 59 30 128 5 -225.26 147.2 142.2 61 34 129 45 .00 160.2 115.2 49 34 130 45 -2B5.52 161.2 116.2 50 34 131 45 .00 169.4 124.4 53 29 132 55 -562.55 163.9 10B.9 47 34 134 50 -231.34 164.3 114.3 49 33 136 50 -249.80 161.E 111.8 48 34 138 40 -511.76 157.3 117.3 50 35 140 2 -324.89 147.2 145.2 62 33 142 2 -193.67 146.3 144.3 62 34 144 2 -215.78 145.0 143.0 61 34 146 2 -250.05 147.3 145.3 63 33 148 40 .00 157.0 117.0 50 35 150 40 .00 156.9 116.9 50 35 152 28 -506.65 1B5.6 157.6 68 18 154 25 -688.18 169.7 144.7 62 26 156 25 -216.03 166.6 141.6 61 27 158 30 -276.78 162.0 132.0 57 30 160 5 -523.67 156.2 151.2 65 30 162 3 -514.92 149.9 146.9 63 32 164 2 -496.21 148.2 146.2 63 33 166 2 -355.02 140.5 13B.5 60 36 168 27 -917.01 201.1 174.1 75 10 170 26 -379.08 183.6 157.6 68 19 172 25 -663.39 171.7 146.7 63 25 174 25 -328.54 167.8 142.E 61 27 176 12 -312.26 161.6 149.6 64 28 178 5 -531.44 152.9 147.9 64 31 180 5 -327.08 149.6 144.6 62 33 182 5 -245.43 145.3 140.3 60 35 184 5 -356.97 136.8 131.E 57 39 186 34 -855.60 118.9 84.9 36 LO 54 190 35 -356.72 119.1 84.1 36 LO 54 192 55 -94.2B 119.2 64.2 27 LO 61 194 5 -598.75 119.9 114.9 49 46 196 25 -420.08 186.8 161.E 70 17 199 17 -612.36 172.2 155.2 67 24 260 14 -688.66 162.5 148.5 64 2B Heil 202 10 -335.10 157.9 147.9 64 29 204 10 -253.45 152.9 142.9 61 32 206 9 -412.13 153.4 144.4 62 31 209 14 -415.53 136.8 122.8 53 40 210 15 -1191.43 127.6 112.6 48 45 212 9 -327.81 119.9 110.9 48 47 214 9 -366.20 119.2 110.2 47 48 216 9 -647.84 119.2 110.2 47 48 218 5 -472.64 126.2 121.2 52 43 220 5 381.75 129.2 124.2 53 42 CITY OF HUNTINGTON BEACH FRI, SEP 4, 1987, 4:36 AM GROUND ELV FLOW Hk EL HEAD ------- PRESSURE ------ NODE Feet 6pm Feet Feet Psi CK % DROP--CK 222 26 -842.72 198.7 172.7 74 11 224 21 -635.20 1B3.3 162.3 70 18 226 23 -194.89 181.8 158.8 6B 19 228 20 -432.78 165.6 145.6 63 27 230 12 -320.76 161.0 149.0 64 28 232 10 -659.74 158.0 148.0 64 29 234 ' 12 -161.35 150.2 13B.2 59 33 236 15 -572.27 141.6 126.6 54 38 Scenario 23B 5 -563.27 133.5 128.5 55 40 240 21 -370.33 165.6 144.6 62 27 242 15 -453.92 165.2 150.2 65 27 244 16 -51B.08 166.4 150.4 65 26 246 14 -715.64 151.1 137.1 59 33 248 14 .00 149.1 135.1 58 34 250 13 -209.95 145.0 132.0 57 36 2�2 22 -400.95 169.7 147.7 64 25 254 16 -502.04 176.7 158.7 68 21 256 17 -913.68 151.5 134.5 58 34 258 17 -7B2.22 145.3 12B.3 55 37 260 23 -526.34 189.6 166.6 72 15 262SP 34 11990.45U ' 189.8 155.8 67 16 PECK RES. 264SP i8 3410.64U 195.9 177.9 77 12 WELL 7 266 23 .00 . 1B9.8 166.8 72 15 270SP 27 3109.09U 221.2 194.2 84 HI 0 WELL 5 272 25 .00 1B6.6 161.6 70 17 274SP 19 3142.59U 190.9 171.9 74 15 WELL 6 276SP 17 825.74U 178.4 161.4 69 20 WELL 1 279 19 .00 176.3 157.3 6B 22 2B4SP 27 3340.75U 212.7 185.7 80 HI 4 WELL 9 2B6SP 19 3257.43U 208.6 189.6 82 HI 6 WELL 10 28B 22 .00 202.8 180.8 78 9 290SP 44 462.13U 198.4 154.4 66 12 DYKE WELL 292 48 .00 169.6 121.6 52 29 294 12 6700.00 142.5 130.5 56 37 OC44,Adams 300 25 4500.00 208.6 183.6 79 6 OC9 301SP 65 21766.5BU 165.4 100.4 43 35 Overmyer Res. 302 5 .00 132.2 127.2 55 41 304 25 9000.00 189.8 164.8 71 16 OC35 305 40 .00 141.3 101.3 43 44 306 30 .00 137.9 107.9 46 43 30B 50 .00 86.6 36.6 15 LO 78 Bolsa Chica 309 25 -1190.70 70.4 45.4 19 LO 76 Bolsa Chita 310 50 .00 86.6 36.6 15 LO 78 BOLSA CHICA RES. 311 25 -437.40 67.2 42.2 18 LD 78 Bolsa Chica 312 20 -8975.17U 62.OF 42.0 18 LO 79 Bolsa Chica 313 20 .00 139.0 119.0 51 40 Bolsa Chica 315 34 .00 133.1 99.1 42 47 Maximum Unbalanced Head = .00002 210 CITY OF HUNTINGTON BEACH FRI, SEP 4. 1987, 4:36 AM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH H8L LIFT PUMP NODE 6pm Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 301SP 21767 50.0 165.4 115.4 20 Overmyer Res. 262SP 11990 20.0 189.E 169.8 30 PECK RES. 290SP 462 -34.0 198.4 232.4 11 DYKE WELL 276SP B26 -98.0 178.4 276.4 1 WELL i 270SP 3109 -62.0 221.2 293.2 5 WELL 5 274SP 3143 -59.0 190.9 249.9 6 WELL 6 264SP 3411 -89.0 195.9 284.9 7 WELL 7 284SP 3341 -64.0 212.7 276.7 9 WELL 9 286SP 3257 -55.0 208.6 263.E 10 WELL 10 312 -8975 62.0 Bolsa Chica SOURCE PUMPS Node Pump# 301 20 Head 132 131 130 114 106 100 93 8 Flow 0. 10000. 20650. 21875. 22525. 22B75. 23350. 23775. 262 30 Head 172 171 169 157 151 146 141 13 Flow 0. 7500. 15000. 15800. 16100. 16250. 16500. 16750. 290 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200. 400. 600. 900. 0. 0. 0. 276 1 Head 440 399 348 311 287 205 96 0 Flow 0. 200. 400. 600. 800. 1000. 1200. 0. 270 5 Head 471 359 - 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012. 3765. 451B. 4894. 0. 274 6 Head 488 31B 296 287 257 206 148 0 Flow 0. 1761. 2201. 2641. 3081. 3521. 3962. 0. 264 7 Head 397 299 291 268 23B 208 174 0 Flow 0. 2B17. 32B6. 3756. 4225. 4695. 5164. 0. 294 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745. 4214. 0. 0. 286 10 Head 562 369 341 305 264 222 D 0 Flow 0. 1859. 2324. 2789. 3253. 3718. 0. 0. Iteration= 1, Flow Correction= 26647.300 Iteration= 2, Flow Correction= 11155.330 Iteration= 3, Flow Correction= 3128.499 Iteration= 4, Flow Correction= 1450.332 Iteration= 51 Flow Correction= 1117.459 Iteration= 6, Flow Correction= 1045.035 fteration= 7, Flow Correction= 573.765 Iteration= 8, Flow Correction= 508.053 Iteration= 9, Flow Correction= 481.777 Iteration= 11, Flow Correction= 460.946 Iteration= 12, Flow Correction= 448.841 Iteration= 13, Flow Correction= 449,187 Iteration= 14, Flow Correction= 433.586 Iteration= 15, Flow Correction= 270.936 Iteration= 16, Flow Correction= 984.300 Iteration= 17, Flow Correction= 30.3B5 Iteration= 18, Flow Correction= .059 Iteration= 19, Flow Correction= .001 CITY OF HUNTINGTON BEACH RESERVOIR HILL ASSESSMENT DISTRICT LAND USE (ACRES) AVG ------------------------------------------- DEMAND NODE LOW MED HIGH COMM MAN OS (GPM) ---- -------- -------- -------- -------- -------- -------- -------- 1 . 0 . 0 40 . 5 . 0 . 0 . 0 109 . 3 2 25 . 6 . 0 . 0 . 0 . 0 . 0 30 . 7 3 . 0 . 0 . 0 19 . 8 . 0 . 0 25 . 8 4 . 0 . 0 . 0 28 . 1 . 0 . 0 36 . 5 5 . 0 31 . 4 . 0 10 . 7 . 0 . 0 83 . 1 6 6 . 6 24 . 0 . 0 6 . 6 . 0 . 0 69 . 3 7 46 . 3 . 0 . 0 10 . 7 21 . 5 . 0 149 . 0 8 . 0 . 0 . 0 . 0 . 0 . 0 . 0 9 . 0 . 0 17 . 4 . 0 . 0 . 0 46 . 9 10 71 . 1 . 0 19 . 8 9 . 9 11 . 6 . 0 194 . 5 11 59 . 5 . 0 . 0 34 . 7 6 . 6 5 . 8 147 . 4 12 1 . 7 17 . 4 . 0 40 . 5 3 . 3 . 0 105 . 0 13 3 . 3 . 0 . 0 27 . 3 9 . 1 . 0 73 . 1 14 28 . 9 . 0 . 0 . 0 . 0 24 . 0 61 . 1 15 62 . 8 . 0 . 0 . 0 . 0 25 . 6 103 . 6 -------- -------- -------- -------- -------- -------- -------- 305 . 8 72 . 7 77 . 7 188 . 4 52.. 1 55 . 4 1235 . 2 ' t ------------ ----------------------------------------------------- ', - -,-- - i ZONING DESCRIPTION GPM/AC ' -------------------------------------------------------------------- R1 , RA (LOW) LOW DENSITY RESIDENTIAL 1 . 2 R2 ,MH (MED) MEDIUM DENSITY RESIDENTIAL 2 . 2 ; R3 , R4 (HIGH) HIGH DENSITY RESIDENTIAL 2 . 7 C1 , C2 ,C4, R5 ,MI ,CFC (COMM) COMMERCIAL 1 . 3 M2 (MAN) MANUFACTURING 3 . 7 ; ROS,CFR (OS) OPEN SPACE, PARRS 1 . 1 ' -------------------------------------------------------------------- ' NEW WORKFILE TITLE CITY OF HUNTINGTON BEACH RESERVOIR HILL FILE RES1 FACTORS 2 . 43 UNKNOWNS 8 218 . 5 1 82 . 2 PIPES 1 1 2 2000 12 130 2 2 3 1000 12 130 *EXIST 3 3 7 1300 12 130 *PART EXIST 4 4 6 1350 12 130 *EXIST 5 6 5 1600 12 130 *EXIST 6 6 12 1750 12 130 7 7 6 1500 12 130 *EXIST 8 8 7 50 24 130 9 7 9 2700 12 130 *PART EXIST CLAY 10 9 1 1600 12 130 11 9 10 1250 12 130 12 10 11 2600 12 130 13 7 11 1300 12 130 14 11 12 2350 12 130 15 12 13 1850 12 130 16 13 14 3000 12 130 17 11 14 2600 12 130 18 14 15 2600 12 130 19 10 15 2600 12 130 20 3 4 1500 12 130 *EXIST NODES 1 0 36 2 0 45 3 0 75 4 0 72 5 0 60 6 0 70 7 0 103 8 0 103 9 0 75 10 0 89 it 0 70 12 0 65 13 0 65 14 0 61 15 0 68 DEMANDS 22 1 -109 2 -31 3 -26 4 -37 5 -83 6 -69 7 -149 8 0 9 -47 10 -195 11 -147 12 -105 13 -73 14 -61 15 -104 RUN END ram` CITY OF HUNTINGTON BEACH FRI. AUG 28, 1487, 11:28 AM RESERVOIR HILL _ FILE RES1 i1`f I NUMBER OF PIPES 20 NUMBER OF NODES 15 NUMBER OF UNKNOWN DEMAND NODE 2 NUMBER OF SOURCE PUMP NODES 0 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN 1.000 Bpi MAXIMUM NUMBER OF ITERATIONS 20 VELOCITY CHECK - LOW .0 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet 11000 - HIGH 10. Feet 11000 PRESSURE CHECK - LOW 0. Psi - HIGH 100. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-1 FIXED DEMANDS = .00 SUM OF (+1 FIXED DEMANDS = .00 SUM OF PEAKABLE DEMANDS = -1127.00 SUM OF ALL FIXED DEMANDS --- .00 SUM OF ALL PEAKED DEMANDS -- -2738.61 SUM OF ALL DEMANDS --------- -2738.61 Solution reached in 8 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH FRI, AUG 2B, 1987, 11:28 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Bps Fps CK it ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 1 2 1 2000 12.0 130 414B ll.8 HI 70.7 35.3 HI 2 3 2 1000 12.0 130 4223 12.0 HI 36.5 36.5 HI EXIST 3 7 3 1300 12.0 130 3213 9.1 28.6 22.0 HI PART EXIS 4 6 4 1350 12.0 130 1163 3.3 4.5 3.4 EXIST 5 6 5 1600 12.0 130 202 .6 .2 .1 EXIST 6 6 12 1750 12.0 130 903 2.6 3.7 2.1 7 7 6 1500 12.0 130 2435 6.9 19.8 13.2 HI EXIST 8 - 8 7 50 24.0 130 1194E 8.5 .4 8.6 9 7 9 2700 12.0 130 3053 8.7 54.1 20.0 HI PART EXIS 10 9 1 1600 12.0 130 5062 14.4 HI 81.8 51.1 HI 11 10 9 1250 12.0 130 2123 6.0 12.9 10.2 HI 12 11 10 2600 12.0 130 1713 4.9 17.9 6.9 13 7 11 1300 12.0 130 2884 8.2 23.4 18.0 HI 14 11 12 2350 12.0 130 22 .1 .0 .0 15 12 13 1850 12.0 130 669 1.9 2.2 1.2 16 13 14 3000 12.0 130 492 1.4 2.0 .7 17 11 14 2600 12.0 130 792 2.2 4.3 1.6 18 14 15 2600 12.0 130 1136 3.2 8.4 3.2 19 15 10 2600 12.0 130 823 2.5 5.2 2.0 20 4 3 1500 12.0 130 1073 3.0 4.3 2.9 EXIST CITY OF HUNTINGTON BEACH FRI, AUG 28, 1987, 11:28 AM GROUND ELV FLOM HGL EL HEAD ------- PRESSURE ------ NODE Feet Bps Feet Feet Psi CK R DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- } u:..46.2 20 14 2 45 -75.33 152.9 107.9 46 37 3 75 -63.18 189.4 114.4 49 20 4 72 -89.91 193.8 121.8 52 16 5 60 -201.69 198.1 138.1 59 12 6 70 -167.67 198.3 129.3 55 13 7 103 -362.07 218.1 115.1 49 0 8 103 11948.26U 218.5F 115.5 50 0 9 75 -114.21 164.0 89.0 38 38 10 89 -473.85 176.7 87.7 38 32 11 70 -357.21 194.6 124.6 54 16 12 65 -255.15 194.6 129.6 56 15 13 65 -177.39 192.4 127.4 55 17 14 61 -148.23 190.3 129.3 56 17 15 68 -252.72 182.0 114.0 49 24 Maximum Unbalanced Head = .00002 7 CITY OF HUNTINGTON BEACH FRI, AUG 28, 1987, 11:28 AM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION H6L DISCH HGL LIFT PUMP NODE. GPM Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 8 11948 - 218,5 Iteration= 1, Flow Correction= 3B129.790 Iteration= 2, Flow Correction= 18111.350 Iteration= 3, Flow Correction= 6868.953 Iteration= 4, Flow Correction= 2254.963 Iteration= 5, Flow Correction= 309.436 Iteration= 6, Flow Correction= 6.123 Iteration= 7, Flow Correction= .005 Iteration= 8, Flow Correction= .001 r CITY OF HUNTINGTON BEACH FRI. AUG 28, 1987, 11:29 AM RESERVOIR HILL FILE REST NUMBER OF PIPES 20 /9��' ,��%`.� r� t, nv"'� NUMBER OF NODES 15 � S NUMBER OF UNKNOWN DEMAND NODE 2 NUMBER OF SOURCE PUMP NODES 0 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN 1.000 Bps MAXIMUM NUMBER OF ITERATIONS 20 VELOCITY CHECK - LOW .0 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 0. Psi - HIGH 100. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF t-1 FIXED DEMANDS = .00 SUM OF !+) FIXED DEMANDS = .00 SUM OF PEAKABLE DEMANDS : -1153.00 SUM OF ALL FIXED DEMANDS --- .00 SUM OF ALL PEAKED DEMANDS -- -2801.79 SUM OF ALL DEMANDS --------- -2801.79 Solution reached in 6 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH FRI, AUG 28, 1397, 11: 9 AM PIPE --NDDES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gp■ Fps CK ft ftt1000 CK ---- ---- ---- ------ ------ ------ ----- ------ -- --- ------- -- 1 2 1 2000 12.0 130 84 .2 .1 .0 2 3 2 1000 12.0 130 159 .5 .1 .1 EXIST 3 7 3 1300 12.0 130 1761 5.0 9.4 7.2 PART EXIS 4 4 6 1350 12.0 130 1449 4.1 6.8 5.0 EXIST 5 6 5 1600 12.0 130 524E 14.9 HI B7.4 54.6 HI EXIST 6 12 6 1750 12.0 130 1223 3.5 6.4 3.7 7 7 6 1500 12.0 130 2744 7.8 24.7 16.4 HI EXIST B 8 7 50 24.0 130 8050 5.7 .2 4.1 9 7 9 2700 12.0 130 1185 3.4 9.4 3.5 PART EXIS 10 9 1 1600 12.0 130 1B1 .5 .2 .1 11 9 10 1250 12.0 130 889 2.5 2.6 2.0 12 11 10 2600 12.0 130 63 .2 .0 .0 13 7 11 1300 12.0 130 1998 5.7 11.9 9.1 14 11 12 2350 12.0 130 1034 2.9 6.3 2.7 15 13 12 1850 12.0 130 444 1.3 1.0 .6 16 14 13 3000 12.0 130 622 1.9 3.2 1.1 17 11 14 2600 12.0 130 544 1.5 2.1 .B 18 15 14 2600 12.0 130 225 .6 .4 .2 19 10 15 2600 12.0 130 478 1.4 1.7 .6 20 3 4 1500 12.0 130 1539 4.4 B.5 5.6 EXIST CITY OF HUNTINGTON BEACH FRI, AUS 28, :987, 11:29 w GROUND ELV FLOW H6L EL HEAD ------- PRESSURE ------ NODE Feet Bps Feet Feet Psi CK Y DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 1 36 -264.87 208.8 172.B 74 5 2 45 -75.33 208.8 163.9 71 5 3 75 -63.18 208.9 133.9 5B 6 4 12 -89.91 200.4 128.4 55 12 5 60 -5242.12D 106.4E 44.2 20 TO > 6 70 -167.67 193.6 123.6 53 16 7 103 -362.07 218.3 115.3 49 0 8 103 8049.91U 218.5E 115.5 50 0 9 75 -114.21 208.9 133.9 5B 6 10 89 -473.85 206.4 117.4 50 9 it 70 -357.21 206.4 136.4 59 8 12 65 -255.15 200.1 135.1 58 12 13 65 -177.39 201.1 136.1 59 11 14 61 -148.23 204.3 143.3 62 9 15 68 -252.72 204.7 136.7 59 9 Maxisum Unbalanced Head = .00007 7 CITY OF HUNTINSTON BEACH FRI, AUB 28, 1997, 11:29 AM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HSL DISCH HSL LIFT PUMP NODE Bps Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 40 8 8050 218.5 Iteration= 1, Flow Correction= 10038.870 Iteration= 2, Flow Correction= 2786.102 Iteration= 3, Flow Correction= 570.142 Iteration= 4, Flow Correction= 63.145 Iteration= 5, Flaw Correction= 2.497 Iteration= 61 Flow Correction= .004 CITY OF HUNTINGTON BEACH FRI, AUS 7-8. 19B7,.11:30 AM RESERVOIR HILL FILE RE51 NUMBER OF PIPES 20 ad NUMBER OF NODES 15 NUMBER OF UNKNOWN DEMAND NODE 2 NUMBER OF SOURCE PUMP NODES 0 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN 1.000 Sp@ MAXIMUM NUMBER OF ITERATIONS '10 VELOCITY CHECK - LON .0 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet 11000 PRESSURE CHECK - LON 0. Psi - HIGH 100. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-1 FIXED DEMANDS = .00 SUM OF l+l FIXED DEMANDS = .00 SUM OF PEAKABLE DEMANDS = -1163.00 SUM OF ALL FIXED DEMANDS --- .00 SUM OF ALL PEAKED DEMANDS -- -2826.09 SUM OF ALL DEMANDS --------- -2826.01 Solution reached in 10 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH FRI, AUG 2B, 1987, 11:30 AM PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO 'FROM TO Feet Inches H-W C Bps Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- --. 1 2 1 2000 12.0 130 848 2.4 3.7 1.9 2 3 2 1000 12.0 130 923 2.6 2.2 2.2 EXIST 3 7 3 1300 12.0 130 1929 5.5 11.1 8.6 PART EXIS 4 4 6 1350 12.0 130 853 2.4 2.6 1.9 EXIST 5 6 5 1600 12.0 130 202 .6 .2 .1 EXIST 6 6 12 1750 12.0 130 2735 7.8 28.6 16.3 HI 7 7 6 1500 12.0 130 2251 6.4 17.1 11.4 HI EXIST B 8 7 50 24.0 130 9704 6.9 .3 5.8 9 7 9 2700 12.0 130 1713 4.9 18.5 6.9 PART EXIS 10 1 " 9 1600 12.0 130 583 1.7 1.5 .9 11 9 10 1250 12.0 130 2181 6.2 13.4 10.8 HI 12 10 11 2600 12.0 130 289 .8 .7 .3 13 7 11 1300 12,0 130 3449 9.8 32.6 25.1 HI 14 11 12 2350 12.0 130 1527 4.3 13.0 5.6 15 12 13 1850 12.0 130 4006 11.4 HI 61.3 33.1 HI 16 14 13 3000 12.0 130 2872 8.1 53.7 17.9 HI 17 11 14 2600 12.0 130 1854 5.3 20.7 9.0 18 15 14 2600 12.0 130 1166 3.3 8.8 3.4 19 10 15 2600 12.0 130 1418 4.0 12.6 4.8 20 3 4 1500 12.0 130 943 2.7 3.4 2.3 EXIST" CITY OF HUNTINGTON BEACH FRI, AUG 28, 1Y87, 11:30 AM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet Bps Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 1 36 -264.87 201.2 165.2 71 9 2 45 -75.33 204.9 159.9 69 7 3 75 -63.18 207.1 132.1 57 7 4 72 -89.91 203.7 131.7 57 10 5 60 -201.69 200.9 140.9 61 11 6 70 -167.67 201.1 131.1 56 11 7 103 -362.07 218.2 115.2 49 0 8 iO3 9703.98U 218.5F 115.5 50 0 9 75 -114.21 199.7 124.7 54 13 10 89 -473.85 186.2 97.2 42 24 11 70 -357.21 185.6 115.6 50 22 12. 65 -255.15 172.5 107.5 46. 14 61 -148.23 164.9 103.9 45 34 15 68 -252.72 173.6 105.6 45 29 Maximum Unbalanced Head = ..00001 7 CITY OF HUNTINSTON BEACH FRI. AUB 21, 1987, 11:30 AM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH HGL LIFT PUMP NODE Bps Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- WR 8 9104 218.5 Iteration= 1, Flow Correction= 70821.840 Iteration= 2, Flow Correction= 37763.850 Iteration= 3, Flow Correction= 17261.070 Iteration= 4, Flow Correction= 7738.864 Iteration= 51 Flow Correction= 3219.413 Iteration= 6, Flow Correction= 1028.614 Iteration= 7, Flow Correction= 169.485 Iteration= 8, Flow Correction= 5.861 Iteration= 9, Flow Correction= .016 Iteration= 10, Flow Correction= .000 CITY OF HUNTINGTON BEACH FRI, AUG 28, 1987, 11:31 AM RESERVOIR HILL FILE REST r NUMBER OF PIPES 20 � " NJ 0 . S NUMBER OF NODES 15 NUMBER OF UNKNOWN DEMAND NODE 2 NUMBER OF SOURCE PUMP NODES 0 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN 1.000 Boa MAXIMUM NUMBER OF ITERATIONS 20 VELOCITY CHECK - LOW .0 Fps - HI6H 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet 11000 PRESSURE CHECK - LOW 0. Psi - H16H 100. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-) FIXED DEMANDS = .00 SUM OF (+) FIXED DEMANDS = .00 SUM OF PEAKABLE DEMANDS = -1132.00 SUM OF ALL FIXED DEMANDS --- .00 SUM OF ALL PEAKED DEMANDS -- -2750.76 SUM OF ALL DEMANDS --------- -2750.76 Solution reached in B iterations Last flow correction was .00 CITY WOF:HUNTINGTON BEACH FRI. AUG 18, 1987, 11:31 AM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY.; ---HEADLOSS--- NO FROM TO Feet. Inches H-W C Bps Fps CK it ftli000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 1 2 1 2000 12.0 130 1082 3.1 5.9 2.9 3 2 1000 12.0 130 1157 3.3 3.3 3.3 EXIST 3 7 3 1300 12.0 130 1819 5.2 10.0 7.7 PART EXIS 4 4 6 1350 12.0 130 509 1.4 1.0 .7 EXIST 5 6 5 1600 12.0 130 202 .6 .2 .1 EXIST 6 6 12 1750 12.0 130 2036 5.B 16.6 9.5 7 1 6 1500 12.0 130 1896 5.4 12.4 8.3 EXIST 8 B 7 50 24.0 130 9225 6.5 .3 5.3 9 7 9 2700 12.0 130 1877 5.3 22.0 8.1 PART EXIS 10 1 9 1600 12.0 130 817 2.3 2.8 1.7 11 9 10 1250 12.0 130 2579 7.3 1B.3 14.7 HI 12 11 10 2600 12.0 130 1299 3.7 10.7 4.1 13 7 11 1300 12.0 130 3271 9.3 29.6 22.8 H1 14 12 11 2350 12.0 130 291 .8 .6 .3 15 12 13 1850 12.0 130 14B9 4.2 9.8 5.3 16 13 14 3000 12.0 130 1312 3.7 12.6 4.2 17 11 14 2600 12.0 130 1907 5.4 21.8 8.4 18 14 15 2600 12.0 130 3070 8.7 52.6 20.2 HI 19 10 15 2600 12.0 130 3404 9.7 63.7 24.5 HI 20 3 4 1500 12.0 130 599 1.7 1.5 1.0 EXIST CITY OF HUNTINGTON BEACH FRI, AUG 28, 1987, 114:31 AM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet Bps Feet Feet Psi CK x DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 1 36 -264.87 199.1 163.1 70 10 2 45 -75.33 204.9 159.9 69 7 3 75 -63.18 208.2 133.2 57 7 4 72 -B9.91 2063 134.8 58 8 5 60 -201.69 205.E 145.6 63 8 6 70 -167.67 205.8 135.8 58 8 7 103 -362.07 218.2 115.2 49 0 8 103 .9225.25U 218.5F 115.5 50 0 9 75 -114.21 196.3 121.3 52 15 10 B9 -473.85 177.9 8B.9 3B 31 11 70 -357.21 188.6 118.6 51 20 A. 65 -255.15 189.2 124.2 53 19 13 65 -177.39 179.4 114.4 49 25 14 61 -148.23 166.8 105.8 45 32 Maximum Unbalanced Head = .00004 7 CITY OF HUNTINGTON BEACH FRI, AUG 28, 1987, 11:31 AM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HBL DISCH HBL LIFT PUMP NODE BPI Feet Feet Feet NUMBER —6474 8 9225 218.5 Iteration= 1, Flow Correction= 31579.710 Iteration= 2, Flow Correction= 14909.060 Iteration= 3, Flow Correction= 6145.320 Iteration= 4, Flow Correction= 24BO.436 Iteration= 5, Flow Correction= 725.203 Iteration= 6, Flow Correction= 79.229 Iteration= 7, Flow Correction= 1.399 Iteration= B, Flow Correction= .001 a CITY OF HUNTINGTON BEACH SAT, AUG 29, 1987, 12:59 PM RESERVOIR HILL OVERMYER it AS EMERB. BACKUP oar NUMBER OF PIPES 20 NUMBER OF NODES 15 ,o9trl. v`o Zu4-E #12 NUMBER OF UNKNOWN DEMAND NODE 1 NUMBER OF SOURCE PUMP NODES I NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 4.000 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN 1.000 Go@ MAXIMUM NUMBER OF ITERATIONS 20 VELOCITY CHECK - LOW .0 Fps - HISH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIBH 10. Feet /1000 PRESSURE CHECK - LOW 0. Psi - HIGH 100. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-) FIXED DEMANDS = .00 SUM OF (+) FIXED DEMANDS = .00 SUM OF PEAKABLE DEMANDS = -1131.00 SUM OF ALL FIXED DEMANDS --- .00 SUM OF ALL PEAKED DEMANDS -- -4524.00 SUM OF ALL DEMANDS --------- -4524.00 Solution reached in b iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH SAT. AUG 9, 1987, 12:09 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gas Fps CK ft ftl1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 1 2 1 2000 12.0 130 318 .9 .6 .3 2 3 2 1000 12.0 130 442 1.3 .6 .6 EXIST 3 7 3 1300 12.0 130 162 .5 .1 .1 PART EXIST 4 6 4 1350 12.0 130 532 1.5 1.1 .8 EXIST 5 6 5 1600 12.0 130 332 .9 .5 .3 EXIST 6 12 6 1750 12.0 130 1767 5.0 12.7 7.3 7 6 7 1500 12.0 130 627 1.8 1.6 1.1 EXIST 8 8 1 50 24.0 130 0 .0 .0 .0 9 7 9 2700 12.0 130 391 1.1 1.2 .4 PART EXIST CLAY 10 9 1 1600 12.0 130 118 .3 .1 .0 11 9 10 1250 12.0 130 86 .2 .0 .0 12 11 10 2600 12.0 130 557 1.6 2.2 .9 13 11 7 1300 12.0 130 523 1.5 1.0 .8 14 12 11 2350 12.0 130 1545 4.4 13.3 5.7 15 12 13 1B50 12.0 130 1212 3.4 6.7 3.6 16 13 14 3000 12.0 130 920 2.6 6.5 2.2 17 14 11 2600 12.0 130 123 .3 .1 .1 IB 14 15 2600 12.0 130 553 1.6 2.2 .8 19 15 10 2600 12.0 130 137 .4 .2 .1 20 4 3 1500 12.0 130 304 1.1 .6 .4 EXIST CITY OF HUNTINGTON BEACH SAT, AUG 29, 1987, 12;59 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet Bps Feet Feet Psi CK % DROP--CK ---- ------ --=--- ------ ------ ------ -- ------ -- 1 36 -436.00 203.2 167.2 72 8 2 45 -124.00 203.8 158.8 68 8 3 75 -104.00 204.3 129,3 56 10 4 72 -148.00 205.0 133.0 57 9 5 60 -332.00 205.5 145.5 63 8 6 70 -276.00 206.1 136.1 58 8 7 103 -596.00 204.5 101.5 43 12 8 103 .00 204.5 101.5 43 12 9 75 -188.00 203.3 128.3 55 10 10 89 -780.00 203.2 114.2 49 12 11 70 -588.00 205.5 135.5 58 8 12SP 65 4524.000 218.8 153.8 66 0 13 65 -292.00 212.1 147.1 63 4 14 61 -244.00 205.6 144.6 62 8 15 68 -416.00 203.4 135.4 58 10 Maximus Unbalanced Head = .00000 6 CITY OF HUNTINGTON BEACH SAT. AUG 29, 1987, 12:59 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH HGL LIFT PUMP NODE BPI Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 12SP 4524 58.8 218.8 160.0 1 SOURCE PUMPS Node Pump# A. 1 Head 160 160 140 130 114 109 94 87 Flow 0. 4700. 3275. 5600. 5839. 5906. 6239. 6394. Iteration= 1, Flow Correction= 2099.970 Iteration= 2, Flow Correction= 1376.400 Iteration 3, Flow Correction= 279.576 Iteration= 4, Flow Correction= 30.263 Iteration= 5, Flow Correction= .447 Iteration= 6, Flow Correction= .000 CITY OF HUNTINGTON BEACH SAT, AUG 1.9, 1987. 12:51 PM RESERVOIR HILL OVERMYER t1 AS EMERS. BACKUP NUMBER OF PIPES 20 ,e0)ILd rf N'-b6 oJr NUMBER OF NODES 15 NUMBER OF UNKNOWN DEMAND NODE 2 ��" '�� <�P��y '-�"'� G✓Cr-ti►y c-rL � NUMBER OF SOURCE PUMP NODES 1 Nnv /`L NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 Ate" G G. O ' NUMBER OF CHECK VALVES 0 FEAKIN6 FACTOR 1. 0 / r_ C or n Multi ly factor .00000 /r/lA;r Gl' cr�1r7At-j4 STOP WHEN FLOW CORR LESS THAN 1.000 Gpm MAXIMUM NUMBER OF ITERATIONS _ 20 VELOCITY CHECK - LOW .0 Fps Noa a 9 = "� 3 `'t g PM - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIBH 10. Feet /1000 PRESSURE CHECK - LOW 0. Psi - HIGH 100. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HSL ELEVATION 0. Feet SUM OF (-1 FIXED DEMANDS = .00 SUM OF (+) FIXED DEMANDS = .00 SUM OF PEAKABLE DEMANDS = -1094.00 SUM OF ALL FIXED DEMANDS --- .00 SUM OF ALL PEAKED DEMANDS -- 2634.12 SUM OF ALL DEMANDS --------- -2634.12 Solution reached in 11 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH SAT, AUG 29, 1487, 12;57 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Spa Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 1 2 1 2000 12.0 130 1031 2.9 5.4 2.? 2 3 2 1000 12.0 130 1107 3.1 3.1 3.1 EXIST 3 7 3 1300 12.0 130 365 1.0 .5 .4 PART EXIST 4 6 4 1350 12.0 130 894 2.5 2.8 2.1 EXIST 5 6 5 1600 12.0 130 202 .6 .2 .1 EXIST 6 12 6 1750 t2.0 130 2399 6.9 22.4 12.8 HI 7 6 7 1500 12.0 130 1135 3.2 4.8 3.2 EXIST 8 8 7 50 24.0 130 0 .0 .0 .0 9 7 9 2700 12.0 130 1318 3.7 11.4 4.2 PART EXIST CLAY 10 1 9 1600 12.0 130 766 2.2 2.5 1.5 11 10 9 1250 12.0 130 1364 3.9 5.6 4.5 12 I1 10 2600 12.0 130 1151 3.3 8.6 3.3 13 11 7 1300 12.0 130 910 2.6 2.8 2.1 14 12 11 2350 12.0 130 2145 6.1 24.5 10.4 HI 15 12 13 IB50 12.0 130 1538 4.4 10.4 5.6 16 13 14 3000 12.0 130 1361 3.9 13.5 4.5 17 14 11 2600 12.0 130 274 .8 .6 .2 18 14 15 2600 12.0 130 939 2.7 5.9 2.3 19 15 10 2600 12.0 130 686 1.9 3.3 1.3 20 4 3 1500 12.0 130 804 2.3 2.5 1.7 EXIST CITY OF HUNTINGTON BEACH SAT, AUG 29, 1997, i2;57 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPI Feet Feet Psi CK x DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 1 36 -264.87 123.7 87.7 38 29 2 45 -75.33 129.0 84.0 36 26 3 75 -63.19 132.1 57,1 24 32 4 72 -89.91 134.6 62.6 27 28 5 60 -201.69 137.2 77.2 33 22 6 70 -167.67 137,4 67,4 29 24 7 103 -362.07 132.6 29.6 12 47 8 103 .00 132.6 29,6 12 47 9 75 -3447.91U 12l.2F 46.2 20 45 10 89 -473.85 126.8 37.8 16 46 11 70 -357.21 135.4 65.4 28 27 12SP 65 6082.03U 159.9 94.9 41 0 13 65 -177.39 149.5 84,5 36 10 14 61 -148.23 136.0 75.0 32 24 15 68 -252.72 130.1 62,1 26 32 Maximum Unbalanced Head = ,00001 7 n CITY OF HUNTINGTON BEACH SAT, AUG 29. 1987. 12:57 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HBL DISCH HOL LIFT PUMP NODE GPM Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 125P 6082 58.8 159.9 101.1 1 9 -3448 121.2 SOURCE PUMPS Node Pump# 12 1 Head 160 160 140 130 114 109 94 87 Flow 0. 4700. 5275. 5600. 5B39. 5906. 6239. 6394. Iteration= 1, Flow Correction= 66745.060 Iteration= 2, Flow Correction= 18424.350 Iteration= 3, Flow Correction= 1B514.100 Iteration= 4, Flow Correction= 10666.660 Iteration= 5, Flow Correction= 6421.993 Iteration= 6, Flow Correction= 4147.143 Iteration= 7, Flow Correction= 2885.174 Iteration= B, Flow Correction= 2156.959 Iteration= 9, Flow Correction= 131.486 Iteration= 10, Flow Correction= .363 Iteration= 11, Flow Correction= .000 CITY OF HUNTINGTON BEACH SAT, AUG 29, 1937, 12:58 FM RESERVOIR HILL OVERMYER 11 AS EMER6. BACKUP NUMBER OF PIPES 20 .Scllmle- NDQ'c # o JT NUMBER OF NODES 15 C NUMBER OF UNKNOWN DEMAND NODE 2 ��'� v� S`�J�"�' �it-�.H C�v�•�'t y eti ' ~ NUMBER OF SOURCE PUMP NODES I /Vvv ar, NUMBER OF BOOSTER PUMP PIPES 0 ��� � G�G�- NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 R,4,e dc•�. o C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN 1.000 Spa MAXIMUM NUMBER OF ITERATIONS 20 VELOCITY CHECK - LOW .0 Fps - HI6H 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 0. Psi - HIGH 100. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC H61. ELEVATION 0. Feet SUM OF (-1 FIXED DEMANDS = .00 SUM OF (+) FIXED DEMANDS = ..00 SUM OF PEAKABLE DEMANDS = -936.00 SUM OF ALL FIXED DEMANDS --- .00 SUM OF ALL PEAKED DEMANDS -- -2274.48 SUM OF ALL DEMANDS --------- -2274.48 Solution reached in 9 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH SAT, AUG 29, 1987, 12:58 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Goa Fps CK ft ftl1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 1 2 1 2000 12.0 130 769 2.2 3.1 1.6 2 3 2 1000 12.0 130 844 2.4 1.9 1.9 EXIST 3 7 3 1300 12.0 130 184 .5 .1 .1 PART EXIST 4 6 4 1350 12.0 130 813 2.3 2.3 1.7 EXIST 5 6 5 1600 12.0 130 202 .6 .2 .1 EXIST 6 12 6 1750 12.0 130 2247 6.4 19.9 11.4 HI 7 6 7 1500 12.0 130 1065 3.0 4.3 2.8 EXIST 8 8 7 50 24.0 130 0 .0 .0 .0 9 7 9 2700 12.0 130 952 2.7 6.3 2.3 PART EXIST CLAY 10 1 9 1600 12.0 130 504 1.4 1.1 .7 11 9 10 1250 12.0 130 1342 3.8 5.5 4.4 12 11 10 2600 12.0 130 1407 4.0 12.4 4.8 13 11 7 1300 12.0 130 434 1.2 .7 .5 14_ 12 11 2350 12.0 130 2095 5.9 23.4 10.0 15 12 13 1850 12.0 130 1521 4.3 10.2 5.5 16 13 14 3000 12.0 130 1343 3.8 13.1 4.4 17 14 11 2600 12.0 130 104 .3 .1 .0 18 14 15 2600 12.0 130 1092 3.1 7.8 3.0 19 15 10 2600 12.0' 130 831 2.4 4.8 1.8 20 4 3 1500 12.0 130 723 2.1 2.1 1.4 EXIST CITY OF HUNTINGTON BEACH SAT, AUG 29, 1987, 12;58 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet Bps Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 1 36 -264.87 141.B 105.8 45 21 2 45 -75.33 144.9 99.9 43 20 3 75 -63.18 146.8 71.8 31 25 4 72 -89.91 148.9 76.9 33 22 5 60 -201.69 151.0 91.0 39 18 6 70 -167.67 151.2 81.2 35 19 7 103 -362.07 146.9 43.9 19 35 8 103 .00 146.9 43.9 19 35 9 75 -114.21 140.7 65.7 28 31 10 89 -3587.84U 135.2F 46.2 20 43 11 70 -357.21 147.6 77.6 33 23 12SP 65 5862.31U 171.1 106.1 45 0 13 65 -177.39 160.9 95.9 41 9 14 61 -148.23 147.7 86.7 37 21 15 68 -252.72 140.0 72.0 31 30 Maximum Unbalanced Head = .00001 7 CITY OF HUNTINBTON BEACH SAT, AUG 29, 1981, 12:58 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HBL DISCH H8L LIFT PUMP NODE Bps Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 12SP 5862 58.8 171.1 112.3 1 10 -3588 135.2 SOURCE PUMPS Node Puopi 12 1 Head 160 160 140 130 114 109 94 87 Flow 0. 4700. 5275. 5600. 5839. 5906. 6239. 6394. Iteration= 1, Flow Correction= 23707.000 Iteration= 2, Flow Correction= 7508.376 Iteration= 3, Flow Correction= 4923.376 Iteration= 4, Flow Correction= 3441.654 Iteration= 5, Flow Correction= 2550.736 Iteration= 6, Flow Correction= 741.096 Iteration= 7, Flow Correction= 9.680 Iteration= 8, Flow Correction= .032 Iteration= 9, Flow Correction= .000 ;ITY OF HUNTINGTON BEACH SAT. AUG 29, 1987, 12:56 PM RESERVOIR HILL OVERMYER t1 AS EMERS. BACKUP NUMBER OF PIPES 20 NUMBER OF NODES 15 t NUMBER OF UNKNOWN DEMAND NODE 2 je 5��� �y A"A. 0414"`y 6-"- NUMBER OF SOURCE PUMP NODES 1 ti/va of /Z NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 / NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN 1.000 Bps MAXIMUM NUMBER OF ITERATIONS 20 VELOCITY CHECK _ HIGH 10.0 Fps N.*A E HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 0. Psi - HIGH 100. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-1 FIXED DEMANDS = .00 SUM OF (+I FIXED DEMANDS = .00 SUM OF PEAKABLE DEMANDS = -1056.00 SUM OF ALL FIXED DEMANDS --- .DO SUM OF ALL PEAKED DEMANDS -- -2570.94 SUM OF ALL DEMANDS --------- -2570.94 Solution reached in 15 iterations Last floe correction was .00 r CITY OF HUNTINGTON BEACH SAT, AUG 29, 1987, 12,56 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Sol Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 1 2 1 2000 12.0 130 .394 1.1 .9 .5 2 3 2 1000 12.0 130 469 1.3 .6 .6 EXIST 3 3 7 1300 12.0 130 31 .1 .0 .0 PART EXIST 4 6 4 1350 12.0 130 633 1.9 1.6 1.2 EXIST 5 6 5 1600 12.0 130 202 .6 .2 .1 EXIST 6 12 6 1750 12.0 130 1883 5.3 14.3 8.2 7 6 7 1500 12.0 130 860 2.4 2.9 1.9 EXIST 8 8 7 50 24.0 130 0 .0 .0 .0 9 7 9 2700 12.0 130 458 1.3 1.6 .6 PART EXIST CLAY 10 1 9 1600 12.0 130 129 .4 .1 .1 11 9 10 1250 12.0 130 472 1.3 .8 .6 12 11 10 2600 12.0 130 576 1.6 2.4 .9 13 7 11 1300 12.0 130 71 .2 .0 .0 14 12 11 2350 12.0 130 1774 5.0 17.2 7.3 15 12 13 185D 12.0 130 2903 8.0 31.6 17.1 HI 16 14 13 3000 12.0 130 1086 3.1 9.9 3.0 17 it 14 2600 12.0 130 912 2.6 5.6 2.1 18 15 14 2600 12.0 130 322 .9 .8 .3 19 10 15 2600 12.0 130 575 1.6 2.4 .9 20 4 3 1500 12.0 130 563 1.6 1.3 .9 EXIST . CITY OF HUNTINGTON BEACH SAT. AUG 29, 1987, 12:56 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet Bps Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 1 36 -264.87 124.1 88.1 38 17 2 45 -75.33 125.0 80.0 34 18 3 75 -63.18 125.6 50.6 21 25 4 72 -89.91 127.0 55.0 23 22 5 60 -201.69 128.3 68.3 29 17 6 70 -167.67 128.5 58.5 25 19 7 103 -362.07 125.6 22.6 9 43 8 103 .00 123.6 22.6 9 43 9 75 -114.21 124.0 49.0 21 27 10 89 -473.85 123.2 34.2 14 36 11 70 -357.21 125.6 55.6 24 23 12SP 65 6459.49U 142.8 77.8 33 0 13 65 -3888.55U 111.2F 46.2 20 40 14 61 -148.23 120.1 59.1 25 27 15 68 -252.72 120.9 52.9 22 29 Maximum Unbalanced Head = ..00001 7 CITY OF HUNTINGTON BEACH SAT. AUG 29, 1981, 12:56 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HBL DISCH HBL LIFT PUMP NODE BPI Feet Feet Feet NUMBER 12SP 6459 58.8 142.8 B4.0 1 13 -3889 111.2 SOURCE PUMPS Node Puep1 12 1 Head 160 160 140 130 114 109 94 87 Flow 0. 4700. 5275. 5600. 5939. 5906. 6239. 6394. ERROR encountered iteration 1 -.915325E-09 0 Iteration= 2, Flow Correction= 52702.800 Iteration= 3, Flow Correction= 20131,760 Iteration= 4, Flow Correction= 12064.200 Iteration= 5, Flow Correction= 8547.360 Iteration= 6, Flow Correction= 5895.465 Iteration= 7, Flow Correction= 4133.262 Iteration= 8, Flow Correction= 2997.063 Iteration= 9, Flow Correction= 2262.146 Iteration= 10, Flow Correction= 1780.347 Iteration= 11, Flow Correction= 1051.328 Iteration= 12, Flow Correction= 155.958 Iteration= 13, Flow Correction= 40.616 Iteration= 14, Flow Correction-` .682 Iteration= 15, Flow Correction= .000 II OF HUNTINGTON BEACH MON. AUG -1, 1967. 10:55 AM RESERVOIR HILL FILE RES1 INPUT FILE NAME RESHILLA.PRN S0kJ/7 C.L A/o a e- -jp� S NUMBER OF PIPES 19 NUMBER OF NODES 1 NUMBER OF UNKNOWN DEMAND NODE 2 NUMBER OF SOURCE PUMP NODES 0 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRY PIPES 0 at S y g y 2 Pam-► NUMBER OF CHECK VALVES 0 il/c�C. PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN 1.000 Bps MAXIMUM NUMBER OF ITERATIONS 20 VELOCITY CHECK - LOW .0 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK - LOW 0. Psi - HIGH 100. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-) FIXED DEMANDS = .00 SUM OF FIXED DEMANDS = .00 SUM OF PEAKABLE DEMANDS = -1163.00 SUM OF ALL FIXED DEMANDS --- .00 SUM OF ALL PEAKED DEMANDS -- -2826.09 SUM OF ALL DEMANDS --------- -2626.09 Solution reached in 9 iterations Last flow correction was .00 r. - CITY OF HUNTINGTON BEACH MON. AUG 3;, i981, i0:55 aM PIPE --NODES-- LENGTH DIAM -FLDY- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-N C Gp• Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 1 2 1 2000 12.0 130 1211 3.4 7.2 3.6 2 3 2 1000 12.0 130 1286 3.6 4.0 4.0 EXIST 3 7 3 1300 12.0 130 2462 7.0 17.5 13.5 HI PART EXIST 4 4 6 1350 12.0 130 1023 2.9 3.6 2.6 EXIST 5 6 5 1600 12.0 130 202 .6 .2 .1 EXIST 6 6 12 1750 12.0 130 3459 9.9 44.2 25.2 H1 7 7 6 1500 12.0 130 2805 8.0 25.7 17.1 HI EXIST 8 8 7 50 24.0 130 7945 5.6 .2 4.0 9 7 9 2700 12.0 130 2315 6.6 32.4 12.0 HI PART EXIST CLAY 10 1 9 1600 12.0 130 946 2.7 3.7 2.3 11 9 10 1250 12.0 130 3147 8.9 26.5 21.2 HI 12 10 11 2600 12.0 130 1327 3.8 11.1 4.3 14 12 11 2350 12.0 130 144 .4 .2 .1 15 12 13 1850 12.0 130 3059 8.7 37.2 20.1 HI 16 14 13 3000 12.0 130 2059 5.8 29.0 9.7 17 11 14 2600 12.0 130 1114 3.2 8.1 3.1 18 15 14 2600 12.0 130 1093 3.1 7.8 3.0 19 10 15 2600 12.0 130 1346 3.8 11.4 4.4 20 3 4 1500 12.0 130 1113 3.2 4.6 3.1 EXIST r. CITY OF HUNTINGTON BEACH MON, AUG 31, i987, 1005c� AM GROUND ELV FLOW HBL EL HEAD ------- PRESSURE ------ NODE Feet spa Feet Feet Psi CK X DROP--CK. ---- ------ ------ ------ ------ ------ -- ------ -- 1 36 -264.07 189.5 153.5 66 15 2 45 -75.33 196.8 151.8 65 12 3 75 -63.18 200.8 125.8 54 12 4 72 -89.91 196.2 124.2 53 15 5 60 -201.69 192.4 132.4 57 16 6 70 -167.67 192.6 122.6 53 17 7 103 -362.07 218.3 115.3 49 0 8 103 7944.740 218.5F 115.5 50 0 9 75 -114.21 185.9 110.9 48 22 10 89 -473.85 159.4 70.4 30 45 11 10 -357.21 148.2 78.2 33 47 12 65 -255.15 148.4 83.4 36 45 13 65 -5118.65U 111.2F 46.2 20 69 14 61 -148.23 140.2 79.2 34 49 15 68 -252.72 148.0 80.0 34 46 Maxisum Unbalanced Head = .00001 6 s CITY OF HUNTINGTON BEACH MON. AU5 1. 19B7. 10:55 AM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH HGL LIFT PUMP NODE Go@ Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 8 7945 21B.5 13 -5119 111.2 Iteration= 1, Flow Correction= 31014.630 Iteration= 2, Flow Correction= 14785.800 Iteration= 3, Flow Correction= 6610.022 Iteration= 4, Flow Correction= 2799.259 Iteration= 5, Flow Correction= 983.711 Iteration= 6, Flow Correction= 209.829 Iteration= 7, Flow Correction= 12.593 Iteration= B, Flow Correction-- .049 Iteration= 9, Flow Correction-- .000 CITY OF HUNTINGTON BEACH FR1, OCT 16, 19B7, 1:18 PM ULTIMATE SYSTEM -- AVERAGE DAY DEMANDS WITH NO MWD CONNECTIONS NPUT FILE NAME ADUT NUMBER OF PIPES 249 NUMBER OF NODES 152 NUMBER OF UNKNOWN DEMAND NODE 9 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 1.000 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gpm MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet i1000 - HIGH 10. Feet i1000 PRESSURE CHECK - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet 6UM OF (-) FIXED DEMANDS = .DO SUM OF (+) FIXED DEMANDS = .00 SUM OF PEAKABLE DEMANDS =-25062.61 SUM OF ALL FIXED DEMANDS --- .00 SUM OF ALL PEAKED DEMANDS -- -25062.61 " SUM OF ALL DEMANDS --------- -25062.61 Solution reached in 11 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:18 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK --- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 24BO 16.0 130 126 .2 .0 .0 LO 4 6 2 2000 12.0 130 64 .2 .0 .0 LO 6 4 6 1600 12.0 130 17 .0 LO .0 .0 LO 8 8 6 2600 12.0 130 78 .2 .1 .0 LO 10 8 10 2900 12.0 130 239 .7 .5 .2 12 12 10 970 10.0 130 136 .6 .1 .2 14 14 4 2900 16.0 130 233 .4 .1 .0 LO 16 16 6 2620 12.0 130 129 .4 .1 .1 LO 18 18 8 2640 20.0 130 543 .6 .2 .1 LO # 20 20 12 2350 12.0 130 296 .8 .6 .3 22 12 22 2280 12.0 130 42 .1 .0 .0 LO 24 16 14 2600 20.0 130 184 .2 .0 .0 LO # 26 18 16 2610 20.0 130 378 .4 .1 .0 LO # 28 20 18 2510 30.0 130 1013 .5 .1 .0 LO # 30 24 14 2620 16.0 130 293 .5 .2 .1 LO 32 26 16 2700 12.0 130 108 .3 .1 .0 LO 34 28 18 2700 12.0 130 84 .2 .1 .0 LO # 36 30 20 2570 30.0 130 1455 .7 .2 .1 LO # 38 32 22 3430 8.0 130 10B .7 1.0 .3 40 24 26 2680 12.0 130 58 .2 .0 .0 LO 42 28 26 2640 12.0 130 71 .2 .1 .0 LO 44 30 28 2670 12.0 130 130 .4 .2 .1 LO 46 32 30 2550 30.0 130 1790 .8 .2 .1 LO # 48 34 32 2800 30.0 130 2310 1.0 .4 .1 # 50 36 24 2640 16.0 130 520 .8 .5 .2 52 38 26 2600 12.0 130 203 .6 .3 .1 54 40 28 2580 12.0 130 171 .5 .2 .1 LO # 56 42 30 2640 12.0 130 99 .3 .1 .0 LO 5B 46 34 2320 12.0 130 298 .8 .6 .3 60 36 38 2640 12.0 130 142 .4 .2 .1 LO 62 38 40 2640 12.0 130 69 .2 .0 .0 LO 64 40 42 2700 12.0 130 6 .0 LO .0 .0 LO # 66 42 44 2550 12.0 130 21 .1 LO .0 .0 LO 68 46 48 700 12.0 130 154 .4 .1 .1 LO 70 50 36 2550 16.0 130 928 1.5 1.4 .5 72 52 38 2640 12.0 130 361 1.0 1.0 .4 74 54 40 2650 12.0 130 370 1.0 1.1 .4 76 56 42 2620 12.0 130 405 1.1 1.2 .5 # 78 5B 44 2640 9.0 130 170 1.1 1.8 .7 80 62 46 2950 12.0 120 353 1.0 1.3 .4 82 64 48 5300 12.0 130 352 1.0 1.9 .4 84 50 52 2700 12.0 130 256 .7 .6 .2 86 54 52 2600 12.0 130 16 .0 LO .0 .0 LO 88 56 54 2640 12.0 130 142 .4 .2 .1 LO 90 58 56 2660 12.0 130 259 .7 .6 .2 ",92 60 58 1330 12.0 130 377 1.1 .6 .4 94 62 60 1130 8.0 130 37 .2 .0 .0 0 B & 12 96 66 52 2640 12.0 130 357 1.0 1.0 .4 97 68 54 2640 12.0 130 431 1.2 1.4 .5 98 70 56 2640 12.0 130 489 1.4 1.8 .7 99 72 58 2640 8.0 130 174 1.1 1.9 .7 100 72 58 2640 9.0 130 174 1.1 1.9 .7 101 1_74 60 2640 12.0 130 490 1.4 1.8 .7 102 80 62 3200 12.0 120 362 1.0 1.4 .4 104 84 64 2850 12.0 70 202 .6 1.2 .4 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:19 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK --- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 805 1.3 1.2 .4 108 66 50 5250 30.0 120 1632 .7 .4 .1 LO 110 68 66 2640 30.0 120 2309 1.0 .4 .2 112 70 68 2680 30.0 120 2644 1.2 .6 .2 114 70 68 2680 12.0 130 257 .7 .6 .2 116 72 70 2600 12.0 130 291 .8 .7 .3 118 72 70 2600 30.0 120 2994 1.4 .7 .3 120 74 72 1450 30.0 120 M7 1.5 .4 .3 122 76 74 600 30.0 120 3512 1.6 .2 .3 124 76 78 150 B.0 130 282 1.8 .3 1.7 126 78 80 1050 12.0 130 282 .8 .3 .2 128 82 80 1150 12.0 130 155 .4 .1 .1 LO 130 84 82 1250 12.0 130 267 .8 .3 .2 132 50 98 5300 12.0 130 96 .3 .2 .0 LO 134 66 100 2580 12.0 130 93 .3 .1 .0 LO 136 102 68 2640 12.0 130 48 .1 .0 .0 LO 139 104 70 2630 12.0 130 305 .9 .7 .3 140 86 72 1320 12.0 130 470 1.3 .B .6 142 106 86 1320 12.0 130 117 .3 .1 .0 LO 144 88 86 1450 14.0 120 429 .9 .4 .3 146 108 88 1280 12.0 130 332 .9 .4 .3 148 90 88 650 14.0 120 678 1.4 .4 .7 149 88 74 1350 12.0 130 459 1.3 .8 .6 151 90 76 1300 30.0 120 5512 2.5 1.0 .8 152 96 90 3150 42.0 120 1902 .4 .1 .0 LO 158 100 98 2680 12.0 130 254 .7 .5 .2 160 102 100 2680 12.0 130 251 .7 .5 .2 162 104 102 2750 12.0 130 398 1.1 1.3 .5 164 106 104 2580 12.0 130 326 .9 .8 .3 166 10B 106 1500 12.0 130 425 1.2 .8 .5 168 110 108 700 12.0 130 871 2.5 1.4 2.0 170 112 90 950 21.0 120 2803 2.6 1.2 1.3 171 112 90 950 16.0 130 1485 2.4 1.2 1.3 172 110 112 350 21.0 120 1370 1.3 .1 .3 174 116 110 750 21.0 120 2241 2.1 .6 .9 176 114 96 3400 42.0 120 5992 1.4 .6 .2 178 118 104 2640 12.0 130 519 1.5 2.0 .8 179 120 106 2640 8.0 130 215 1.4 2.8 1.1 180 120 106 2640 6.0 130 101 1.1 2.8 1.1 182 120 116 2550 12.0 130 37 .1 .0 .0 LO 184 122 116 1900 21.0 120 2330 2.2 1.8 .9 189 128 114 4000 42.0 120 6562 1.5 .9 .2 190 120 118 2550 8.0 130 165 1.0 1.6 .6 192 122 120 2150 B.0 130 186 1.2 1.7 .B 194 124 122 600 8.0 130 249 1.6 .8 1.4 196 131 118 2640 8.0 130 470 3.0 11.9 4.5 197 132 130 800 8.0 130 285 1.8 1.4 1.8 199 130 129 850 6.0 130 167 1.9 2.3 2.7 199 129 120 1250 8.0 130 167 1.1 .8 .7 200 132 120 2750 8.0 130 274 1.7 4.6 1.7 201 134 122 2640 21.0 120 2409 2.2 2.6 1.0 202 136 124 3250 12.0 130 371 1.1 1.3 .4 206 140 128 700 12.0 130 397 1.1 .3 .4 208 142 128 1800 12.0 130 238 .7 .3 .2 210 144 142 1150 12.0 130 359 1.0 .4 .4 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:18 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- 40 FROM TO Feet Inches H-W C GPM Fps CK ft fti1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 212 292 132 1950 B.0 130 374 2.4 5.8 3.0 214 132 134 2000 12.0 130 187 .5 .2 .1 216 134 136 1200 12.0 130 354 1.0 .4 .4 218 136 138 2050 12.0 130 301 .9 .6 .3 220 164 146 2200 12.0 130 249 .7 .4 .2 222 142 140 1800 12.0 130 41 .1 .0 .0 LO 224 146 128 4200 42.0 120 6029 1.4 .8 .2 226 146 144 650 24.0 120 447 .3 .0 .0 LO 22B 152 131 2700 8.0 130 429 2.7 10.3 3.8 230 154 132 3150 9.0 130 302 1.9 6.3 2.0 232 156 134 2640 21.0 120 200 15 3.1 1.2 234 158 136 2640 12.0 130 421 1.2 1.3 .5 236 150 160 1400 12.0 130 90 .3 .0 .0 LO 238 148 150 NO 14.0 130 90 .2 .0 .0 LO 240 138 148 500 12.0 130 90 .3 .0 .0 LO 242 162 140 2b40 12.0 130 480 1.4 1.7 .7 244 164 146 2120 42.0 120 6330 1.5 .4 .2 246 152 154 2640 0.0 130 422 2.7 9.8 3.7 248 154 156 2640 8.0 130 237 1.5 3.4 1.3 250 156 158 1300 12.0 130 810 2.3 2.2 1.7 252 159 160 2000 12.0 130 601 1.7 2.0 1.0 254 160 162 2660� 12.0 130 476 1.3 1.7 .6 256 162 164 2660 12.0 130 322 .9 .8 .3 257 180 164 2700 12.0 130 252 .7 .5 .2 258 164 166 2640 12.0 130 73 .2 .1 .0 LO 260 168 152 2550 12.0 130 1059 3.0 7.2 2.8 261 168 170 2330 21.0 120 5026 4.7 8.9 3.8 262 170 154 3050 . 8.0 130 351 2.2 10 2.6 263 170 172 2000 21.0 120 4649 4.3 6.6 3.3 264 172 156 2650 21.0 120 3332 3.1 4.7 1.8 265 172 174 1350 16.0 130 1044 1.7 .9 .7 266 174 159 2650 8.0 130 326 2.1 6.1 2.3 267 174 176 1950 16.0 130 1508 2.4 2.6 1.3 269 176 178 2640 16.0 130 1812 2.9 5.0 1.9 270 178 162 2700 12.0 130 539 1.5 2.2 .8 271 178 180 2700 16.0 120 1135 1.8 2.5 .9 272 180 164 2700 42.0 120 6282 1.5 .5 .2 273 180 182 1150 20.0 120 772 .9 .2 .2 1 274 184 166 26BO 12.0 130 73 .2 .1 .0 LO 275 182 184 1550 20.0 125 1012 1.0 .4 .2 1 277 184 186 2b50 20.0 125 826 .8 .4 .2 1 279 186 190 2750 16.0 125 431 .7 .4 .1 280 190 192 1340 16.0 125 130 .2 .0 .0 LO 282 192 194 3200 14.0 130 91 .2 .0 .0 LO 2B4 219 194 5300 14.0 130 155 .3 .2 .0 LO 286 196 170 2660 8.0 130 240 1.5 3.5 1.3 288 198 174 2640 12.0 130 925 2.6 5.8 2.2 290 200 176 2500 12.0 130 433 1.2 1.3 .5 ?92 202 204 2700 8.0 130 184 1.2 2.1 .8 294 204 178 800 12.0 130 80 .2 .0 .0 LO 296 206 180 2700 36.0 120 6306 2.0 1.1 .4 298 206 182 3800 12.0 130 341 1.0 1.3 .3 300 20B 1B4 2640 12.0 130 35 .1 LO .0 .0 LO 301 196 210 2640 8.0 130 43 .3 .1 .1 LO 302 190 212 2640 12.0 130 155 .4 .2 .1 LO CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:18 PM PIPE --MODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft fti1000 CK. --- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 304 196 198 3300 8.0 130 267 1.7 5.2 1.6 306 198 200 2700 12.0 130 1016 2.9 7.1 2.6 309 200 202 2640 12.0 130 772 2.2 4.1 1.6 310 202 206 2640 12.0 130 704 2.0 3.5 1.3 312 206 208 2640 12.0 130 471 1.3 1.7 .6 314 208 210 2640 12.0 130 265 .8 .6 .2 316 210 212 2640 12.0 130 236 .7 .5 .2 318 212 214 1300 12.0 130 256 .7 .3 .2 320 222 196 2700 12.0 130 921 2.6 5.9 2.2 322 272 224 1320 12.0 130 908 2.6 2.8 2.1 324 228 200 2640 12.0 130 472 1.3 1.7 .6 326 230 202 3000 12.0 130 254 .7 .6 .2 327 232 206 2640 12.0 130 374 1.1 1.1 .4 328 232 206 2640 36.0 120 6210 2.0 1.1 .4 330 236 210 2700 12.0 130 418 1.2 1.4 .5 332 214 216 1000 10.0 130 105 .4 .1 .1 LO 334 238 216 2100 8.0 130 161 1.0 1.3 .6 336 302 220 4500 20.0 130 507 .5 .3 .1 LO 1 339 220 218 1250 14.0 130 350 .7 .2 .2 # 340 288 224 1700 12.0 130 1609 4.6 10.4 6.1 342 224 228 2000 12.0 130 1755 5.0 14.4 7.2 344 228 230 2640 12.0 130 873 2.5 5.2 2.0 346 230 232 2640 12.0 130 650 1.8 3.0 1.1 348 232 234 2640 20.0 130 1334 1.4 .9 .4 4 350 234 236 2640 20.0 130 1378 1.4 1.0 .4 t 352 236 238 5030 20.0 130 900 .9 .9 .2 # 354 224 226 1300 12.0 130 500 1.4 .9 .7 356 22B 50 2700 12.0 130 233 .7 .5 .2 358 242 230 2700 12.0 130 163 .5 .2 .1 LO 360 244 232 2700 36.0 120 7539 2.4 1.6 .6 362 246 234 2700 12.0 130 110 .3 .1 .0 LO 364 250 236 2690 12.0 130 176 .5 .3 .1 366 226 240 3800 8.0 130 420 2.7 13.9 3.7 36B 240 242 2640 10.0 130 500 2.0 4.5 1.7 370 242 244 2660 10.0 130 290 1.2 1.7 .6 372 244 246 2550 12.0 130 588 1.7 2.4 .9 374 246 248 1500 12.0 130 248 .7 .3 .2 31 248 250 1200 10.0 130 248 1.0 .6 .5 378 252 242 290 12.0 130 140 .4 .2 .1 LO 380 254 244 2640 36.0 120 8051 2.5 1.8 .7 382 256 246 2540 12.0 130 65 .2 .0 .0 LO 384 258 250 2640 12.0 130 14 .0 LO .0 .0 LO 386 278 252 1750 12.0 130 305 .9 .5 .3 388 254 256 2600 12.0 130 777 2.2 4.1 1.6 3% 256 258 250 12.0 130 336 1 A .9 .3 392 260 254 2600 36.0 120 8562 2.7 1.9 .7 394 262 260 150 36.0 130 5397 1.7 .0 .3 PECK RES, 395 266 260 100 36.0 130 3382 1.1 .0 .1 396 264 266 250 12.0 130 3382 9.6 6.1 24.2 HI WELL 7 400 270 168 970 12.0 130 3020 8.6 19.0 19.6 HI WELL 5 402 274 272 200 12.0 130 2834 8.0 3.5 17.5 HI WELL 6 404 272 198 1380 12.0 130 1926 5.5 11.B 8.5 406 276 US 170 0.0 130 777 10 11 11.4 HI WELL 1 408 278 254 900 12.0 130 472 1.3 .6 .6 414 2B4 16B 1990 16.0 130 3240 5.2 11.0 5.5 WELL 9 CITY OF HUNTINGTON BEACH FRI, OCT lb, 1987, 1:18 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK --- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 416 288 222 1600 12.0 130 1471 4,2 8.3 5.2 418 286 288 1050 16.0 130 3081 4.9 5.3 5.0 WELL 10 420 290 292 1400 6.0 120 415 4.7 23.6 16.9 HI DYKE WELL 422 292 131 750 8.0 130 41 .3 ,0 .0 LO 424 294 50 2200 30.0 120 0 .0 LO .0 .0 LO OC44 450 772 300 2850 12.0 130 204 .6 .4 .1 452 300 168 5300 22.0 120 204 .2 ,0 .0 LO OC9 500 301 112 100 36.8 120 2918 .9 .0 .1 LO Overmyer Res. 501 238 302 2000 20.0 130 507 .5 .1 .1 LO 4 502 95 84 1000 16.0 130 1017 1.6 .6 .6 503 96 95 452 24,0 120 4080 2.9 .6 1.4 504 304 266 10 36.0 130 0 .0 LO .0 .0 LO OC35 510 95 84 1000 20.0 130 1928 1.9 .6 .6 DOWNTOWN LOOP 511 84 307 2800 20.0 130 1445 115 1.2 .4 DOWNTOWN LOOP 512 305 306 7200 20.0 130 1163 1.2 2.0 .3 DOWNTOWN LOOP 513 46 306 2000 20.0 130 1136 1.2 .5 .3 DOWNTOWN LOOP 514 62 46 2900 20.0 130 1478 1.5 1.3 .4 DOWNTOWN LOOP 515 80 62 2300 20.0 130 1794 1.8 1.4 .6 DOWNTOWN LOOP 516 114 115 3490 12.0 130 580 1.6 3.2 .9 517 64 115 6850 12.0 130 85 .2 .2 .0 LO 521 154 132 3150 8.0 130 302 1.9 6.3 2.0 4 522 110 154 3050 8.0 130 351 2.2 8.0 2.6 1 523 196 170 2660 8.0 130 240 1.5 3.5 1.3 4 530 306 315 450 30.0 130 2298 1.0 .1 .1 1 531 315 34 225 30.0 130 2298 1.0 .0 .1 N 532 307 64 20 12.0 130 282 .8 .0 .2 1 533 307 305 1500 20.0 130 1163 1.2 .4 .3 t 534 76 80 900 20.0 130 1719 1.8 .5 .6 4 CITY OF HUNTINGTON BEACH FRI, OCT 16, 17871 1:18 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ '^DE Feet GPM Feet Feet Psi CK % DROP--CK --- ------ ------ ------ ------ ------ -- ------ -- 2 5 -190.30 174.5 169.5 73 24 4 5 -89.80 174.5 169.5 73 24 6 5 -156.60 174.5 169.5 73 24 Banning_ 8 5 -225.30 174.6 1169.6 73 24 10 4 -375.50 174,1 170.1 73 24 . 12 4 -118.80 174.2 170.2 73 24 14 6 -244.70 174.6 169.6 73 24 16 7 -173.20 174.7 167.7 72 24 18 4 -176.90 174.8 170.8 74 24 20 2 -144.90 174.8 172.8 74 23 22 4 -149.30 174.2 170.2 73 24 24 6 -169.50 174.8 168.8 73 24 26 8 -224.70 174.8 166.8 72 24 28 4 -145.60 174.8 170.8 74 24 30 4 -303.70 175.0 171.0 74 24 32 6 -411.90 175.2 169.2 73 24 34 30 -287.00 175.6 145.6 63 26 36 8 -266.00 175.3 167.3 72 24 38 9 -230.80 175.1 166.1 72 24 40 6 -262.30 175.1 169.1 73 24 42 6 -290.60 175.1 169.1 73 24 44 18 -190.90 175.1 157.1 68 25 46 36 -243.50 176.2 140.2 60 27 48 36 -505.30 176.2 140.2 60 27 50 12 -351.30 176.7 164.7 71 24 52 10 -267.40 176.1 166.1 72 24 54 7 -187.20 176.1 169.1 73 23 56 10 -201.10 176.3 166.3 72 24 58 25 -298.20 176.9 151.9 65 25 60 35 -149.00 177,4 142.4 61 26 62 40 -288.20 177.5 137.5 59 27 64 45 -852.10 178.1 133.1 57 27 66 10 -228.10 177.1 167.1 72 23 68 8 -208.70 177.6 169.6 73 23 70 10 -199.50 178.1 168.1 72 23 72 55 -92.30 178.8 123.8 53 28 74 50 -224.10 179.2 129.2 56 27 76 50 .00 179.4 129.4 56 27 78 50 .00 179.2 129.2 55 27 80 50 .00 178.9 128.9 55 28 82 75 -111.20 179.0 104.0 45 32 84 75 -127.30 179.3 104.3 45 32 86 57 -75.80 179.6 122.6 53 28 88 50 -122.90 180.0 130.0 56 27 90 60 .00 180.5 120.5 52 28 95 103 -1235.20 179.9 76.9 33 LO 39 Reservoir Hill 96 95 .00 190.5 85.5 37 LO 36 98 16 -349.40 176.5 160.5 69 24 100 15 -90.20 177.1 162.1 70 24 Flounder 102 12 -98.90 177.6 165.6 71 23 104 14 -143.20 178.8 164.8 71 23 106 58 -299.20 179.7 121.7 52 28 108 55 -113.70 180.4 125.4 54 28 110 60 .00 181.8 121.8 52 28 112 60 .00 181.7 121.7 52 28 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:18 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ 'ODE Feet GPM Feet Feet Psi CK % DROP--CK. ---- ------ ------ ------ ------ ------ -- ------ -- 114 93 .00 181.1 88.1 38 LO 35 115 35 -664.20 177.9 142.9 61 26 116 60 -126.70 192.5 122.5 53 27 118 13 -115.70 180.8 167.8 72 22 120 55 -108.00 182.5 127.5 55 26 122 35 -142.10 184.2 149.2 64 23 1124 25 -121.70 i85.1 160.1 69 21 128 5 -92.70 182.0 177.0 76 21 129 45 � .00 183.3 138.3 59 24 130 45 -117.50 185.6 140.6 60 23 131 45 loci 192.9 147.8 64 19 132 55 -231.50 187.0 132.0 57 24 134 50 -95.20 186.8 136.8 59 23 136 50 -102.80 186.4 136.4 59 23 138 40 -210.60 185.E 145.8 63 22 140 2 -133.70 182.3 180.3 78 20 142 2 -79.70 182.3 180.3 78 20 144 2 -88.80 182.8 180.8 78 20 146 2 -102.90 182.8 180.8 78 20 148 40 .00 185.8 145.8 63 22 150 40 .00 185.E 145.8 63 22 152 2B -208.50 203.1 175.1 75 13 154 25 -283.20 193.3 168.3 72 17 156 25 -B8.90 169.9 164.9 71 19 15B 30 -113.90 1187.7 157.7 68 20 160 5 -215.50 185.7 180.7 78 19 162 3 -211.90 184.0 181.0 78 20 164 2 -204.20 183.2 181.2 78 20 166 2 -146.10 183.2 181.2 78 20 168 27 -377.70 210.2 183.2 79 9 170 26 -156.00 201.3 175.3 76 13 172 25 -273.00 194.7 169.7 73 16 174 25 -135.20 193.8 168.9 73 17 176 12 -128.50 191.2 179.2 77 17 178 5 -219.70 186.2 181.2 78 19 180 5 -134.60 183.7 178.7 77 20 182 5 -101.00 183.6 178.6 77 20 184 5 -146.90 183.2 178.2 77 20 186 34 -352.10 IBM 148.8 64 23 190 35 -146.80 182.4 147.4 63 24 192 55 -38.80 192.4 127.4 55 26 194 5 -246.40 192.3 177.3 76 20 196 25 -173.20 204.E 179.8 77 11 198 17 -252.00 199.6 182.6 79 14 200 14 -283.40 192.5 178.5 77 17 Heil 202 10 -137.90 188.4 178.4 77 18 204 10 -104.30 186.2 176.2 76 19 206 9 -169.60 1B4.9 175.9 76 20 208 14 -171.00 183.2 169.2 73 21 210 15 -490.30 182.6 167.6 72 21 212 9 -134.90 182.2 173.2 75 21 214 9 -150.70 181.9 172.9 74 21 216 = 9 -266.60 181.8 172.8 74 21 218 5 -194.50 182.5 177.5 76 20 220 5 -157.10 192.7 177.7 77 20 CITY OF HUNTINGTON BEACH FRI, OCT 165 1987, 1:18 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ ''ODE Feet GPM Feet Feet Psi CK % DROP--CK --- ------ ------ ------ ------ ------ -- ------ -- 222 26 -346.80 210.7 184.7 80 HI 9 224 21 -261.40 209.6 187.6 91 HI 9 226 23 -80.20 207.6 184.6 80 HI 10 228 20 -178.10 194.2 174.2 75 16 230 12 -132.00 1B9.0 177.0 76 1B 232 10 -271.50 186.0 176.0 76 19 234 12 -66.40 185.0 173.0 75 20 236 15 -235.50 184.0 169.0 73 21 Scenario 238 '5 -231.80 193.1 178,1 77 20 240 21 -152.40 193.7 172.7 74 17 242 15 -186.80 189.2 174.2 75 18 244 16 -213.20 187.6 171.6 74 19 246 14 -294.50 185.1 171.1 74 20 249 14 .00 184,8 170.8 74 20 250 13 -96.40 184.3 171.3 74 20 252 22 -165.00 189.4 167.4 72 19 254 18 -206.60 189.3 171.3 74 18 256 17 -376.00 185.2 168.2 72 20 f58 17 -321.90 184.3 167.3 72 21 260 23 -216.60 191.2 168.2 72 18 262SP 34 5397.15U 191.3 157.3 68 19 PECK RES. 264SP 18 1"781.93U 197.3 179.3 77 15 WELL 7 266 23 .00 191.3 168.3 72 18 270SP 27 3019,79U 229.3 202.3 87 HI 0 WELL 5 272 25 .00 211.4 186.4 80 HI 8 274SP 19 2833.89U 214.8 195.8 84 HI 6 WELL 6 276SP 17 776.53U 191.8 174.8 75 17 WELL 1 278 19 .00 189.9 170.9 74 18 284SP 27 3239.58U 221.2 194.2 84 HI 3 WELL 9 286SP 19 3080.57U 224.2 205.2 Be HI 2 WELL 10 288 22 .00 219.0 197.0 85 HI 4 290SP 44 414.74U 216.4 172.4 74 6 DYKE WELL 292 48 .00 192.8 144.8 62 20 294 12 .00 176.7 164.7 71 24 OC44,Adams 300 25 .00 210.3 185.3 BO HI 9 OC9 301SP 65 2918.41U 181.7 116.7 50 28 Overmyer Res. 302 5 .00 183.0 178.0 77 20 304 25 .00 191.3 166.3 72 18 OC35 305 40 .00 177.7 137.7 59 27 306 30 .00 175.7 145.7 63 26 307 45 .00 178.1 133.1 57 27 315 34 .00 175.6 141.6 61 27 Maximum Unbalanced Head = .00001 210 CITY OF HUNTINGTON BEACH FRI, OCT 16, 19871 1:18 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION H8L DISCH HGL LIFT PUMP NODE 8pm Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 262SP 5397 20.0 191.3 171.3 30 PECK RES. 301SP 2918 50.0 181.7 131.7 20 Overmyer Res. 290SP 415 -34.0 216.4 250.4 11 DYKE WELL 276SP 777 -98.0 191.8 289.8 1 WELL 1 270SP 3020 -62.0 229.3 291.3 5 WELL 5 274SP 2834 -59.0 214.8 273.8 6 WELL 6 264SP 3382 -89.0 197.3 286.3 7 WELL 7 284SP 3240 -64.0 221.2 285.2 9 WELL 9 286SP 3081 -55.0 224.2 279.2 10 WELL 10 SOURCE PUMPS Node Pump# 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000. 15800. 16100, 16250. 16500. 16750. 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000. 20650. 21875, 22525. 22875, 23350. 23775. 290 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200, 400. 600. 800. 0. 0. 0. 276 - 1 Head 440 399 348 311 2B7 205 98 0 Flow 0. 200. 400. 600, 800. 1000. 1200. 0. 270 5 Head 471 359 337 292 224 143 98. 0 Flow 0. 1882. 2259. 3012. 3765. 4518. 4894. 0. 274 6 Head 488 318 296 287 257 206 148 0 Flow 0. 1761. 2201. 2641. 3081. 3521. 3962, 0. 264 7 Head 397 299 291 268 238 208 174 0 Flow 0. 2817. 3286. 3756. 4225. 4695. 5164, 0. 284 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745. 4214. 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859. 2324. 2789. 3253, 3718. 0. 0. Iteration= 1, Flow Correction= 9796.382 Iteration= 2, Flow Correction- 7817,452 Iteration= 3, Flow Correction= 3078.513 Iteration= 4, Fiow Correction= 1278.404 Iteration= 5, Flow Correction= 746.161 Ite.ation= 6, Flow Correction= 265.395 Iteration= 7, Flow Correction= 116.580 Iteration= 8, Flow Correction= 22.266 Iteration= 10, Flow Correction= .002 Iteration= 11, Flow Correction= .000 CITY OF HUNTINGTON REACH FRI, OCT 16, 1987, 1:742 PM ULTIMATE SYSTEM -- AVERAGE DAY DEMANDS NO WELLS INPUT FILE NAME ADUTNOW NUMBER OF PIPES 248 NUMBER OF NODES 152 NUMBER OF UNKNOWN DEMAND NODE 2 NUMBER OF SOURCE PUMP NODES 2 NUMBER. OF BOOSTER PUMP PT 0 NUMBER OF PRV PIPES NUMBER OF CHECK VALVES 0 PEAKING FACTOR 1.000 C or n Multiply Factor 1.000 STOP WHEN FLOW CORK LESS THAN .100 Gpm MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps , HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet /1000 PRESSURE CHECK. - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet )UM OF (-; FIXED DEMANDS = .00 SUM OF (+} FIXED DEMANDS = 20200.00 SUM OF PEAKABLE DEMANDS =-25062.61 SUM OF ALL FIXED DEMANDS --- 20206.00 SUM OF ALL PEAKED DEMANDS -- -25062.61 SUM OF ALL DEMANDS --------- -4862.61 Solution reached in 11 iterations Last flow correction was .00 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:3' °M FIFE --NODES-- LENGTH DIAM -FLOW- -'/ELOCITY- ---HEADLOSS--- NO FROM TO Feet inches H-W C GPM Fps CK ft ft/1000 CK. ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 135 4 6 2 2000 12.0 130 56 .2 .0 LO 6 4 6 1600 12.0 130 47 .1 .0 LO 8 8 6 2600 12.0 130 30 i LO 0 9 LO 10 $ 10 29i+' 12.0 130 251 .7 .6 12 �2 10 970 10,0 130 124 .5 .1 .1 14 14 4 2900 16.0 130 271 .4 .2 .1 LO 16 16 6 2620 12.0 130 137 .4 .2 .1 LO 16 18 8 2640 20.0 130 507 20 20 12 235i; 12. 130 291 B .6 .3 72 12 22 2260 12.0 130 54 .2 .0 .0 LO 24 14 16 2600 200 130 97 .1 LO .0 .0 LO # 26 18 16 2610 20.0 130 20 .0 LO .0 .0 LO # 28 230 18 2510 30.0 130 562 .3 .0 .0 LO # 30 24 14 200 16.0 130 613 1.0 .7 .3 71 32 26 16 2700 12.0 130 193 .5 .3 .1 34 28 18 2700 12.0 130 142 .4 .2 .1 1.0 # 36 30 20 2570 30.0 130 1004 .5 .1 .0 LO # 38 32 22 3430 8.0 130 95 .6 .8 .2 40 24 26 2680 12.0 130 199 .6 .3 .1 42 26 28 2640 12.0 130 125 .4 .1 .1 LO 44 28. 30 2670 12.0 130 93 .3 .1 .0 LO 46 32 30 2550 30.0 130 997 .5 .1 .0 LD # 48 34 32 2800 30.0 130 1504 .7 .2 .1 LO # 50 36 24 2640 16.0 130 982 1.6 1.6 .6 52 38 26 2600 12.0 130 344 1.0 .9 .4 54 40 28 2580 12.0 130 255 .7 .5 .2 # 56 42 30 2640 12.0 130 218 .6 .4 .2 58 46 34 2320 12.0 130 212 .6 .3 .1 60 36 38 2640 12.0 130 362 1.0 1.0 .4 62 38 40 2640 12.0 130 255 .7 .5 .2 64 40 42 2700 12.0 130 152 .4 .2 .1 L0 # 66 42 44 2550 12.0 130 50 .1 .0 .0 1.0 68 46 48 700 12.0 130 263 .7 .1 .2 '0 50 36 2550 16.0 130 1610 2.6 3.8 1.5 72 52 38 2640 12.0 130 468 1.3 1.6 .b 74 54 40 2650 12.0 130 414 1.2 1.3 .5 76 56 42 2620 12.0 130 407 1.2 1.3 .5 # 78 58 44 2640 8.0 130 141 .9 1.3 .5 80 62 46 2950 12.0 120 295 .8 .9 .3 82 64 48 5300 12.0 130 242 .7 1.0 .2 84 50 52 2700 12.0 130 666 1.9 3.2 1.2 86 52 54 2600 12.0 130 333 .9 .9 .3 88 54 56 2640 12.0 130 175 .5 .3 .1 90 56 58 2660 12.0 130 6 .0 LO .0 .0 LO 92 60 58 1330 12.0 130 147 .4 .1 .1 LO 94 60 62 1130 8.0 130 95 .6 .3 .2 8 & 12 96 66 52 2640 12.0 130 402 1.1 1.2 .5 97 68 54 2640 12.0 130 444 1.3 1.5 .6 98 70 56 2640 12.0 130 438 1.2 1.5 .6 99 72 58 2640 8.0 130 143 .9 1.3 .5 100 72 58 2640 8.0 130 143 .9 1.3 .5 101 74 60 2640 12.0 130 391 1.1 1.2 .4 102 80 62 3200 12.0 120 289 .8 .9 .3 104 ^84 64 2B50 12.0 70 167 .5 .8 .3 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:32 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft./1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2B00 16.0 130 669 1.1 .8 .3 108 50 66 5250 30.0 120 3600 1.7 2.0 .4 110 66 68 2640 30.0 120 2825 1.3 .6 .2 112 68 70 2680 30.0 120 1899 .9 .3 .1 114 68 70 2680 12.0 130 185 .5 .3 .1 116 70 72 2600 12.0 130 127, .3 .1 .1 LO 118 70 72 2600 30.0 120 1263 .6 .1 .1 LO 120 72 74 1450 30.0 120 989 .4 .0 .0 LO 122 74 76 600 30.0 120 481 .2 '.0 .0 LO 124 76 78 150 8.0 00 272 1.1 .2 1.6 126 78 80 1050 12.0 130 272 .8 .2 .2 128 80 82 1150 12.0 130 208 .6 .2 .1 130 82 84 1250 12.0 130 97 .3 .0 .0 LO 132 50, 98 5300 12.0 130 393 1.1 2.4 .4 134 66 100 2580 12.0 130 225 .6 .4 .2 136 68 102 2640 12.0 130 90 .3 .1 .0 LO 138 70 104 2630 12.0 130 60 .2 .0 .0 LO 140 72 86 1320 12.0 130 1B .1 LO .D .0 LO 142 106 86 1320 12.0 130 6 .0 LO .0 .0 LO 144 88 86 1450 14.0 120 52 .1 .0 .0 LO 146 108 88 1280 12.0 130 127 .4 .1 .1 LO 148 90 88 650 14.0 120 154 .3 .0 .0 LO 149 88 74 1350 12.0 130 107 .3 .1 .0 LO 151 90 76 1300 30.0 120 A 52 .7 .1 .1 LO 152 90 96 3150 42.0 120 507 .1 .0 .0 LO 158 98 100 2680 12.0 130 43 .1 .0 .0 LO 160 100 102 2690 12.0 130 179 .5 .3 .1 162 102 104 2750 12.0 130 168 .5 .3 .1 LO 164 104 106 2580 12.0 130 105 .3 .1 .0 LO 166 108 106 1500 12.0 130 124 .4 .1 .1 LO 168 110 109 700 12.0 130 365 1.0 .3 .4 170 112 90 950 21.0 120 1381 1.3 .3 .4 171 112 90 950 16.0 130 732 1.2 .3 .4 172 112 110 350 21.0 120 451 .4 .0 .0 LO 174 110 116 750 21.0 120 86 .1 LO .0 .0 LO 176 114 96 3400 42.0 120 2789 .6 .1 .0 LO 178 118 104 2640 12.0 130 20 .1 LO .0 .0 LO 179 120 106 2640 8.0 130 51 .3 .2 .1 LO 180 120 106 2640 6.0 130 24 .3 .2 .1 LO 182 116 120 2550 12.0 130 135 .4 .2 .1 LO 184 122 116 1900 21.0 120 176 .2 .0 .0 LO 188 12B 114 4000 42.0 120 3283 .8 .2 .1 LO 190 120 119 2550 8.0 130 34 .2 .1 .0 LO 192 122 120 2150 8.0 130 53 .3 .2 .1 LO 194 122 124 600 8.0 130 58 .4 .1 .1 LO 196 111 118 2640 6.0 130 102 .6 .7 .3 197 132 130 800 8.0 130 101 .6 .2 .3 198 129 130 850 6.0 130 17 .2 .0 .0 LO 199 120 129 1250 8.0 130 17 .1 .0 .0 LO 200 132 120 2750 8.0 130 46 .3 .2 .1 LO !01 134 122 2640 21.0 120 429 .4 .1 .0 LO 202 136 124 3250 12.0 130 63 .2 .0 .0 LO 206 140 12B 700 12.0 130 26 .1 LO .0 .0 LO 20B 142 128 1800 12.0 130 79 .2 .0 .0 LO 210 144 142 1150 12.0 130 235 .7 .2 .2 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:32 PM PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft;1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 212 292 132 1950 8.0 130 79 .5 .. .2 214 134 132 2000 12.0 130 129 .4 .1 .1 LO 216 134 136 1200 12.0 130 169 .5 .1 ..1 LO 219 136 138 2050 12.0 130 123 .4 .1 .1 LO 220 164 146 2200 12.0 130 140 .4 .1 .1 LO 222 142 140 1800 12.0 130 76 .2 .0 .0 LO 224 146 128 4200 42.0 120 3271 .8 -.2 .1 LO 226 146 14.4 650 24.0 120 324 .2 .0 .0 LD 228 152 131. 2700 8.0 130 181 1.2 2.1 B 230 154 132 3150 8.0 130 85 .5 .6 .2 232 156 134 2640 21.0 120 823 .8 .4 .1 234 158 136 2640 12.0 130 120 .3 .1 1 LO 236 160 150 1400 12.0 130 87 .2 .0 .0 LO 238 150 148 700 14.0 130 B7 .2 .0 .0 LD 240 148 13B 500 12.0 130 87 .2 .0 .0 LD 242 162 140 2640 12.0 170 83 .2 .1 .0 LO 244 164 146 2120 42.0 120 3558 .8 .1 .1 LD 246 152 154 2640 8.0 130 176 1.1 1.9 .7 248 154 156 2640 8.0 130 41 .3 .1 .1 LO 250 156 158 1300 12.0 130 291 .8 .3 .3 252 158 160 2000 12.0 130 164 .5 .2 .1 LO 254 162 160 2660 12.0 130 139 .4 .2 .1 LO 256 164 162 2660 12.0 130 195 .6 .3 .1 257 180 164 2700 12.0 130 165 .5 .2 .1 LD 259 164 166 2640 12.0 130 176 .5 .3 .1 260 168 152 2550 12.0 130 565 1.6 2.2 .9 261 168 170 2330 21.0 120 2419 2.2 2.3 1.0 262 170 154 3050 8.0 130 160 1.0 1.9 .6 263 170 172 2000 21.0 120 1947 1.8 1.3 .7 264 172 156 2650 21.0 120 1162 1.1 .7 .3 265 172 174 1350 16.0 130 512 .8 .2 .2 266 174 158 2650 8.0 130 107 .7 .8 .3 267 174 176 1950 16.0 130 294 .5 .1 .1 LD 269 176 178 2640 16.0 130 284 .5 .2 .1 LO 270 179 162 2700 12.0 130 239 .7 .5 .2 271 180 179 2700 16.0 120 184 .3 .1 .0 LO 272 180 164 2700 42.0 120 4109 1.0 .2 .1 LD 273 180 182 1150 20.0 120 787 .8 .2 .2 # 274 166 184 26BO 12.0 130 30 .1 LO .0 .0 LO 275 182 184 1550 20.0 125 985 1.0 .3 .2 # 277 184 186 2650 20.0 125 B48 .9 .4 .2 # 279 186 190 2750 16.0 125 447 .7 .4 .2 280 190 192 1340 16.0 125 142 .2 .0 .0 LD 282 192 194 3200 14.0 130 103 .2 .1 .0 LD 2B4 218 194 5300 14.0 130 143 .3 .2 .0 LD 286 196 170 2660 B.0 130 1 .0 LD .0 .0 LO 288 199 174 2640 12.0 130 23 .1 LD .0 .0 LD 290 200 176 2500 12.0 130 11B .3 .1 .0 LO 292 202 204 2700 8.0 130 94 .6 .6 .2 294 178 204 800 12.0 130 10 .0 LO .0 .0 LO 296 206 180 2700 36.0 120 5379 1.7 .8 .3 298 206 182 3900 12.0 130 299 .8 1.0 .3 300 184 208 2640 12.0 130 20 .1 LO .0 .0 LD 301 186 210 2640 8.0 130 48 .3 .2 .1 LO 302 190 212 2640 12.0 130 159 .4 .2 .1 LD CITY OF HUNTINGTON BEACH FRI, OCT 16, 19871 1:32 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 304 196 198 3300 8.0 130 139 .9 1.6 .5 306 198 200 2700 12.0 130 30 .1 LO .0 .0 LO 308 202 200 2640 12.0 130 199 .6 .3 .1 310 206 202 2640 12.0 130 193 .5 .3 .1 312 206. 208 2640 12.0 130 426 1.2 1.4 .5 314 208 210 2640 12.0 130 275 .B .6 .2 316 210 212 2640 12.0 130 236 .7 .5 .2 318 212 214 1300 12.0 130 259 .7 .3 .2 320 222 196 2700 12.0 130 315 .9 .8 .3 322 224 272 1320 12.0 130 167 .5 .1 .1 LD 324 228 200 2640 12.0 130 173 .5 .3 .1 LO 326 230 202 3000 12.0 130 238 .7 .5 .2 327 232 206 2640 12.0 130 367 1.0 1.0 .4 328 232 206 2640 36.0 120 6098 1.9 1.0 .4 330 236 210 2700 12.0 130 403 1.1 1.3 .5 332 214 216 1000 10.0 130 109 .4 .1 .1 334 238 216 2100 8.0 130 159 1.0 1.3 .6 336 302 220 4500 20.0 130 495 .5 .3 .1 LO 1 338 220 .218 1250 14.0 130 338 .7 .2 .2 1 340 288 224 1700 12.0 130 476 1.4 1.1 .6 342 228 224 2000 12.0 130 6 .0 LO .0 .0 LO 344 230 228 2640 12.0 130 274 .8 .6 .2 346 232 230 2640 12.0 130 325 .9 .8 .3 348 232 234 2640 20.0 130 1236 1.3 .8 .3 # 350 234 236 2640 20.0 130 1331 1.4 .9 .4 # 352 236 238 5030 20.0 130 885 .9 .8 .2 # 354 224 226 1300 12.0 130 54 .2 .0 .0 LO 356 240 228 2700 12.0 130 83 .2 • .1 .0 LO 358 242 230 2700 12.0 130 318 .9 .8 .3 360 244 232 2700 36.0 120 8298 2.6 1.9 .7 362 246 234 2700 12.0 130 162 .5 .2 .1 LO 364 250 236 2680 12.0 130 192 .5 .3 .1 366 240 226 3800 9.0 130 26 .2 .1 .0 LO 368 242 240 2640 10.0 130 262 1.1 1.4 .5 370 244 242 2660 10.0 130 313 1.3 1.9 .7 372 244 246 2550 12.0 130 597 1.7 2.5 1.0 35 246 248 1500 12.0 130 250 .7 .3 .2 376 248 250 1200 10.0 130 250 1.0 .6 .5 378 252 242 2540 12.0 130 454 1.3 1.5 .6 380 254 244 2640 36.0 120 9421 3.0 2.3 .9 382 256 246 2540 12.0 130 109 .3 .1 .0 LO 384 258 250 2640 12.0 130 28 .1 LO .0 .0 LO 386 278 252 1750 12.0 130 619 1.8 1.8 1.0 388 254 256 2600 12.0 130 835 2.4 4.7 1.8 390 256 258 200 12.0 130 350 1.0 1.0 .4 392 260 254 2600 36.0 120 11082 3.5 3.1 1.2 3" 262 260 150 36.0 130 2298 .7 .0 .1 LO PECK RES. 395 266 260 100 36.0 130 9000 2.8 .1 .7 396 264 266 250 12.0 130 0 .0 LO .0 .0 LO WELL 7 400 270 168 970 12.0 130 0 .0 LO .0 .0 LO WELL 5 402 272 274 200 12.0 130 0 .0 LD .0 .0 LO WELL 6 404 272 19B 1380 12.0 130 167 .5 .1 .1 LO 406 218 276 170 8.0 130 0 .0 LO .0 .0 LO WELL 1 408 254 278 900 12.0 130 619 1.8 .9 1.0 414 284 168 1990 16.0 130 0 .0 LO .0 .0 LO WELL 9 CITY OF HUNTINGTON BEACH FRI, OCT 16, 19875 1:32 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 416 ?72 288 1600 12.0 130 476 1.4 1.0 .6 41B 286 2B8 1050 16.0 130 0 .5 LO .0 .0 LO WELL 10 420 292 290 1400 6.0 120 0 .0 LO .0 .0 LO DYKE WELL 422 131 292 750 8.0 130 79 .5 .1 .2 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1138 3.2 9.2 3.2 452 300 168 5300 22.0 120 3362 2.B 7.7 1.5 OC9 500 301 112 100 36.8 120 2564 .8 .0 .1 LO Overmyer Res. 501 238 302 2000 20.0 130 495 .5 .1 .1 LO # 502 95 84 1000 16.0 130 736 1.2 .4 .4 503 96 95 452 24.0 120 3296 2.3 .4 .9 504 304 266 10 36.0 130 9000 2.8 .0 .7 OC35 510 95 84 1000 20.0 130 1324 1.4 .4 .4 DOWNTOWN LOOP 511 84 307 2800 20.0 130 1194 1.2 .8 .3 DOWNTOWN LOOP 512 305 306 7200 20.0 130 766 .8 .9 .1 DOWNTOWN LOOP 513 46 306 2000 20.0 130 813 .8 .3 .1 DOWNTOWN LOOP 514 62 46 2900 20.0 130 1237 1.3 .9 .3 DOWNTOWN LOOP 515 80 62 2300 20.0 130 1436 1.5 .9 .4 DOWNTOWN LOOP 516 114 115 3490 12.0 130 494 1.4 2.4 .7 517 64 115 6850 12.0 130 170 .5 .7 .1 LO 521 154 132 3150 8.0 130 85 .5 .6 .2 # 522 170 154 3050 8.0 130 160 1.0 1.9 .6 1 523 196 170 2660 6.0 130 1 .0 LO .0 .0 LO # 530 306 315 450 30.0 130 1579 .7 .0 .1 LO 1 531 315 34 225 30.0 130 1579 .7 .0 .1 LO # 532 307 64 20 12.0 130 428 1.2 .0 .5 # 533 307 305 1500 20.0 130 766 .8 .2 .1 # 534 76 80 900 20.0 130 1661 1.7 .5 .5 # CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:32 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -190.30 178.1 173.1 75 7 4 5 -89.80 178.1 173.1 75 7 6 5 -159.60 178.1 173.1 75 7 Banning 8 5 -225.30 178.1 173.1 75 7 10 4 -375.50 177.6 173.6 75 7 12 4 -119.90 177.7 173.7 75 7 14 6 -244.70 178.3 172.3 .74 7 16 7 -173.20 178.3 171.3 74 7 18 4 -176.90 17B.3 174.3 75 7 20 2 -144.90 178.3 176.3 76 7 22 4 -149.30 177.7 173.7 75 7 24 6 -169.50 179.0 173.0 74 6 26 8 -224.70 17B.6 170.6 73 7 28 4 -145.60 178.5 174.5 75 7 30 4 -303.70 178.4 174.4 75 7 32 6 -411.90 178.5 172.5 74 7 34. 30 -287.00 1'8.6 148.6 64 8 36 8 -266.00 180.6 172.6 74 6 38 9 -230.80 179.5 170.5 73 6 40 6 -262.30 179.0 173.0 74 6 42 6 -290.60 178.8 172.0 74 6 44 18 -190.90 178.8 160.9 69 7 46 36 -243.50 179.0 143.0 61 8 48 36 -505.30 178.8 142.9 61 8 50 12 -351.30 184.4 172.4 74 4 52 10 -267.40 181.2 171.2 74 5 54 7 -187.20 180.3 173.3 75 6 56 10 -201.10 180.0 170.0 73 6 5B 25 -298.20 100.0 155.0 67 6 60 35 -149.00 180.1 145.1 62 7 62 40 -289.20 179.9 139.9 60 7 64 45 -852.10 179.8 134.8 58 8 66 10 -228.10 182.4 172.4 74 5 68 8 -208.70 181.8 173.8 75 5 70 10 -199.50 181.5 171.5 74 5 72 55 -92.30 181.4 126.4 54 7 74 50 -224.10 181.3 131.3 56 7 76 50 .00 181.3 131.3 56 7 7B 50 .00 181.1 131.1 56 7 80 50 .00 180.8 130.8 56 7 82 75 -111.20 180.7 105.7 45 9 84 75 -127.30 180.6 105.6 45 9 B6 57 -75.80 181.4 124.4 53 7 Be 50 -122.90 181.4 131.4 56 7 90 60 .00 181.4 121.4 52 7 95 103 -1235.20 191.0 78.0 33 LO 12 Reservoir Hill 96 95 .00 181.4 B6.4 37 LO 10 98 16 -349.40 182.0 166.0 71 5 100 15 -90.20 182.0 167.0 72 5 Flounder 102 12 -98.90 191.7 169.7 73 5 104 14 -143.20 181.5 167.5 72 5 106 58 -298.20 181.4 123.4 53 7 108 55 -113.70 181.4 126.4 54 7 110 60 .00 181.7 121.7 52 7 112 60 .00 181.7 121.7 52 7 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1997, 1a32 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK y DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 114 93 .00 181.5 88.5 38 LO 10 115 35 -664.20 179.1 144.1 62 8 116 60 -126.70 181.7 121.7 52 7 118 13 -115.70 181.5 16B.5 73 5 120 55 -108.00 1B1.6 126.6 54 7 122 35 -142.10 181.7 146.7 63 6 124 25 -121.70 181.7 156.7 67 6 128 5 -92.70 181.8 176.8 76 5 129 45 .00 181.6 136.6 59 b 130 45 -117.50 181.5 136.5 59 6 131 45 .00 182.2 137.2 59 6 132 55 -231.50 181.7 126.7 54 7 134 50 -95.20 181.8 131.8 57 6 136 50 -102.80 181.7 131.7 57 7 138 40 -210.60 181.6 141.6 61 6 140 2 -133.10 181.E 179.8 17 5 142 2 -79.70 IBM 179.8 77 5 144 2 -88.80 182.0 180.0 78 5 146 2 -102.90 182.0 180.0 78 5 148 40 .00 181.6 141.6 61 6 150 40 .00 181.6 141.6 61 6 152 28 -208.50 1B4.3 156.3 67 4 154 25 -283.20 182.3 157.3 68 5 156 25 -88.90 1B2.2 157.2 66 5 158 30 -113.90 181.9 151.9 65 6 160 5 -215.50 191.7 176.7 76 5 162 3 -211.90 1B1.9 178.9 77 5 164 2 -204.20 182.2 180.2 78 5 166 2 -146.10 181.9 179.9 77 5 16B 27 -377.70 196.5 159.5 69 3 170 26 -156.00 184.2 158.2 68 4 172 25 -273.00 182.9 157.9 68 5 174 25 -135.20 182.6 157.6 68 5 176 12 -129.50 182.5 170.5 73 5 178 5 -218.70 182.3 177.3 76 5 180 5 -134.60 182.4 177.4 76 4 182 5 -101.00 182.2 177.2 76 5 184 5 -146.90 181.9 176.9 76 5 196 34 -352.10 181.5 147.5 63 6 190 35 146.80 181.0 146.0 63 6 192 55 -38.80 181.0 126.0 54 7 194 5 -246.40 181.0 176.0 76 5 196 25 -173.20 184.2 159.2 69 4 199 17 -252.00 182.6 165.6 71 5 200 14 -2B3.40 192.6 168.6 73 5 Heil 202 10 -137.90 183.0 173.0 74 4 204 10 -104.30 182.3 172.3 74 5 206 9 -169.60 183.3 174.3 75 4 209 14 -171.00 181.9 167.9 72 5 210 15 -490.30 181.3 166.3 72 5 12 9 -134.90 180.8 171.8 74 5 214 9 -150.70 180.6 171.6 74 6 216 9 -266.60 180.5 171.5 74 6 218 5 -194.50 191.1 176.1 76 5 220 5 -157.10 181.3 176.3 76 5 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:32 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK 2 DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 222 26 -346.80 185.0 159.0 68 4 224 21 -261.40 182.9 161.9 70 5 226 23 -80.20 182.9 159.9 69 5 228 20 -178.10 182.9 162.9 70 5 230 12 -132.00 183.5 171.5 74 4 232 10 -271.50 184.3 174.3 75 4 234 12 -66.40 183.5 171.5 74 4 236 15 -235.50 182.6 167.6 72 5 Scenario 238 5 -231.80 181.7 176.7 76 5 240 21 -152.40 182.9 161.9 70 5 242 15 -186.80 1B4.3 169.3 73 4 244 16 -213.20 186.2 170.2 73 3 246 14 -294.50 183.7 169.7 73 4 248 14 .00 183.4 169.4 73 4 250 13 -B6.40 182.9 169.9 73 4 252 22 -165.00 185.8 163.8 71 3 254 18 -206.60 1BB.6 170.6 73 1 256 17 -376.00 1B3.8 166.9 72 4 258 17 -321.90 182.9 165.9 71 5 260 23 -216.60 191.7 168.7 73 0 262SP 34 2298.42U 191.7 157.7 68 0 PECK RES. 264 18 .00 191.8 173.8 75 0 WELL 7 266 23 .00 191.8 168.8 73 0 270 27 .00 186.5 159.5 69 3 WELL 5 272 25 .00 1B2.8 157.8 6B 5 274 19 .00 182.E 163.8 70 5 WELL 6 276 17 .00 187.6 170.6 73 2 WELL 1 278 19 .00 187.6 168.6 73 2 284 27 .00 186.5 159.5 69 3 WELL 9 286 19 .00 184.0 165.0 71 4 WELL 10 288 22 .00 184.0 162.0 70 4 290 44 .00 182.1 138.1 59 6 DYKE WELL 292 48 .00 182.1 134.1 58 6 294 12 6700.00 186.9 174.9 75 2 OC44,Adams 300 25 4500.00 194.2 169.2 73 -1 OC9 301SP 65 2564.18U 181.7 116.7 50 7 Overmyer Res. 302 5 .00 181.6 176.6 76 5 304 25 9000.00 191.8 166.E 72 0 OC35 305 40 .00 179.6 139.6 60 7 306 30 .00 178.7 148.7 64 8 307 45 .00 179.8 134.8 58 8 315 34 .00 178.7 144.7 62 8 Maximum Unbalanced Head = .00000 196 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:32 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION H8L DISCH HSL LIFT PUMP NODE Bpm Feet Feet Feet NUMBER ---- ------ ------ --=--- ------ ---- 262SP 2298 20.0 191.7 171.7 30 PECK RES, 301SP 2564 50.0 181.7 131.7 20 Overmyer Res. SOURCE PUMPS Node Pump# 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000, 15B00. 16100. 16250. 16500. 16750. 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000. 20650. 21875. 22525. 22875. 23350, 23775. Iteration= 1, Flow Correction= 6887.091 Iteration= 2, Flow Correction= 5632.071 Iteration= 3, Flow Correction= 10220.960 Iteration= 41 Flow Correction= 7850.976 Iteration= 5, Flow Correction= 658.286 Iteration= 6, Flow Correction= 160.404 Iteration= 7, Flow Correction= 56.367 Iteration= 8, Flow Correction= 11.530 Iteration= 9, Flow Correction= 1.121 Iteration= 10, Flow Correction= .011 Iteration= 119 Flow Correction= .000 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 12:51 PM ULTIMATE SYSTEM -- AVERAGE DAY DEMAND WITH NO MWD CONNECTIONS INPUT FILE NAME ADUTMAG NUMBER OF PIPES 249 NUMBER OF NODES 152 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 1.000 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gpm MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet !1000 - HIGH 10. Feet 11000 PRESSURE CHECK - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet 'UM OF (-1 FIXED DEMANDS = .00 6UN OF (+i FIXED DEMANDS = .00 SUM OF PEAK:ABLE DEMANDS =-24885.71 . SUM OF ALL FIXED DEMANDS --- .00 SUM OF ALL PEAKED DEMANDS -- -24885.71 SUM OF ALL DEMANDS --------- -24885.71 Solution reached in 11 iterations Last flow correction was .01 CITY OF HUNTINGTON BEACH FRI, OCT 16, 19871 12:52 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 104 .2 .0 .0 LO 4 6 2 2000 12.0 130 87 .2 .1 .0 LO 6 6 4 1600 12.0 130 72 .2 .0 .0 LO 8 8 6 2600 12.0 130 194 .6 .3 .1 10 8 10 2900 12.0 130 256 .7 .6 .2 12 12 10 970 10.0 130 120 .5 .1 .1 14 14 4 2900 16.0 130 121 .2 .0 .0 LO 16 16 6 2620 12.0 130 124 .4 • .1 .1 LO 1B 18 8 2640 20.0 130 675 .7 .3 .1 1 20 20 12 2350 12.0 130 303 .9 .7 .3 22 12 22 2290 12.0 130 64 .2 .0 .0 LO 24 16 14 2600 20.0 130 467 .5 .1 .1 LO # 26 18 16 2610 20.0 130 894 .9 .4 .2 # 28 18 20 2510 30.0 130 M 09 .5 .1 .0 LO # 30 14 24 2620 16.0 130 101 .2 .0 .0 LO 32 16 26 2700 12.0 130 130 .4 .2 .1 LO 34 18 28 2700 12.0 130 228 .6 .4 .2 # 36 20 30 2570 30.0 130 662 .3 .0 .0 LO # 38 32 22 3430 8.0 130 85 .5 .7 .2 40 24 26 2680 12.0 130 4 .0 LO .0 .0 LO 42 28 26 2640 12.0 130 133 .4 .2 .1 LO 44 30 28 2670 12.0 130 193 .5 .3 .1 46 32 30 2550 30.0 130 80 .0 LO .0 .0 LO # 48 34 32 2800 30.0 130 577 .3 .0 .0 LO 1 50 36 24 2640 16.0 130 72 .1 .0 .0 LO 52 26 38 2600 12.0 130 43 .1 .0 .0 LO 54 28 40 2580 12.0 130 142 .4 .2 .1 LO # 56 30 42 _ 200 12.0 130 246 .7 .5 .2 58 46 34 2320 12.0 130 80 .2 .1 .0 LD 60 36 38 2640 12.0 130 56 .2 .0 .0 LO 62. 40 3B 2640 12.0 130 13 .0 LO .0 .0 LO 64 42 40 2700 12.0 130 7 .0 LO .0 .0 LO # 66 42 44 2550 12.0 130 107 .3 .1 .0 LD 68 46 48 700 12.0 130 311 .9 .2 .3 70 50 36 2550 16.0 130 394 .6 .3 .1 72 52 38 2640 12.0 130 120 .3 .1 .1 LD 74 54 40 2650 12.0 130 126 .4 .1 .1 LO 76 56 42 2620 12.0 130 159 .4 .2 .1 LO # 78 5B 44 2640 8.0 130 84 .5 .5 .2 BO 62 46 2950 12.0 120 178 .5 .4 .1 82 64 48 5300 12.0 130 194 .6 .6 .1 84 50 52 2700 12.0 130 142 .4 .2 .1 LO 86 54 52 2600 12.0 130 37 .1 .0 .0 LD 88 56 54 2640 12.0 130 88 .3 .1 .0 LO 90 58 56. 2660 12.0 130 136 .4 .2 .1 LO 92 60 58 1330 12.0 130 277 .B .3 .2 94 62 60 1130 8.0 130 89 .6 .2 .2 B 6 12 96 66 52 2640 12.0 130 209 .6 .4 .1 97 68 54 2640 12.0 130 262 .7 .6 .2 98 70 56 2640 12.0 130 312 .9 .8 .3 99 72 58 2640 8.0 130 121 .8 1.0 .4 100 72 58 2640 B.0 130 121 .8 1.0 .4 101 74 60 2640 12.0 130 337 1.0 .9 .3 102 80 62 3200 12.0 120 218 .6 .6 .2 104 84 64 2950 12.0 70 141 .4 .6 .2 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 12:52 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 563 .9 .6 .2 108 66 50 5250 30.0 120 1021 .5 .2 .0 LO 110 68 66 2640 30.0 120 1570 .7 .2 .1 LO 112 70 68 2680 30.0 120 1864 .9 .3 .1 114 70 68 2680 12.0 130 181 .5 .3 .1 116 72 70 2600 12.0 130 207 .6 .4 .1 118 72 70 . 2600 30.0 120 2131 1.0 .4 .1 120 74 72 1450 30.0 120 2372 1.1 .2 .2 122 76 74 600 30.0 120 2634 .1.2 .1 .2 124 76 18 150 8.0 130 176 .1.1 .1 .7 126 78 80 1050 12.0 130 176 .5 .1 .1 128 82 80 1150 12.0 130 54 .2 .0 .0 LO 130 84 82 1250 12.0 130 165 .5 .1 .1 LO 132 50 9B 5300 12.0 130 134 .4 .3 .1 LO 134 66 100 2580 12.0 130 113 .3 .1 .0 LO 06 68 102 2"0 12.0 130 5 .0 LO .D .0 LO 138 104 70 200 12.0 130 219 .6 .4 .2 140 86 72 1320 12.0 130 300 .9 . .4 .3 142 106 86 1320 12.0 130 53 .1 .0 .0 LO 144 88 86 1450 14.0 120 323 .7 .2 .2 146 109 88 1280 12.0 130 191 .5 .2 .1 148 90 88 650' 14.0 120 553 1.2 .3 .5 149 88 74 1350 12.0 130 298 .8 .4 .3 151 90 76 1300 30.0 120 3882 1.9 .5 .4 152 96 90 3150 42.0 120 2333 .5 .1 .0 LO 158 100 98 2680 12.0 130 215 .6 .4 .1 160 102 100 2680 12.0 130 193 .5 .3 .1 162 104 102 2750 12.0 130 287 .8 .7 .3 164 106 104 2580 12.0 130 200 .6 .3 .1 166 108 106 150D 12.0 130 296 .8 .4 .3 168 110 108 700 12.0 130 595 1.7 .7 1.0 170 112 90 950 21.0 120 1374 1.3 .3 .3 171 112 90 950 16.0 130 728 1.2 .3 .3 172 110 112 35D 21.0 120 1790 1.7 .2 .6 174 116 110 750 21.0 120 2385 2.2 .7 1.0 176 114 96 3400 42.0 120 5564 1.3 .5 .2 178 118 104 2640 12.0 130 449 1.3 1.5 .6 179 120 106 2640 8.0 130 177 1.1 2.0 .7 180 120 106 2640 6.0 130 83 .9 2.0 .7 192 120 116 2550 12.0 130 142 .4 .2 .1 LO 184 122 116 1900 21.0 120 2370 2.2 1.8 1.0 188 128 114 4000 42.0 120 6066 1.4 .7 .2 190 120 118 2550 9.0 130 109 .7 .8 .3 192 122 120 2150 8.0 130 180 1.1 1.6 .B 194 124 122 600 9.0 130 255 1.6 .9 1.5. 196 131 118 2640 8.0 130 456 2.9 11.3 4.3 197 132 130 800 8.0 130 284 1.8 1.4 1.8 198 130 129 850 6.0 130 167 1.9 2.3 2.7 199 129 120 1250 8.0 130 167 1.1 .8 .7 200 132 120 2750 B.0 130 273 1.7 4.5 .1.6 201 134 122 2640 21.0 120 2436 2.3 2.6 1.0 202 136 124 3250 •12.0 130 377 1.1 1.4 .4 206 140 129 700 12.0 130 357 1.0 .3 .4 208 142 128 1800 12.0 130 218 .6 .3 .2 r 210 144 142 1150 12.0 130 334 .9 A. .3 CITY OF HUNTINGTON BEACH FRI, OCT 169 1987, 12:52 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 212 292 132 1950 8.0 130 381 2.4 6.0 3.1 214 132 134 2000 12.0 130 196 .6 .2 .1 216 134 136 1200 12.0 130 341 1.0 .4 .3 219 136 138 2050 12.0 130 285 .8 .5 .2 220 164 146 2200 12.0 130 231 .7 .4 .2 222 142 140 1800 12.0 130 36 .1 .0 .0 LO 224 146 128 4200 42.0 120 5584 1.3 .7 .2 226 146 144 650 24.0 120 423 .3 .0 .0 LO 228 152 131 2700 9.0 130 424 2.7 10.1 3.7 230 154 132 3150 9.0 130 302 1.9 6.3 2.0 232 156 134 2640 21.0 120 207 2.5 3.1 1.2 234 158 136 2640 12.0 130 424 1.2 1.4 .5 236 150 160 1400 12.0 110 74 .2 . .0 .0 LO 23B 10 150 700 14.0 130 74 .2 .0 .0 LO 240 138 148 500 12.0 130 74 .2 .0 .0 LO 242 162 140 2640 12.0 130 454 1.3 1.6 .6 244 164 146 2120 42.0 120 5B78 1.4 .4 .2 246 152 154 2640 8.0 130 422 2.7 9.8 3.7 248 154 156 2640 8.0 130 237 1.5 3.4 1.3 250 156 158 1300 12.0 130 904 2.3 2.2 1.7 252 158 160 2000 12.0 00 592 1A 1.9 1.0 254 160 162 2660 12.0 130 450 1.3 1.5 .6 256 162 164 2660 12.0 130 311 .9 .8 .3 257 180 164 2700 12.0 130 236 .7 .5 .2 258 164 166 2640 12.0 130 106 .3 .1 .0 LO 260 169 152 2550 12.0 130 1054 3.0 7.1 2.8 261 168 170 2330 21.0 120 N17 40 BA - 3.8 262 170 154 3050 8.0 130 351 2.2 8.0 2.6 263 170 172 2000 21.0 120 4639 4.3 6.6 3.3 264 172 156 2650 21.0 120 3332 3.1 4.7 1.8 265 172 174 1350 16.0 130 1034 1.6 .9 .7 266 174 158 2650 8.0 130 325 2.1 6.0 2.3 267 174 176 1950 16.0 130 1495 2.4 2.6 1.3 269 176 178 2640 16.0 130 1790 2.9 4.8 1.8 270 178 162 2700 12.0 130 527 1.5 2.1 .8 271 178 190 2700 16.0 120 1117 1.8 2.4 .9 272 180 164 2700 42.0 120 5872 1.4 .5 .2 273 180 192 1150 20.0 120 805 .8 .2 .2 # 274 04 166 200 12.0 130 40 .1 .0 .0 LO 275 182 194 1550 20.0 125 1030 1.1 .4 .2 i 277 184 186 2650 20.0 125 851 .9 .4 .2 i 279 196 190 2750 16.0 125 450 .7 .4 .2 280 190 192 1340 16.0 125 145 .2 .0 .0 LO 282 -192 194 3200 14.0 130 106 .2 .1 .0 LO 2B4 218 194 5300 14.0 130 141 .3 .2 .0 LO 2B6 196 170 2660 8.0 130 240 1.5 3.5 1.3 289 199 174 2640 12.0 130 921 2.6, 5.8 2.2 290 200 176 2500 12.0 130 424 1.2 1.3 .5 292 202 204 270D 8.0 130 177 1.1 2.0 .7 294 204 178 800 12.0 130 73 .2 .0 .0 LO 296 206 180 2700 36.0 120 5932 1:9 1.0 .4 298 206 182 3800 12.0 130 326 .9 1.2 .3 300 209 184 2640 12.0 130 8 .0 LO .0 . .0 LO 301 186 210 2640 8.0 130 49 .3 .2 .1 LO 302 190 212 2640 12.0 130 159 .5 .2 .1 LO CITY OF HUNTINGTON BEACH FRI, OCT 16, 19B7, 12:52 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK --- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 304 196 199 3300 8.0 130 266 1.7 5.2 1.6 306 198 200 2700 12.0 130 1014 2.9 7.0 2.6 308 200 202 2640 12.0 130 771 2.2 4.1 1.6 310 202 206 2640 12.0 130 693 2.0 3.4 1.3 312 206 208 2640 12.0 130 458 1.3 1.6 .6 314 208 210 2640 12.0 130 279 .B .6 .2 316 210 212 2640 12.0 130 236 .7 .5 .2 318 212 214 1300 12.0 130 260 .7 .3 .2 320 222 196 2700 12.0 130 919 2.6 5.9 . 2.2 322 272 224 1320 12.0 130 906 2.6 2.8 2.1 324 228 200 2640 12.0 130 464 1.3 1.6 .6 326 230 202 3000 12.0 130 237 .7 .5 .2 327 232 206 2640 12.0 130 352 1.0 1.0 .4 328 232 206 2640 36.0 120 5840 1.8 1.0 .4 330 236 210 2700 12.0 130 399 1.1 1.2 .5 332 214 216 1000 10.0 130 109 .4 .1 .1 334 238 216 2100 8.0 130 157 1.0 1.2 .6 336 302 NO 4500 20.0 130 492 .5 .3 .1 LO # 338 A 21B 1250 14.0 130 335 .7 .2 .2 # 340 288 224 1700 12.0 130 1608 4.6 10.4 6.1 342 224 228 2000 12.0 130 1753 5.0 14.3 7.2 344 228 230 2640 12.0 130 874 2.5 5.2 2.0 346 230 232 2640 12.0 130 643 1.8 3.0 1.1 348 232 234 2640 20.0 130 1334 1.4 .9 .4 # 350 234 236 2640 20.0 130 1354 1.4 1.0 .4 # 352 236 238 5030 20.0 130 881 .9 .8 .2 # 354 224 226 1300 12.0 130 500 1.4 .9 .7 356 228 240 2700 12.0 130 237 .7 .5 .2 358 242 NO 2700 12.0 130 138 .4 .2 .1 LO 360 244 232 2700 36.0 120 705 2.3 1A .5 362 246 234 2700 12.0 130 86 .2 .1' .0 LO 364 250 236 2680 12.0 130 161 .5 .2 .1 LO 366 226 240 3900 8.0 130 420 2.7 13.9 3.7 368 240 242 2640 10.0 130 504 2.1 4.6 1.7 370 242 244 2660 10.0 130 293 1.2 1.7 .6 372 244 246 2550 12.0 130 575 1.6 2.3 .9 374 24 248 1500 12.0 130 243 .7 .3 .2 376 248 250 1200 10.0 130 243 1.0 .5 .4 378 252 242 2540 12.0 130 114 .3 .1 .0 LO 380 254 244 2640 36.0 120 7650 2.4 1.6 .6 382 256 246 2540 12.0 130 50 .1 .0 .0 LO 384 258 250 2640 12.0 130 4 .0 LO .0 .0 LO 386 279 252 1750 12.0 130 279 .9 .4 .2 3BB 254 256 2600 12.0 130 752 2.1 3.9 1.5 390 256 258 2640 12.0 130 326 .9 .8 .3 392 260 254 2600 36.0 120 9113 2.6 1.8 .7 394 262 260 150 36.0 130 4949 1.6 .0 .2 PECK RES. 395 266 260 100 36.0 130 3381 1.1 .0 :1 396 264 266 250 12.0 130 3381 9.6 6.1 24.2 HI WELL 7 400 270 168 970 12.0 130 3015 8.6 19.0 19.6 HI WELL 5 402 274 272 200 12.0 130 2827 8.0 3.5 17.4 HI WELL 6 404 272 198 . 1380 12.0 130 1921 5.4 11.7 8.5 406 276 278 170 8.0 130 774 4.9 1.9 11.4 HI WELL 1 408 278 254 900 12.0 130 496 1.4 .6 .7 414 294 168 1990 16.0 130 3232 5.2 10.9 5.5 WELL 9 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 12:52 PM PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO . Feet Inches H-W C GPM Fps CK ft ft/1000 CK --- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 416 288 222 1600 12.0 130 1468 4.2 8.3 5.2 418 286 288 1050 16.0 130 3076 4.9 5.3 5.0 WELL 10 420 290 292 1400 6.0 120 413 4.7 23.4 16.7 HI DYKE WELL 422 292 131 750 8.0 130 32 .2 .0 .0 LO 424 294 50 2200 30.0 120 0 .0 LO .0 .0 LO OC44 450 222 300 2850 12.0 130 202 .6 .4 .1 452 300 168 5300 22.0 120 202 .2 .0 .0 LO OC9 500 301 112 100 36.8 120 312 .1 LO .0 .0 LO Overmyer Res. 501 238 302 2000 20.0 130 492 .5 .1 .1 LO # 502 95 84 1000 16.0 130 713 1.1 .3 .3 503 96 95 452 24.0 120 3231 13 .4 .9 504 304 266 10 36.0 130 0 .0 LO .0 .0 LO OC35 510 95 84 1000 20.0 130 1282 1.3 .3 .3 DOWNTOWN LOOP 511 84 307 2800 20.6 130 999 1.0 .6 .2 DOWNTOWN LOOP 512 305 306 7200 20.0 130 495 .5 .4 .1 LO DOWNTOWN LOOP 513 46 306 2000 20.0 130 290 .3 .0 .0 LO DOWNTOWN LOOP 514 b2 46 2900 20.0 130 746 .8 .4 .1 . DOWNTOWN LOOP 515 80 62 2300 20.0 130 1084 1.1 .6 .2 DOWNTOWN LOOP 516 114 115 3490 12.0 130 502 1.4 2.5 .7 517 64 115 6850 12.0 130 162 .5 .6 .1 LO 521 154 132 3150 8.0 130 302 1.9 6.3 2.0 # 522 170 154 3050 8.0 130 351 2.2 8.0 2.6 1 523 196 170 2660 8.0 130 240 1.5 3.5 1.3 # 530 306 315 450 30.0 130 784 .4 .0 .0 LO # i31 315 34 225 30.0 130 784 .4 .0 .0 LO # 532 307 64 20 12.0 130 505 1.4 .0 .7 # 533 307 305 1500 20.0 130 495 .5 .1 .1 LO # 534 76 80 900 20.0 130 1072 1.1 .2 .2 # CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 12:52 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet 6pm Feet Feet Psi CK X DROP--CK --- ------ ------ ------ ------ ------ -- ------ -- 2 5 -190.30 179.4 174.4 15 22 4 5 -89.80 179.4 174.4 75 21 6 5 -158.60 179.4 174.4 75 22 Banning 8 5 -225.30 179.7 174.7 75 22 10 4 -375.50 179.1 175.1 75 22 12 4 -118.80 179.3 175.3 75 22 14 6 244.70 179.4 173.4 75 22 16 7 -173.20 179.6 172.6 74 22 18 4 2906.90U 180.OF 176.0 76 22 20 2 -144.90 179.9 177.9 77 21 22 4 -149.30 179.2 175.2 75 22 24 6 -169.50 179.4 173.4 75 22 26 8 -224.70 179.4 171.4 74 22 28 4 -145.60 179.6 175.6 76 22 30 4 -303..70 179.9 175.9 76 22 32 6 -411.90 179.9 173.9 75 22 34 30 -287.00 179.9 149.9 64 24 36 8 -266.00 179.4 171.4 74 22 38 9 230.80 179.4 170.4 73 22 40 6 -262.30 179.4 173.4 75 22 42 6 -290.60 179.4 173.4 75 22 44 18 190.90 179.3 161.3 69 23 46 36 -243.50 180.0 144.0 62 25 48 36 -505.30 179.8 143.8 62 25 50 12 -351.30 179.7 167.7 72 22 52 10 -267.40 179.5 169.5 73 22 54 7 -187.20 179.5 172.5 74 22 56 10 -201.10 179.6 169.6 73 22 58 25 -29B.20 179.8 154.9 67 24 60 35 -149.00 180.1 145.1 62 25 62 40 -2B8.20 180.3 140.3 60 26 64 45 -852.10 190.4 135.4 58 26 66 10 -228.10 179.9 169.9 73 22 68 8 -208.70 180.1 172.1 74 22 70 10 -199.50 180.4 170.4 73 22 72 55 -92.30 190.7 125.7 54 28 74 50 -224.10 181.0 131.0 56 27 76 50 .00 181.1 131.1 56 27 78 50 .00 181.0 131.0 56 27 80 50 .00 180.9 130.9 56 27 B2 75 -111.20 180.9 105.9 45 31 84 75 -127.30 181.0 106.0 45 31 86 57 -75.80 181.1 124.1 53 28 88 50 -122.90 181.3 131.3 56 26 90 60 .00 181.6 121.6 52 28 95 103 -1235.20 181.3 78.3 33 LO 38 Reservoir Hill 96 95 .00 191.7 96.7 37 LO 35 98 16 -349.40 179.4 163.4 70 23 100 15 -90.20 179.8 164.8 71 23 Flounder '02 12 -98.90 180.1 168.1 72 22 104 14 -143.20 180.8 166.8 72 22 106 58 -298.20 181.1 123.1 53 28 10B 55 -113.70 181.5 126.5 54 27 110 60 .00 182.2 122.2 52 28 112 60 .00 182.0 122.0 52 28 CITY OF HUNTINGTON BEACH FRI, OCT 16, 19871 12:52 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GP® Feet Feet Pei CK n DROP--CK --- ------ ------ ------ ------ ------ -- ------ 114 93 .00 182.3 89.3 38 LO 34 115 35 -664.20 119.E 144.8 62 25 116 60 -126.70 182.9 122.9 53 27 118 13 -115.70 192.3 169.3 73 21 120 55 10B.00 183.1 129.1 55 26 122 35 -142.10 184.7 149.7 64 23 124 25 -121.70 185.6 166.6 69 21 128 5 -92.70 183.0 178.0 77 20 129 45 .00 183.9 138.9 60 24 130 45 -117.50 186.2 141.2 61 23 131 45 .00 193.5 148.5 64 19 132 55 -231.50 187.6 132.6 57 24 134 50 -95.20 187.3 137.3 59 23 136 50 -102.80 186.9 136.9 59 23 13B 40 -210.60 186.4 146.4 63 22 140 2 -133.70 183.3 181.3 78 20 142 2 -79.70 183.3 181.3 78 20 144 2 -88.80 183.7 1B1.7 7B 20 146 2 -102.90 183.7 181.7 78 20 148 40 .00 196.4 146.4 63 22 150 40 .00 186.4 146.4 63 22 152 28 -208.50 203.6 175.6 76 12 154 25 -283.20 193.8 168.8 73 17 156 25 -88.90 190.5 165.5 71 19 158 30 -113.90 188.3 158.3 68 20 160 5 -215.50 186.4 181.4 78 19 162 3 -211.90 184.8 181.8 78 19 164 2 -204.20 184.1 182.1 78 20 166 2 -146.10 194.0 182.0 7B 20 168 27 -377.70 210.7 1B3.7 79 9 170 26 -156.00 201.8 175.9 76 13 172 25 -273.00 195.2 170.2 73 16 174 25 -135.20 194.3 169.3 73 17 176 12 -128.50 191.8 179.8 77 17 178 5 -218.70 186.9 1B1.9 18 19 180 5 -134.60 184.5 179.5 77 20 182 5 -101.00 184.3 179.3 77 20 194 5 -146.90 1B4.0 179.0 77 20 186 34 -352.10 183.5 149.5 64 23 190 35 -146.80 183.1 14B.1 64 23 192 55 -3B.80 193.1 128.1 55 26 194 5 -246.40 1B3.0 179.0 77 20 196 25 -173.20 205.3 180.3 78 11 198 17 -252.00 200.1 183.1 79 13 200 14 -283.40 193.1 179.1 77 16 Heil 202 10 -137.90 188.9 178.9 77 18 204 10 -104.30 186.9 176.9 76 19 206 9 -169.60 185.5 176.5 76 20 208 14 -171.00 194.0 170.0 73 21 10 15 -490.30 183.3 168.3 72 21 212 9 -134.90 182.9 173.9 75 21 214 .9 -150.70 182.6 173.6 75 21 216 9 -266.60 182.5 173.5 75 21 218 5 -194.50 183.2 178.2 77 20 220 5 -157.10 183.4 178.4 77 20 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 12:52 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK --- ------ ------ ------ ------ ------ -- ------ -- 222 26 -346.80 211.2 185.2 80 HI 9 224 21 -261.40 209.0 188.0 81 HI 9 226 23 -80.20 20B.1 185.1 80 HI 10 228 20 -178.10 194.7 174.7 75 16 230 12 -132.00 189.5 177.5 76 18 232 10 -271.50 186.5 176.5 76 19 234 12 -66.40 185.6 173.6 75 20 236 15 -235.50 184.6 169.6 73 21 Scenario 238 5 -231.80 183.8 118.8 77 20 240 21 -152.40 194.2 173.2 75 17 242 15 -196.80 189.6 174.6 75 18 244 16 -213.20 188.0 172.0 74 19 246 14 -294.50 185.6 171.6 74 20 248 14 .00 185.4 171.4 74 20 250 13 -86.40 184.8 171.8 74 20 252 22 -165.00 189.8 167.E 72 19 254 18 -206.60 189.6 171.6 74 18 256 17 -376.00 185.7 168.7 73 20 25B 17 -321.90 184.E 167.8 72 21 260 23 -216.60 191.3 169.3 72 18 262SP 34 4948.85U 191.3 157.3 68 19 PECK RES. 264SP 18 33BO.67U 197.4 179.4 77 15 WELL 7 . 266 23 .00 191.3 168.3 72 18 270SP 27 3014.92U 229.7 202.7 87 HI 0 WELL 5 272 25 .00 211.8 186.E 80 HI 8 274SP 19 2827.27U 215.3 196.3 85 HI 6 WELL 6 276SP 17 774.09U 192.1 175.1 75 17 WELL 1 278 19 .00 190.2 171.2 74 18 2B4SP 27 3231.98U 221.7 194.7 84 HI 3 WELL 9 286SP 19 3075.60d 224.7 205.7 89 . HI 2 WELL 10 298 22 .00 219.4 197.4 85 HI 4 290SP 44 413.14U 217.0 173.0 74 6 DYKE WELL 292 48 .00 193.6 145.6 63 19 294 12 .00 179.7 167.7 72 22 OC44,Adams 300 25 .00 210.8 185.8 BO HI 9 OC9 301SP 65 312.28U 182.0 117.0 50 28 Overmyer Res. 302 5 .00 183.6 179.6 77 20 304 25 .00 191.3 166.3 72 18 OC35 305 40 .00 1B0.3 140.3 60 26 306 30 .00 179.9 149.9 64 24 307 45 .00 180.4 135.4 58 26 315 34 .00 179.9 145.9 63 25 Maximum Unbalanced Head = .00002 212 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 12:52 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION HGL DISCH H6L LIFT PUMP 140DE GPM Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 262SP 4949 20.0 191.3 171.3 30 PECK RES. 301SP 312 50.0 182.0 132.0 20 Overmyer Res. 290SP 413 -34.0 217.0 251.0 11 ➢YKE WELL 276SP 774 -98.0 192.1 290.1 1 WELL 1 270SP 3015 -62.0 229.7 291.7 5 WELL 5 274SP 2827 -59.0 215.3 274.3 6 WELL 6 264SP 3381 -89.0 197.4 286.4 7 WELL 7 284SP 3232 -64.0 221.7 285.7 9 WELL 9 296SP 3076 -55.0 224.7 279.7 10 WELL 10 18 2907 180.0 SOURCE PUMPS Node Pump# 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000. 15800. 16100. 16250. 16500. 16750. 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000. 20650. 21875. 22525. 22B75. 23350. 23775. 290 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200. 400. 600, 800. 0. 0. 0. 276 1 Head 440 399 348 311 287 205 98 0 Flow 0. 200. 400. 600. 800. 1000. 1200. 0. 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1882. 2259. 3012. 3765. 4518, 4994. 0. 274 6 Head 488 318 296 287 257 206 148 0 Flow 0. 1761. 2201. 2641. 3081. 3521. 3962. 0. 264 7 Head 397 299 291 26B 238 208 174 0 Flow 0. 2817. 3286. 3756. 4225. 4695. 5164. 0. 284 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170. 1873. 3277. 3745. 4214. 0. 0. 286 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859. 232C 2789. 3253. 3719. 0. 0. teration= 1, Flow Correction= 13467.350 Iteration= 2, Flow Correction= 9102.606 Iteration= 3, Flow Correction= 4432.679 Iteration= 4, Flow Correction= 1957.922 Iteration= 5, Flow Correction= 474.200 Iteration= 6, Flow Correction= 355.418 Iteration= 7, Flow Correction= 198.720 Iteration= 8, Flow Correction= 50.272 Iteration= 10, Flop Correction= .029 Iteration= 11, Flop Correction= .012 r CITY OF HUNTINGTON BEACH FR1, OCT 16, 1987, 1:47 PM ULTIMATE SYSTEM -- AVERAGE DAY DEMAND NO WELLS INPUT FILE NAME ADUTMAGW NUMBER OF PIPES 248 NUMBER OF NODES 152 NUMBER OF UNKNOWN DEMAND NODE 3 NUMBER OF SOURCE PUMP NODES 2 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 1.000 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Gp® MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK - LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10, Feet i1000 PRESSURE CHECK - LOW 40. Psi - HIGH 80, Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet 'M OF FIXED DEMANDS = 00 allM OF (+) FIXED DEMANDS = 20200.00 SUM OF PEAKABLE DEMANDS =-24885.71. SUM OF ALL FIXED DEMANDS --- 20200.00 SUM OF ALL PEAKED DEMANDS -- -24885.71 SUM OF ALL DEMANDS --------- -4685.71 Solution reached in 11 iterations Last Flow correction was .01 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:47 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft fti1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 133 .2 .0 .0 LO 4 6 2 2000 12.0 130 58 .2 .0 .0 LO 6 4 6 1600 12.0 130 41 .1 .0 .0 LO 8 8 6 2600 12.0 130 40 .1 .0 .0 LO 10 B 10 2900 12.0 130 257 .7 .6 .2 12 12 10 970 10.0 130 118 .5 .1 .1 14 14 4 2900 16.0 130 263 .4 .2 .1 LO 16 16 6 2620 12.0 130 135 .4 .2 .1 LD 18 18 8 2640 20.0 130 523 .5 .2 .1 LO # 20 20 12 2350 12.0 130 299 .8 .6 .3 22 12 22 2280 12.0 130 62 .2 .0 .0 LO 24 14 16 2600 20.0 130 6 .0 .LO1 .0 .0 LO # 26 18 16 2610 20.0 130 169 .2 .0 .0 LO # 28 18 20 2510 30.0 130 325 .1 .0 .0 LO # 30 24 14 2620 16.0 130 514 .B .5. .2 32 26 16 2700 12.0 130 134 .4 .2 .1 LO 34 28 18 2700 12.0 130 60 .2 .0 .0 LO # 36 30 20 2570 30.0 130 120 .1 LO .0 .0 LO # 38 32 22 3430 9.0 130 87 .6 .7 .2 40 24 26 2680 12.0 130 189 .5 .3 .1 42 26 28 2640 12.0 130 109 .3 .1 .0 LO 44 28 30 2670 12.0 130 67 .2 .0 .0 LO 46 32 30 2550 30.0 130 269 .1 .0 .0 LD # 48 34 32 2800 30.0 130 768 .3 .1 .0 LO # 50 36 24 2640 16.0 130 872 1.4 1.3 .5 52 38 26 2600 12.0 130 278 .8 .6 .2 54 40 28 2580. 12.0 130 165. .5 .2 .1 LO # 56 42 30 2640 12.0 130 87 .2 .1 .0 LO 5B 46 34 2320 12.0 130 121 .3 .1 .1 LO 60 36 38 2640 12.0 130 353 1.0 1.0 .4 62 38 40 2640 12.0 130 245 .7 .5 .2 64 40 42 2700 12.0 130 150 .4 .2 .1 LO # 66 42 44 2550 12.0 130 83 .2 .1 .0 L0 68 46 48 700 12.0 130 326 .9 .2 .3 70 50 36 2550 16.0 130 1491 2.4 3.3 1.3 72 52 38 2640 12.0 130 401 1.1 1.2 .5 74 54 40 2650 12.0 130 333 .9 .9 .3 76 56 42 2620 12.0 130 310 .9 .8 .3 # 78 58 44 2640 8.0 130 108 .7 .8 .3 80 62 46 2950 12.0 120 222 .6 .5 .2 82 64 48 5300 12.0 130 180 .5 .6 .1 84 50 52 2700 12.0 130 649 1.8 3.1 1.1 86 52 54 2600 12.0 130 331. .9 .9 .3 Be 54 56 2640 12.0 130 194 .6 .3 .1 90 56 58 2660 12.0 130 59 .2 .0 .0 LO 92 60 58 1330 12.0 130 108 .3 .1 .0 LO 94 60 62 1130 B.0 130 67 .4 .1 .1 8 & 12 96 66 52 2640 12.0 130 351 1.0 1.0 .4 97, 68 54 2640 12.0 130 3B3 1.1 1.1 .4 98 70 56 2640 12.0 130 376 1.1 1.1 .4 99 72 58 2640 8.0 130 120 .8 1.0 .4 100 72 5B 2640 8.0 130 120 .8 1.0 .4 101 74 60 2640 12.0 130 324 .9 .B .3 102 80 62 3200 12.0 120 231 .7 .6 .2 104 '84 64 2850 12.0 70 141 .4 .6 .2 CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:47 PM PIPE --NODES-- LENGTH DIAN -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK --- ---- ----- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2B00 16.0 130 562 .9 .6 .2 108 50 66 5250 30.0 120 3804 1.7 2.1 .4 110 66 68 2640 30.0 120 2992 1.4 .7 .3 112 68 70 2680 30.0 120 2094 1.0 .4 .1 114 68 70• 2680 12.0 130 204 .6 .4 .1 116 70 72 2600 12.0 130 143 .4 .2 .1 LO 118 70 72 2600 30.0 120 1473 .7 .2 .1 LO 120 72 74 1450 30.0 120 1174 .5 .1 .0 LO 122 74 76 600 30.0 120 671 .3 .0 .0 LO 124 76 78 150 8.0 130 224 1.4 .2 1.1 126 7B 80 1050 12.0 130 224 .6 .2 .2 128 80 82 1150 12.0 130 216 .6 .2 .1 130 92 84 1250 12.0 130 104 .3 .0 .0 LO 132 50 98 5300 12.0 130 405 1.1 2.5 .5 134 66 100 25BO 12.0 130 233 .7 .4 .2 136 68 102 2640 12.0 130 103 .3 .1 .0 LO 138 70. 104 2630 12.0 130 106 .3 .1 .0 LO 140 72 86 1320 12.0 130 110 .3 .1 .0 LO 142 86 106 1320 12.0 130 46 .1 .0 .0 LO 144 88 86 1450 14.0 120 12 .0 LO .0 .0 LO 146 108 98 1280 12.0 130 62 .2 .0 .0 LO 148 90 98 650 14,0 120 118 .2 .0 .0 LO 149 88 74 1350 12.0 130 45 .1 .0 .0 LO 151 90 76 1300 30.0 120 919 .4 10 .0 LD 52 90 96 3150 42.0 120 294 .1 LO .0 .0 LO 15B 9B 100 2680 12.0 130 56 .2 .0 .0 LD 160 100 102 2680 12.0 130 199 .6 .3 .1 162 102 104 2750 12.0 130 203 .6 .4 .1 164 104 106 2580 12.0 130 127 .4 .1 .1 LO 166 108 106 1500 12.0 130 74 .2 .0 .0 LO 168 110 108 700 12.0 130 249 .7 .1 .2 170 112 90 -950 21.0 120 870 .8 .1 11 171 112 90 950 16.0 130 . 461 .7 .1 .1 172 112 110 350 21.0 120 220 .2 .0 .0 LO 174 116 110 750 21.0 120 29 .0 LO .0 .0 LO 176 114 96 3400 42.0 120 2662 .6 .1 .0 LO 178 104 119 2640 12.0 130 39 .1 .0 .0 LO 179 120 106 2640 B.0 130 35 .2 .1 .0 LO 180 120 106 2640 6.0 130 17 .2 .1 .0 LO 182 116 120 2550 12.0 130 85 .2 .1 .0 LO 1B4 122 116 1900 21.0 120 241 .2 .0 . ,0 LO 188 128 114 4000 42.0 120 3131 .7 .2 .1 LO 190 118 120 2550 8.0 130 18 .1 .0 .0 LO 192 122 120 2150 8.0 130 38 .2 .1 .0 LO 194 122 124 600 8.0 130 49 .3 .0 .1 LO 196 131 118 2640 B.0 130 94 .6 .6 .2 197 132 130 800 8.0 130 97 .6 .2 .2 198 129 130 850 6.0 130 21 .2 .0 .1 LD 199 120 129 1250 8.0 130 21 .1 .0 .0 LO "DO 132 120 2750 B.0 130 40 .3 .1 .0 LD -01 134 122 2640 21.0 120 470 .4 .1 .0 LO 202 136 124 3250 12.0 130 72 .2 .1 .0 LO 206 140 128 700 12.0 130 1 .0 LO .0 .0 LO 208 142 128 1900 12.0 130 74 .2 .0 .0 LO 210 f44 142 1150 12.0 130 227 .6 .2 .2 CITY OF HUNTINGTON BEACH FRI, OCT 161 19875 1:47 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 212 292 132 1950 8.0 130 B4 .5 .4 .2 214 134 132 2000 12.0 130 114 .3 .1 .0 LO 216 134 136 1200 12.0 130 162 .5 .1 .1 LO LB 06 08 2050 12.0 130 113 .3 .1 .0 LO 220 164 146 2200 12.0 130 135 .4 .1 .1 LO 222 .142 140 1800 12.0 130 74 .2 .0 .0 LD 224 146 128 4200 42.0 120 3149 .7 .2 .1 LO 226 146 144 650 24.0 120 316 .2 .0 .0 LO 228 152 131 2700 B.0 130 179 1.1 2.0 .8 230 154 132 3150 8.0 130 85 .5 .6 .2 232 156 134 2640 21.0 120 841 .8 .4 .1 234 158 136 2640 12.0 130 126 .4 .1 .1 LO 236 160 150 1400 12.0 130 98 .3 .0 .0 LO 238 150 148 700 14.0 130 98 .2 .0 .0 LO 240 148 13B 500 12.0 130 98 .3 .0 .0 LO 242 162 140 2640 12.0 130 61 .2 .0 .0 LO 244 164 146 2120 42.0 120 3433 .8 .1 .1 LO 246 152 154 2640 8.0 130 176 1.1 1.9 .7 248 154 156 2640 8.0 130 43 .3 .1 .1 LO 250 156 159 1300 12.0 130 288 .8 .3 .3 252 158 160 2000 12.0 130 155 .4 .2 .1 LO 254 162 160 2660 12.0 130 158 .4 .2 .1 LO 256 164 162 2660 12.0 130 196 .6 .3 .1 257 180 164 2700 12.0 130 160 _ .5 .2 .1 LO 258 164 166 2640 12.0 130 182 .5 .3 .1 260 168 152 2550 12.0 130 564 1.6 2.2 .9 261 168 170 2330 21.0 120 2420 2.2 2.3 1.0 262 170 154 3050 8.0 130 160 1.0 1.9 .6 263 170 172 2000 21.0 120 1948 1.8 1.3 .7 264 172 156 2650 21.0 120 1175 1.1 .7 .3 265 172 174 1350 16.0 130 500 .8 .2 .2 266 174 150 2650 8.0 130 108 .7 .8 .3 267 174 176 1950 16.0 130 291 .4 .1 .1 LO 269 176 178 2640 16.0 130 266 .4 .1 .1 LO 270 17B 162 2700 12.0 130 234 .7 .5 .2 271 180 178 2700 16.0 120 199 .3 .1 .0 LO 272 IBO 164 2700 42.0 120 3990 .9 .2 .1 LO 273 180 182 1150 20.0 120 797 .8 .2 .2 # 274 166 184 2680 12.0 130 36 .1 . .0 .0 LO 275 182 184 1550 20.0 125 991 1.0 .3 .2 1 277 184 186 2650 20.0 125 B54 .9 .4 .2 # 279 196 190 2750 16.0 125 452 .7 .4 .2 290 190 192 1340 16.0 125 146 .2 .0 .0 LO 282 192 194 3200 14.0 130 107 .2 .1 .0 LO 294 21B 194 5300 14.0 130 140 .3 .2 .0 LO 286 196 170 2660 8.0 130 2 .0 LO .0 .0 LO 288 198 174 2640 12.0 130 24 .1 LD .0 .0 LD 290 200 176 2500 12.0 130 114 .3 .1 .0 LO 292 202 204 2700 8.0 130 92 .6 .6 .2 ?94 178 204 800 12.0 130 12 .0 LO .0 .0 LO 296 206 190 2700 36.0 120 5281 1.7 .8 .3 298 206 182 3800 12.0 130 295 .8 1.0 .3 300 194 208 2640 12.0 130 27 .1 LO .0 .0 LO 301 186 210 2640 B.0 130 50 .3 .2 .1 LO 302 190 212 2640 12.0 130 160 .5 .2 .1 LO CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:47 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gp® Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 304 196 199 3300 8.0 130 139 .9 1.6 .5 306 199 200 2700 12.0 130 28 .1 LO .0 .0 LO 308 202 200 2640 12.0 130 199 .6 .3 .1 310 206 202 2640 12.0 130 196 .6 .3 .1 312 206 208 2640 12.0 130 423 1.2 1.4 .5 314 208 210 2640. 12.0 130 27B .8 .6 .2 316 210 212 2640 12.0 130 236 .7 .5_ .2 318 212 214 1300 12.0 130 260 .7 .3 .2 320 222 196 2700 12.0 130 315 .9 .B .3 322 224 272 1320 12.0 130 165 .5 .1 .1 LO 324 228 200 2640 12.0 130 170 .5 .3 .1 LO 326 230 202 3000 12.0 130 234 .7 .5 .2 327 232 206 2640 12.0 130 362 1.0 1.0 .4 328 232 206 2640 36.0 120 6003 1.9 1.0 .4 330 236 210 2700 12.0 130 39B 1.1 1.2 .5 332 214 216 1000 10.0 130 110 .4 .1 .1 334 238 216 2100 8.0 130 157 1.0 1.2 .6 336 302 220 4506 20.0 130 491 .5 .3 .1 LO t 338 220 219 1250 14.0 130 334 .7 .2 .2 i 340 289 224 1700 12.0 130 476 1.4 A. .6 342 228 224 2000 12.0 130 4 .0 LO .0 .0 LO 344 230 228 2640 12.0 130 272 .8 .6 .2 346 232 230 2640 12.0 130 324 .9 .8 .3 348 232 234 2640 20.0 130 1237 1.3 .8 .3 i 350 234 236 2640 20.0 130 1326 1.4 .9 .4 A 352 236 238 5030 20.0 130 880 .9 .8 .2 t 354 224 226 1300 12.0 130 54 .2 .0 .0 LO 356 NO 22B 2700 12.0 130 81 .2 .1 .0 LD 358 242 230 2700 12.0 130 314 .9 .8 .3 360 244 232 2700 36.0 120 8196 2.6 1.9 .7 362 246 234 2700 12.0 130 156 .4 .2 .1 LO 364 250 236 2680 12.0 130 187 .5 .3 .1 366 240 276 3800 B.0 130 26 .2 .1 .0 LO 368 242 240 2640 10.0 130 259 1.1 1.3 .5 370 244 242 2660 10.0 130 311 1.3 1.9 .7 372 244 246 2550 12.0 130 593 1.7 2.5 1.0 374 246 248 1500 12.0 130 249 .7 .3 .2 35 248 250 1200 10.0 130. 249 1.0 .6 .5 378 252 242 2540 12.0 130 449 1.3 1.5 .6 380 254 244 2640 36.0 120 9314 2.9 2.3 .9 382 256 246 2540 12.0 130 106 .3 .1 .0 LO 394 258 250 2640 12.0 130 25 .1 LO .0 .0 LO 396 278 252 1750 12.0 130 614 1.7 1.8 1.0 388 254 256 2600 12.0 130 B29 2.4 4.7 1.8 390 256 258 2640 12.0 130 347 1.0 .9 .4 392 260 254 2600 36.0 120 10962 3.5 3.1 1.2 394 262 260 150 36.0 130 2179 .7 .0 .1 LO PECK RES. 395 266 260 100 36.0 130 9000 2.9 .1 .7 396 264 266 250 12.0 130 0 .0 LD .0 .0 LO WELL 7 400 270 16B 970 12.0 130 0 .0 LO .0 .0 L0 WELL 5 402 272 274 200 12.0 130 0 .0 LO .0 .0 LO WELL 6 404 272 199 1390 12.0 130 165 .5 .1 .1 LO 406 278 276 170 8.0 130 0 .0 LO .0 .0 LO WELL 1 408 254 27B 900 12.0 130 614 1.7 .9 1.0 414 284 168 1990 16.0 130 0 .0 LO .0 .0 LO WELL 9 CITY OF HUNTINGTON REACH FRI, OCT 169 1981, 1:47 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ftl1000 CK --- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 416 222 288 1600 12.0 130 476 1.4 1.0 .6 418 286 288 1050 16.0 130 0 .0 LO .0 .0 LO WELL 10 420 292 290 1400 6.0 120 0 .0 LO .0 .0 LO DYKE WELL 62 131 292 750 9.0 130 84 .5 .1 .2 424 294 50 2200 30.0 120 6700 3.0 2.5 1.1 OC44 450 300 222 2850 12.0 130 1138 3.2 9.2 3.2 452 300 168 5300 22.0 120 3362 2.8 7.7 1.5 OC9 500 301 112 100 36.8 120 1551 .5 .0 .0 LO Over®yer Res. 501 238 302 2000 20.0 130 491 .5 .1 .1 LO # 502 95 84 1000 16.0 130 615 1.0 .3 .3 503 96 95 452 24.0 120 2956 2.1 .3 .7 504 304 266 10 36.0 130 9000 2A .0 .7 005 510 95 84 1000 20.0 130 1106 1A .3 .3 DOWNTOWN LOOP 511 84 307 2800 20.0 130 996 1.0 .6 .2 DOWNTOWN LOOP 512 305 306 7200 20.0 130 471 .5 .4 .1 LO DOWNTOWN LOOP 513 46 306 2000 20.0 130 463 .5 .1 .1 LO DOWNTOWN LOOP 514 62 46 2900 20.0 130 931 1.0 .5 .2 DOWNTOWN LOOP 515 80 62 2300 20.0 130 1144 1.2 .6 .3 DOWNTOWN LOOP 516 114 115 3490 12.0 130 469 1.3 2.2 .6 517 64 115 b850 12.0 130 195 .6 .8 .1 521 154 132 3150 8.0 130 85 .5 .6 .2 # 522 170 154 3050 8.0 130 160 1.0 1.9 .6 # 523 196 170 2660 8.0 130 2 .0 LO .0 .0 LO 4 530 306 3115 450 30.0 130 934 .4 .0 .0 LO # 531 315 34 225 30.0 130 934 .4 .0 .0 LO # 532 307 64 20 12.0 130 525 1.5 .0 .8 # 533 307 305 1500 20.0 130 471 .5 .1 .1 LO # 534 76 80 900 20.0 130 1366 IA .3 .4 # CITY OF HUNTINGTON BEACH FRI, OCT 16, 1997, 1:47 PM GROUND ELV FLOW H61. EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -190.30 179.8 174.8 75 6 '4 5 -89.80 179.8 174.8 75 6 6 5 -158.60 179.8 174.B 75 6 Banning 8 5 225.30 179.8 174.8 75 6 10 4 -375.50 179.2 175.2 75 6 12 4 -118.80 179.4 175.4 76 6 14 6 -244.70 180.0 174.0 75 6 16 7 -173.20 180.0 173.0 74 6 18 4 955.63U 180.OF 176.0 76 6 20 2 -144.90 190.0 178.0 77 6 22 4 -149.30 179.3 175.3 76 6 24 6 -169.50 180.5 174.5 75 6 . 26 8 -224.70 180.1 172.1 74 6 28 4 -145.60 180.0 176.0 76 6 30 4 -303.70 180.0 176.0 76 6 32 6 -411.90 180.0 174.0 75 6 .34 30 -287.00 180.0 150.0 65 7 36 8 -266.00 191.7 173.7 75 5 38 9 -230.80 180.8 171.8 74 5 40 6 -262.30 180.3 174.3 75 6 42 6 -290.60 180.1 174.1 75 6 44 18 -190.90 180.0 162.0 70 6 46 36 -243.50 180.2 144.2 62 7 48 36 -505.30 179.9 143.9 62 7 50 12 351.30 185.1 173.1 75 3 52 10 -267.40 182.0 172.0 74 5 54 7 -187.20 181.1 174.1 75 5 56 10 -201.10 180.8 170.8 74 5 58 25 -298.20 180.8 155.B 67 6 60 35 -149.00 180.8 145.8 63 6 62 40 -288.20 180.7 140.7 60 7 64 45 -852.10 180.5 135.5 58 7 66 10 -228.10 183.0 173.0 74 4 68 8 208.70 182.3 174.3 75 5 70 10 -199.50 181.9 171.9 74 5 72 55 -92.30 181.7 126.7 54 7 74 50 -224.10 181.7 131.7 57 7 76 50 .00 181.7 131.7 57 7 . 78 50 .00 181.5 131.5 57 7 90 50 .00 181.3 131.3 56 7 82 75 -111.20 181.2 106.2 46 9 84 75 -127.30. 181.1 106.1 45 9 86 57 -75.90 191.7 124.7 54 7 Be 50 -122.90 181.7 131.7 57 7 90 60 .00 181.7 121.7 52 7 95 103 -1235.20 181.4 78.4 33 LO 11 Reservoir Hill 96 95 .00 181.7 96.7 37 LO 10 98 16 -349.40 182.5 166.5 72 5 100 15 -90.20 182.5 167.5 72 5 Flounder 102 12 -99.90 182.2 170.2 73 5 104 14 -143.20 181.8 167.8 72 5 106 58 -298.20 191.7 123.7 53 7 108 55 -113.70 181.7 126.7 54 7 110 60 .00 181.8 121.9 52 7 112 60 .00 181.9 121.8 52 7 CIT`1 OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:47 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK 7. DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 114 93 .00 181.9 89.9 38 LO 10 115 35 -664.20 179.1 144.7 62 7 116 60 -126.70 181.8 121.8 52 7 118 13 -115.70 181.8 168.E 73 5 120 55 -108.00 181.8 126.8 54 7 122 35 -142.10 181.9 . 146.9 63 b 124 25 -121.70 181.8 156.9 67 5 128 5 -92.70 182.1 177.1 76 5 129 45 .00 181.8 136.8 59 6 130 45 -117.50 181.7 136.7 59 6 131 45 .00 182.4 137.4 59 6 132 55 -231.50 181.9 126.9 55 7 134 50 -95.20 182.0 132.0 57 6 136 50 -102.80 191.9 131.9 57 6 138 40 -210.60 181.8 141.8 61 6 140 2 -133.70 192.1 190.1 78 5 142 2 -79.70 182.1 190.1 78 5 144 2 -8B.B0 1B2.3 180.3 78 4 146 2 -102.90 182.3 1BO.3 78 4 148 40 .00 181.8 141.E 61 6 150 40 .00 1B1.8 141.8 61 6 152 28 -209.50 184.4 156.4 67 4 154 25 -283.20 182.5 157.5 68 5 156 25 -88.90 . 182.4 157.4 68 5 158 30 -113.90 192.0 152.0 65 5 160 5 -215.50 181.9 176.9 76 5 ' 162 3 -211.90 192.1 179.1 77 5 164 2 -204.20 1B2.4 190.4 78 4 166 2. -146.10 182.1 180.1 78 5 16B 27 -377.70 186.7 159.7 69 3 170 26 -156.00 184.4 158.4 68 4 172 25 -273.00 183.0 158.0 68 5 174 25 -135.20 182.8 157.8 .68 5 176 12 -128.50 102.7 170.7 73 5 178 5 -218.70 182.6 177.6 76 4 180 5 -134.60 182.7 177.7 77 4 182 5 -101.00 182.5 177.5 76 4 184 5 -146.90 182.1 177.1 76 5 186 34 352.10 181.7 147.7 64 6 190 35 -146.80 181.3 146.3 63 6 192 55 -38.80 181.2 126.2 54 7 194 5 246.40 181.2 176.2 76 5 196 25 -173.20 184.4 154.4 69 4 198 17 -252.00 182.8 165.8 71 5 200 14 -283.40 182.8 168.8 73 5 Heil 202 10 -137.90 183.1 173.1 75 4 204 10 -104.30 182.6 172.6 74 5 206 9 169.60 1B3.5 174.5 75 4 208 14 -171.00 182.1 168.1 72 5 210 15 -490.30 1B1.5 166.5 72 5 212 9 -134.90 181.0 172.0 74 5 214 9 -150.70 180.8 171.8 74 5 216 9 -266.60 180.7 171.7 74 6 218 5 -194.50 181.3 176.3 76 5 220 5 -157.10 181.5 176.5 76 5 I CITY OF HUNTINGTON BEACH FRI, OCT 16, 1987, 1:47 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GP® Feet Feet Psi CK % DROP--CK ---- -- -- ------ ------ ------ ------ -- ------ -- 222 26 -346.80 185.2 159.2 69 3 224 21 -261.40 183.1 162.1 70 5 226 23 -80.20 1B3.0 160.0 69 5 228 20 -178.10 183.1 163.1 70 5 2�O 12• -132.00 183.7 171.7 74 4 232 10 -271.50 184.5 174.5 75 3 234 12 -66.40 183.1 171.1 74 4 236 15 -235.50 182.7 167.7 72 5 Scenario 238 5 -231.80 181.9 176.9 76 5 240 21 -152.40 183.1 162.1 70 5 242 15 -186.80 184.5 169.5 73 4 244 . 16 -213.20 186.3 170.3 73 3 246 14 294.50 183.9 169.9 73 4 248 14 .00 183.6 169.6 73 .4 250 13 -86.40 1B3.0 170.0 73 4 252 22 -165.00 185.9 163.9 71 3 254 18 -206.60 188.6 170.6 73 1 256 17 -376.00 184.0 167.0 72 4 258 17 -321.90 183.0 166.0 71 4 260 23 -216.60 191.7 168.7 73 0 262SP 34 2178.95U 191.7 157.7 68 0 PECK RES. 264 18 .00 191.8 173.E 75 0 WELL 7 266 23 .00 191.8 168.8 73 0 270 27 .00 186.7 159.7 69 3 WELL 5 272 25 .00 182.9 157.9 68 5 274 19 .00 182.9 163.9 71 5 WELL 6 276 17 .00 197.7 170.7 74 2 WELL 1 278 19 .00 187.7 169.7 73 2 284 27 .00 1B6.7 159.7 69 3 WELL 9 286 19 .00 184.2 165.2 71 4 WELL 10 29B 22 .00 104.2 162.2 70 4 290 44 .00 192.3 138.3 59 6 DYKE WELL 292 48 .00 192.3 134.3 58 6 294 12 6700.00 187.6 175.6 76 2 OC44,Adams 300 25 4500.00 194.4 169.4 73 -1 OC9 3015P 65 1551.13U 181.8 116.8 50 7 Overmyer Res. 302 5 .00 181.8 176.8 76 5 304 25 9000.00 191.8 166.8 72 0 OC35 305 40 .00 180.4 140.4 60 7 306 30 .00 180.1 150.1 65 7 307 45 .00 180.5 135.5 58 7 315 34 .00 190.1 146.1 63 7 Maximum Unbalanced Head = .00000 19B CITY OF HUNTINGTON BEACH FRI,:-OCT 16, 1987, 1:47 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION H8L DISCH H8L LIFT PUMP 40DE 6pm Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 262SP 2119 20.0 191.7 171.7 30 PECK RES. 301SP 1551 50.0 181.8 131.8 20 Overmyer Res. 18 956 180.0 SOURCE PUMPS Node Pump# 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000. 15800. 16100. 16250. 16500. 16750, 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000. 20650. 21875. 22525. 22875. 23350. 23775. Iteration= 1, Flow Correction= 7624.683 Iteration= 21 Flow Correction= 3309.454 Iteration= 3, Flow Correction= 1529.832 Iteration= 4, Flow Correction= 650.501 Iteration= 5, Flow Correction= 301.053 Iteration= 6, Flow Correction= 246.910 Iteration= 7, Flow Correction= 82.525 Iteration= 8, Flow Correction= 38.900 Iteration= 9, Flow Correction= 6.788 Iteration= 10, Flow Correction= .198 Iteration= 11, Flow Correction= .014 r CITY OF HUNTINGTON BEACH TUE, NOV 10, 1987, 3:39 PM ULT. SYS. W/BOLSA -- MAX DAY k FIRE @ NODE 28 W/NEW WELLS, NO MWD INPUT FILE NAME NEWELLSI NUMBER OF PIPES 255 NUMBER OF NODES 158 NUMBER OF UNKNOWN DEMAND NODE 10 NUMBER OF SOURCE PUMP NODES 9 NUMBER OF BOOSTER PUMP PIPES 0 NUMBER OF PRV PIPES 0 NUMBER OF CHECK VALVES 0 PEAKING FACTOR 2.430 C or n Multiply Factor 1.000 STOP WHEN FLOW CORR LESS THAN .100 Bpm MAXIMUM NUMBER OF ITERATIONS 50 VELOCITY CHECK -.LOW .1 Fps - HIGH 10.0 Fps HEADLOSS CHECK - LOW 0. Feet /1000 - HIGH 10. Feet 11000 PRESSURE CHECK - LOW 40. Psi - HIGH 80. Psi PRESSURE DROP CHECK ALLOWABLE DROP FROM STATIC 50. Pct STATIC HGL ELEVATION 0. Feet SUM OF (-} FIXED DEMANDS = -5000.00 SUM OF (+} FIXED DEMANDS = 10000.00 SUM OF PEAKABLE DEMANDS =-25905.71 SUM OF ALL FIXED DEMANDS --- 5000.00 SUM OF ALL PEAKED DEMANDS -- -62950.87 SUM OF ALL DEMANDS --------- -57950.87 Solution reached in 14 iterations Last flow correction was .01 CITY OF HUNTINGTON BEACH TUE, NOV 10, 1987, 3:40 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gp® Fps CK ft ft11000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 2 4 2 2480 16.0 130 30 .0 LO .0 .0 LO 4 6 2 2000 12.0 130 433 1.2 1.1 .5 6 6 4 1600 12.0 130 489 1.4 1.1 .7 B 8 6 2600 12.0 130 943 2.7 5.9 2.3 10 8 10 2900 12.0 130 804 2.3 4.9 1.7 12 12 10 970 10.0 130 108 .4 .1 .1 14 4 14 2900 16.0 130 240 .4 .1 .0 LO 16 16 6 2620 12.0 130 363 1.0 1.0 .4 18 18 B 2640 20.0 130 2295 2.3 2.6 1.0 1 20 20 12 2350 12.0 130 740 2.1 3.4 1.5 22 12 22 2280 12.0 130 343 1.0 .8 .4 24 16 114 2600 20.0 130 2128 2.2 2.2 .9 # 26 18 16 2610 20.0 130 4096 4.2 7.5 2.9 # 28 18 20 2510 30.0 130 8657 3.9 4.0 1.6 # 30 14 24 2620 16.0 130 1773 2.8 4.7 1.8 32 16 26 2700 12.0 130 1185 3.4 9.4 3.5 34 18 2B 2700 12.0 130 1940 5.5 23.4 8.6 # 36 20 30 2570 30.0 130 7565 3.4 3.2 1.2 # 38 32 22 3430 8.0 130 20 .1 .0 .0 LO 40 24 26 2680 12.0 130 574 1.6 2.4 .9 42 26 2B 2640 12.0 130 983 2.8 6.5 2.5 44 30 28 2670 12.0 130 1600 4.5 16.2 6.1 46 30 32 2550 30.0 130 4019 1.8 1.0 .4 # 48 32 34 2800 30.0 130 2998 1.4 .6 .2 # 50 24 36 2640 16.0 130 787 1.3 1.1 .4 52 26 38 2600 12.0 130 229 .7 .4 .2 54 40 28 25BO 12.0 130 831 2.4 4.6 1.8 # 56 30 42 2640 12.0 130 1208 3.4 9.5 3.6 58 34 46 2320 12.0 130 319 .9 .7 .3 60 36 38 2640 12.0 130 492 1.4 1.8 .7 62 38 40 2640 12.0 130 432 1.2 1.4 .5 64 42 40 2700 12.0 130 518 1.5 2.0 .8 # 66 42 44 2550 12.0 130 272 .8 .6 .2 68 46 48 700 12.0 130 968 2.7 1.7 2.4 70 50 36 2550 16.0 130 351 .6 .2 .1 LO 72 52 38 2640 12.0 130 271 .8 .6 .2 74 54 40 2650 12.0 130 519 1.5 2.0 .8 76 56 42 2620 12.0 130 288 .8 .7 .3 1 78 58 44 2640 8.0 130 192 1.2 2.3 .9 80 46 62 2950 12.0 120 2 .0 LO .0 .0 LO 82 64 48 5300 12.0 130 260 .7 1.1 .2 84 50 52 2700 12.0 130 430 1.2 1.4 .5 86 52 54 2600 12.0 130 39 .1 .0 .0 LO 88 56 54 2640 12.0 130 294 .8 .7 .3 90 58 56 2660 12.0 130 362 1.0 1.0 .4 92 60 58 1330 12.0 130 737 2.1 1.9 1.4 94 62 60 1130 8.0 130 398 2.5 3.6 3.2 B 6 12 96 66 52 2640 12.0 130 530 1.5 2.1 .8 97 68 54 2640 12.0 130 640 1.8 2.9 1.1 98 70 56 2640 12.0 130 710 2.0 3.5 1.3 99 72 58 2640 8.0 130 270 1.7 4.3 1.6 100 72 58 2640 8.0 130 270 1.7 4.3 1.6 101 74 60 2640 12.0 130 711 2.0 3.6 1.3 102 80 62 3200 12.0 120 181 .5 .4 .1 104 94 64 2850 12.0 70 190 .5 1.1 .4 CITY OF HUNTINGTON BEACH TUE, NOV 10, 1987, 3:40 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 106 84 64 2800 16.0 130 760 1.2 1.1 .4 109 66 50 5250 30.0 120 1985 .9 .6 .1 110 6B 66 2640 30.0 120 3364 1.5 .8 .3 112 70 68 2680 30.0 120 4226 1.9 1.3 .5 114 70 68 2680 12.0 130 411 1.2 1.3 .5 116 72 70 2600 12.0 130 490 1.4 1.8 .7 118 72 70 2600 30.0 120 5032 2.3 1.8 .7 120 74 72 1450 30.0 120 5618 2.5 1.2 .8 122 76 74 600 30.0 120 6213 2.9 .6 1.0 124 76 78 150 8.0 130 165 1.1 .1 .6 126 78 80 1050 12.0 130 165 .5 .1 .1 LO 128 80 82 1150 12.0 130 92 .3 .0 .0 LO 130 84 82 1250 12.0 130 178 .5 .1 .1 132 50 98 5300 12.0 130 350 1.0 1.9 .4 134 66 100 2580 12.0 130 295 .8 .7 .3 136 68 102 2640 12.0 130 126 .4 .1 .1 LO 138 104 70 2630 12.0 130 309 .9 .8 .3 140 86 72 1320 12.0 130 669 1.9 1.6 1.2 142 106 86 1320 12.0 130 96 .3 .0 .0 LO 144 98 86 1450 14.0 120 757 1.6 1.2 .8 146 10B 88 1280 12.0 130 781 2.2 2.1 1.6 148 90 88 650 14.0 120 935 1.9 .8 1.2 149 88 74 1350 12.0 130 661 1.9 1.6 1.2 151 90 76 1300 30.0 120 7382 3.4 1.8 1.4 152 90 96 3150 42.0 120 3195 .7 .2 .1 LO 158 100 98 2680 12.0 130 499 1.4 1.9 .7 160 102 100 2680 12.0 130 423 1.2 1.4 .5 162 104 102 2750 12.0 130 538 1.5 2.2 .8 164 106 104 2580 12.0 130 612 1.7 2.6 1.0 166 108 106 1500 12.0 130 913 2.6 3.2 2.1 168 110 108 700 12.0 130 1970 5.6 6.2 8.9 170 112 90 950 21.0 120 7519 7.0 7.7 8.1 171 112 90 950 16.0 130 3984 6.4 7.7 8.1 172 112 110 350 21.0 120 1707 1.6 .2 .5 174 116 110 750 21.0 120 264 .2 .0 .0 LO 176 114 96 3400 42.0 120 2491 .6 .1 .0 LO 179 118 104 2640 12.0 130 584 1.7 2.5 .9 179 120 106 2640 8.0 130 354 2.3 7.0 2.7 180 120 106 2640 6.0 130 166 1.9 7.0 2.7 182 116 120 2550 12.0 130 5BB 1.7 2.4 .9 184 122 116 1900 21.0 120 1160 1.1 .5 .3 188 128 114 4000 42.0 120 3519 .8 .3 .1 LO 190 120 118 2550 8.0 130 365 2.3 7.2 2.8 192 122 120 2150 B.0 130 245 1.6 2.9 1.3 194 124 122 600 8.0 130 9 .1 LO .0 .0 LO 196 131 118 2640 8.0 130 500 3.2 13.4 5.1 197 132 130 B00 9.0 130 372 2.4 2.3 2.9 19B 130 129 850 6.0 130 86 1.0 .7 .B 199 129 120 1250 8.0 130 86 .6 .2 .2 200 132 120 2750 8.0 130 228 1.5 3.3 1.2 201 134 122 2640 21.0 120 1741 1.6 1.4 .5 202 136 124 3250 12.0 130 305 .9 .9 .3 206 140 128 700 12.0 130 115 .3 .0 .0 LO 208 128 142 1800 12.0 130 26 .1 LO .0 .0 LO 210 144 142 1150 12.0 130 92 .3 .0 .0 LO CITY OF HUNTINGTDN BEACH TUE, NOV 10, 19819 3:40 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C Gm Fps CK ft ft/1000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 212 292 132 1950 B.0 130 279 1.B 3.3 1.7 214 04 02 2000 12.0 130 430 1.2 1.1 .5 216 134 136 1200 12.0 130 379 1.1 .5 .4 218 13b 138 2050 12.0 130 637 1.8 2.3 1.1 220 164 146 2200 12.0 130 230 .7 .4 .2 222 140 142 1800 12.0 130 75 .2 .0 .0 LO 224 146 128 4200 42.0 120 3655 .B .3 .1 LO 226 14b 144 650 24.0 120 2172 1.5 .3 .4 228 152 131 2700 8.0 130 347 2.2 7.0 2.6 230 154 132 3150 8.0 130 227 1.4 3.7 1.2 232 15b 134 2640 21.0 120 2781 2.6 3.4 1.3 234 158 136 2640 12.0 130 813 2.3 4.6 1.7 236 150 160 1400 12.0 130 125 .4 .1 .1 LO 23B 148 150 700 14.0 130 125 .3 .0 .0 LO 240 138 148 500 12.0 130 125 .4 .0 .1 LO 242 Id "0 2640 12.0 130 516 1.5 2.0 .7 244 164 146 2120 42.0 120 5847 1.4 .4 .2 246 1A 154 2"0 8.0 130 330 2A 6.2 2.3 248 156 154 2640 8.0 130 106 .7 .8 .3 250 158 156 1300 12.0 130 424 1.2 .7 .5 252 158 160 2000 12.0 130 1184 3.4 6.9 3.5 254 160 162 2660 12.0 130 786 2.2 4.3 1.6 256 162 164 2660 12.0 130 415 1.2 1.3 .5 257 180 164 2700 12.0 130 263 .7 .6 .2 258 164 166 2640 12.0 130 648 1.8 3.0 1.1 260 168 152 2550 12.0 130 1184 3.4 8.8 3.5 261 168 170 2330 21.0 120 4392 4.1 7.0 3.0 262 170 154 3050 9.0 130 353 2.3 8.1 2.7 263 170 172 2000 21.0 120 3619 3.4 4.2 2.1 264 172 156 2650 21.0 120 2678 2.5 3.2 1.2 265 172 174 1350 16.0 130 277 .4 .1 .1 LO 266 174 158 2650 8.0 130 198 1.3 2.4 .9 267 174 176 1950 16.0 130 517 .8 .4 .2 269 176 178 2640 16.0 130 2666 4.3 10.1 3.8 270 178 162 2700 12.0 130 660 1.9 3.2 1.2 271 178 180 2700 16.0 120 1455 2.3 3.9 1.5 272 180 164 2700 42.0 120 6544 1.5 .6 .2 273 180 182 1150 20.0 120 2614 2.7 1.7 1.4 t 274 16b 184 2690 12.0 130 293 .8 .7 .3 275 192 184 1550 20.0 125 2953 3.0 2.6 1.7 # 277 1B4 186 2650 20.0 125 2686 2.7 3.7 1.4 Y 278 186 108 1400 12.0 130 614 1.7 1.4 1.0 M 279 18b 190 2750 16.0 125 1110 1.8 2.2 .8 280 190 192 1340 16.0 125 379 .6 .1 .1 2B2 192 194 3200 14.0 130 284 .6 .4 .1 284 218 194 5300 14.0 130 315 .7 .7 .1 286 196 170 2660 8.0 130 156 1.0 1.6 .6 28B 198 174 2640 12.0 130 766 2.2 4.1 1.5 290 176 200 2500 12.0 130 38 .1 .0 .0 LO 292 202 204 2700 9.0 130 233 1.5 3.3 1.2 294 178 204 800 12.0 130 20 .1 LO .0 .0 LO 296 20b 180 2700 36.0 120 8294 2.6 1.9 .7 298 206 182 3800 12.0 130 584 1.7 3.6 .9 300 184 209 2640 12.0 130 203 .6 .3 .1 30k 186 210 2640 8.0 130 106 .7 .8 .3 CITY OF HUNTINGTON BEACH TUE, NOV 10, 1997, 3:40 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft11000 CK ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 302 190 212 2640 12.0 130 375 1.1 1.1 .4 304 196 198 3300 8.0 130 147 .9 1.7 .5 306 198 200 2700 12.0 130 793 2.3 4.5 1.7 308 200 202 2640 12.0 130 1008 2.9 6.8 2.6 310 202 206 2640 12.0 130 886 2.5 5.3 2.0 312 206 208 2640 12.0 130 986 2.8 6.5 2.5 314 208 210 2640 12.0 130 773 2.2 4.2 1.6 316 210 212 2640 12.0 130 596 1.7 2.6 1.0 318 212 214 1300 12.0 130 643 1.8 1.5 1.1 320 222 196 2700 12.0 130 880 2.5 5.4 2.0 322 272 224 1320 12.0 130 889 2.5 2.7 2.0 324 228 200 2640 12.0 130 865 2.5 5.1 1.9 326 230 202 3000 12.0 130 446 1.3 1.7 .6 327 232 206 2640 12.0 130 534 1.5 2.1 .8 328 232 206 2640 36.0 120 9856 2.8 2.1 .8 330 236 210 2700 12.0 130 90B 2.6 5.7 2.1 332 214 216 1000 10.0 130 277 1.1 .6 .6 334 238 216 2100 9.0 130 371 2.4 6.1 2.9 336 302 220 4500 20.0 130 1169 1a 1A .3 i 338 220 218 1250 14.0 130 787 1.6 1.0 .8 4 340 288 224 1700 12.0 130 1420 4.0 8.3 4.9 342 224 228 2000 12.0 130 1409 4.0 9.6 4.8 344 228 230 2640 12.0 130 1256 3.6 10.2 3.9 346 230 232 2640 12.0 130 850 2.4 5.0 1.9 348 232 234 2640 20.0 130 2353 2.4 2.7 1.0 p 350 234 236 2640 20.0 130 3024 3.1 4.3 1.6 4 352 236 238 5030 20.0 130 2103 2.1 4.2 .8 t 354 224 226 1300 12.0 130 265 .8 .3 .2 356 240 228 2700 12.0 130 1144 3.2 8.8 3.3 358 242 230 2700 12.0 130 361 1.0 1.0 .4 360 244 232 2700 36.0 120 11552 3.6 3.5 1.3 362 246 234 2700 12.0 130 832 2.4 4.9 1.8 364 250 236 2680 12.0 130 560 1.6 2.3 .9 f 366 226 240 3800 B.0 130 70 .4 .5 .1 368 240 242 2"0 10.0 130 1055 4.3 18.0 6.9 NO 242 244 2"0 10.0 130 362 1.5 2.5 .9 312 244 246 2550 12.0 130 428 1.2 1.3 .5 374 246 248 1500 12.0 130 768 2.2 2.3 1.6 376 248 MO 1200 10.0 130 768 3.1 4.5 3.8 31B 252 242 2540 12.0 130 122 .3 .1 .1 LO 380 254 244 2"0 36.0 120 12136 3.8 3.7 1.4 382 246 256 2540 12.0 130 612 1.7 2.6 1.0 384 258 250 2640 12.0 130 2 .0 LO .0 .0 LO 3B6 278 252 1750 12.0 130 523 1.5 1.3 .8 388 254 256 2600 12.0 130 1086 3.1 7.7 3.0 390 256 258 2640 12.0 130 7B5 2.2 4.3 1.6 392 260 254 2600 36.0 120 13445 4.2 4.5 1.7 394 262 260 150 36.0 130 10566 3.3 .1 .9 PECK RES. 395 266 260 100 36.0 130 3405 1.1 .0 .1 396 264 266 250 12.0 130 3405 9.7 6.1 24.5 HI WELL 7 400 270 168 970 12.0 130 3121 9.9 20.2 20.9 HI WELL 5 402 274 272 200 12.0 130 2913 9.3 3.7 18.4 HI WELL 6 404 272 198 1380 12.0 130 2025 5A 119 9.4 406 276 278 170 8.0 130 803 5.1 2.1 12.2 HI WELL 1 409 278 254 900 12.0 130 280 .8 .2 .2 CITY OF HUNTINGTON BEACH TUE, NOV 10, 1987, 3:40 PM PIPE --NODES-- LENGTH DIAM -FLOW- -VELOCITY- ---HEADLOSS--- NO FROM TO Feet Inches H-W C GPM Fps CK ft ft/1000 CK. ---- ---- ---- ------ ------ ------ ------ ------ -- --- ------- -- 414 284 168 1990 16.0 130 3352 5.3 11.7 5.9 WELL 9 416 288 222 1600 12.0 130 044 4A 11.4 7.1 418 286 288 1050 16.0 130 .3164 5.0 5.5 5.3 WELL 10 420 290 292 1400 6.0 120 432 4.9 25.4 19.2 HI DYKE WELL 422 292 131 750 8.0 130 153 1.0 .4 .6 424 294 50 2200 30.0 120 0 .0 LO .0 .0 LO OC44 450 222 300 2850 12.0 130 21 .1 LO .0 .0 LO 452 300 168 5300 22.0 120 21 .0 LO .0 .0 L0 OC9 500 301 112 100 36.8 120 1320B 4.0 .1 1.5 Overmyer Res. 501 238 302 2000 20.0 130 1169 1.2 .6 .3 # 502 95 84 1000 16.0 130 955 1.5 .6 .6 503 96 95 452 24.0 120 5675 4.0 1.1 2.5 504 304 266 10 36.0 130 0 .0 LO .0 .0 LO OC35 510 95 84 1000 20.0 130 171E 1.8 .6 .b DOWNTOWN LOOP 511 84 307 2800 20.0 130 1236 1.3 .9 .3 DOWNTOWN LOOP 512 306 305 7200 20.0 130 730 .7 .8 .1 DOWNTOWN LOOP 513 306 46 2000 20.0 130 1252 1.3 .6 .3 DOWNTOWN LOOP 514 46 62 2900 20.0 130 9 .0 LO .0 .0 LO DOWNTOWN LOOP 515 80 62 2300 20.0 130 896 .9 .4 .2 DOWNTOWN LOOP 516 114 115 3490 12.0 130 1029 2.9 9.3 2.7 517 64 115 6850 12.0 130 585 1.7 6.4 .9 521 154 132 3150 8.0 130 227 1.4 3.7 1.2 # 522 170 154 3050 8.0 130 353 2.3 8.1 2.7 # 523 196 00 2660 8.0 130 156 1.0 1.6 .6 # 524 308 309 700 12.0 130 b14 1.7 .7 1.0 Balsa Chica 525 310 308 '400 24.0 130 0 .0 LO .0 .0 LD # BOLSA CHICA R 526 311 309 1300 16.0 130 576 .9 .3 .2 Bolsa Chica 527 312 311 3200 16.0 130 1014 1.6 2.1 .6 Balsa Chica 528 313 312 3100 16.0 130 1864 3.0 6.1 2.0 Balsa Chica 529 10 313 1500 24.0 120 1864 1.3 .5 .3 Balsa Chica 530 315 306 450 30.0 130 1982 .9 .0 .1 # 531 34 315 225 30.0 110 1982 .9 .0 .1 # 532 307 64 20 12.0 130 1966 5.6 .2 9.9 # 533 305 307 1500 26.0 130 730 .7 .2 .1 # 534 76 00 900 20.0 130 1004 1A .2 .2 # CITY OF HUNTINGTON BEACH TUE, NOV 105 1987, 3:40 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 2 5 -462.43 170.4 165.4 71 23 4 5 -218.21 170.4 165.4 71 23 6 5 -305.40 171.5 166.5 72 22 Banning 8 5 -547.4B 177.4 172.4 74 19 10 4 -912.47 172.5 168.5 73 22 12 4 -288.68 172.6 168.6 73 22 14 6 -594.62 170.3 164.3 71 23 16 7 -420.88 172.5 165.5 71 22 18 4 16987.51U 180.OF 176.0 76 18 20 2 -352.11 176.0 174.0 75 20 22 4 -362.80 171.8 167.8 72 22 24 b -411.89 165.6 159.6 69 25 26 8 -546.02 163.1 155.1 67 26 28 4 -5353.81 156.6 152.6 66 29 30 4 -737.99 172.8 168.8 73 21 32 6 -1000.92 171.B 165.8 71 22 34 30 -697.41 171.2 141.2 61 25 36 8 -646.38 164.5 156.5 67 26 38 9 -560.84 162.7 153.7 66 27 40 6 -637.39 161.3 155.3 67 27 42 6 -706.16 163.3 157.3 68 26 44 118 -463.89 162.7 144.7 62 28 46 36 -591.71 170.5 134.5 58 2b 48 36 -1227.89 168.8 132.9 57 27 50 12 -853.66 164.7 152.7 66 26 52 10 -649.78 163.3 153.3 66 27 54 7 -454.90 163.3 156.3 67 26 56 10 -488.67 164.0 154.0 66 26 58 25 -724.63 165.0 140.0 60 28 60 35 -362.07 166.9 131.9 57 28 62 40 -700.33 170.5 130.5 56 27 64 45 -2070.60 169.9 124.9 54 28 66 10 -554.28 165.4 155.4 67 26 68 8 -507.14 166.2 158.2 68 25 70 10 -484.79 167.5 157.5 68 25 72 55 -224.29 169.3 114.3 49 30 74 50 -544.56 170.5 120.5 52 29 76 50 .00 171.1 121.1 52 28 78 50 .00 171.0 121.0 52 28 80 50 .00 170.9 120.9 52 28 82 75 -270.22 170.9 95.9 41 33 84 75 -309.34 171.0 96.0 41 33 86 57 -184.19 170.9 113.9 49 30 88 50 -298.65 172.1 122.1 52 28 90 60 .00 172.9 112.9 48 29 95 103 -3001.54 171.6 68.6 29 LO 41 Reservoir Hill 96 95 .00 172.7 77.7 33 LO 37 98 16 -849.04 162.9 146.8 63 28 100 15 -219.19 164.7 149.7 64 27 Flounder 102 12 -240.33 166.1 154.1 66 25 104 14 -347.98 169.3 154.3 66 25 106 58 -724.63 170.9 112.9 48 30 108 55 276.29 174.1 119.1 51 27 110 60 .00 180.4 120.4 52 24 11� 60 .00 180.5 120.5 52 24 CITY OF HUNTINGTON BEACH TUE, NOV 10, 19879 3:40 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK % DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 114 93 .00 172.8 79.8 34 LO 37 115 35 -1614.01 163.5 128.5 55 30 116 60 -307.88 180.4 120.4 52 24 118 13 -281.15 170.8 157.8 68 23 120 55 -262.44 178.0 123.0 53 25 122 35 -345.30 180.9 145.9 63 21 124 25 -295.73 180.9 155.9 67 20 129 5 -225.26 173.1 168.1 72 21 129 45 .00 178.2 133.2 57 23 130 45 -285.52 178.9 133.9 58 23 131 45 .00 184.1 139.1 60 20 132 55 -562.55 181.2 126.2 54 23 134 50 -231.34 182.3 132.3 57 22 136 50 -249.80 181.8 131.8 57 22 138 40 -511.76 179.5 139.5 60 22 140 2 -324.89 173.1 171.1 74 21 142 2 -193.67 173.1 171.1 74 21 144 2 -215.78 173.1 171.1 74 21 146 2 -250.05 173.4 171.4 74 21 148 40 .00 179.5 139.5 60 22 150 40 .00 179.5 139.5 60 22 152 28 -506.65 191.1 163.1 70 15 154 25 -688.18 184.9 159.9 69 18 156 25 -216.03 185.7 160.7 69 17 158 30 2223.22 186.3 156.3 67 17 160 5 -523.67 179.4 174.4 75 18 162 3 -514.92 175.1 172.1 74 20 164 2 -496.21 1173.8 171.8 74 21 1b6 2 -355.02 170.8 168.8 13 22 168 27 -917.91 200.0 173.0 74 10 170 26 -379.08 193.0 167.0 72 14 172 25 -663.39 188.8 163.8 71 16 174 25 -329.54 1BB.8 163.8 70 16 176 12 2187.74 188.4 176.4 76 15 178 5 -531.44 178.3 173.3 75 19 180 5 -327.08 174.3 169.3 73 21 182 5 -245.43 172.7 167.7 72 22 184 5 -356.97 170.1 165.1 71 23 186 34 -B55.60 166.3 132.3 57 28 190 35 -356.72 164.1 129.1 55 30 192 55 -94.28 163.9 108.9 47 34 194 5 -598.75 163.6 158.6 68 26 196 25 -420.88 194.6 169.6 73 13 198 17 -612.36 192.8 175.8 76 13 200 14 -688.66 18B.4 174.4 75 15 Heil 202 10 -335.10 181.6 171.6 74 18 204 10 -253.45 178.3 168.3 72 19 206 9 -412.13 176.2 167.2 72 20 208 14 -415.53 169.7 155.7 67 24 210 15 -1191.43 165.6 150.6 65 26 212 9 -327.81 163.0 154.0 66 27 214 9 -366.20 161.5 152.5 66 27 216 9 -647.84 161.0 152.0 65 28 218 5 -472.64 164.3 159.3 69 25 226 5 -3B1.75 165.3 160.3 69 25 CITY OF HUNTINGTON BEACH TUE, NOV I" 19B7, 300 PM GROUND ELV FLOW HGL EL HEAD ------- PRESSURE ------ NODE Feet GPM Feet Feet Psi CK X DROP--CK ---- ------ ------ ------ ------ ------ -- ------ -- 272 26 -842.72 200.0 174.0 75 10 224 21 -635.20 203.1 192.1 78 8 226 23 -194.89 202.8 179.8 77 8 228 20 -432.7B 193.5 173.5 75 13 230 12 -320.76 183.3 171.3 74 17 232 10 -659.74 178.3 168.3 72 19 234 12 -161.35 175.6 163.6 70 21 236 15 -572.27 171.3 156.3 67 23 Scenario 238 5 -563.27 167.1 162.1 70 24 240 21 2129.67 202.3 181.3 7B 8 242 15 -453.92 1B4.3 169.3 73 17 244 16 -518.08 181.8 165.8 71 18 246 14 1784.36 180.5 166.5 72 19 248 14 .00 178.2 164.2 71 20 250 13 -209.95 173.6 160.6 69 22 252 22 -400.95 184.5 162.5 70 18 254 18 -502.04 185.6 167.6 72 17 256 17 -913.68 177.9 160.9 69 20 258 17 -782.22 173.6 156.6 67 22 260 23 -526.34 190.0 167.0 72 15 262SP 34 10566.13U 190.2 156.2 67 16 PECK RES. 264SP 1B 3404.8BU 196.2 178.2 77 11 WELL 7 266 23 .00 190.1 167.1 72 15 270SP 27 3120.56U 220.2 193.2 83 HI 0 WELL 5 272 25 .00 205.8 180.8 78 7 274SP 19 2913.30U 209.4 190.4 82 HI 5 WELL 6 276SP 17 802.78U 197.9 170.9 74 15 WELL 1 278 19 .00 185.B 166.8 72 17 284SP 27 3351.95U 211.6 184.6 80 HI 4 WELL 9 286SP 19 3164.02U 216.9 197.9 85 HI i WELL 10 288 22 .00 211.3 189.3 82 HI 4 290SP 44 431.63U 210.0 166.0 71 5 DYKE WELL 292 48 .00 184.6 136.6 59 20 294 12 .00 164.7 152.7 66 26 OC44,Adams 300 25 .00 200.0 175.0 75 10 OC9 301SP 65 13208.12U 180.7 115.7 50 25 Overmyer Res. 302 5 .00 166.5 161.5 70 24 304 25 .00 190.1 165.1 71 15 DC35 305 40 .00 170.3 130.3 56 27 306 30 .00 171.1 141.1 61 25 307 45 .00 170.1 125.1 54 28 308 50 .00 164.9 114.9 49 32 Bolsa Chica 309 25 -1190.70 164.2 139.2 60 28 Bolsa Chica 310 50 .00 164.9 114.9 49 32 BOLSA CHICA RES 311 25 -437.40 164.5 139.5 60 28 Bolsa Chica 312 20 -850.50 166.5 146.5 63 26 Bolsa Chica 313 20 .00 172.6 152.6 66 23 Bolsa Chica 315 34 .00 171.2 137.2 59 26 Maximum Unbalanced Head = .00002 214 C CITY OF HUNTINGTON BEACH TUE, NOV 10, 1987, 3:40 PM RESERVOIR AND SOURCE PUMP SUMMARY FLOW SUCTION H8L DISCH H8L LIFT PUMP NODE 8pm Feet Feet Feet NUMBER ---- ------ ------ ------ ------ ---- 262SP 10566 20.0 190.2 170.2 30 PECK RES. 301SP 1320B 50.0 180.7 130.7 20 Overmyer Res. 290SP 432 -34.0 210.0 244.0 11 DYKE WELL 276SP 903 -98.0 197.9 285.9 1 WELL 1 270SP 3121 -62.0 220.2 2B2.2 5 WELL 5 274SP 2913 -59.0 209.4 268.4 6 WELL 6 264SP 3405 -89.0 196.2 285.2 7 WELL 7 2845P 3352 -64.0 211.6 275.6 9 WELL 9 286SP 3164 -55.0 216.9 271.9 10 WELL 10 18 16988 180.0 SOURCE PUMPS Node Pump# 262 30 Head 172 171 169 157 151 146 141 136 Flow 0. 7500. 15000. 15800. 16100. 16250. 16500. 16750, 301 20 Head 132 131 130 114 106 100 93 82 Flow 0. 10000. 20650. 21875. 22525. 22875. 23350. 23775. 290 11 Head 330 306 256 180 72 0 0 0 Flow 0. 200. 400. 600. 800. 0. 0. 0. 276 1 Head 440 399 348 311 287 205 98 0 Flow 0. 200. 400. 600. 900. 1000. 1200. 0. 270 5 Head 471 359 337 292 224 143 98 0 Flow 0. 1982. 2259. 3012. 3765. 4518. 4894. 0. 274 6 Head 488 318 296 287 257 206 148 0 Flow 0. 1761. 2201. 2641. 3081. 3521. 3962. 0. 264 7 Head 397 299 291 268 238. 208 174 0 Flow 0. 2817. 3286. 3756. 4225. 4695. 5164. 0. 284 9 Head 544 424 366 283 237 173 0 0 Flow 0. 1170. 1B73, 3277. 3745. 4214. 0. 0. 2B6 10 Head 562 369 341 305 264 222 0 0 Flow 0. 1859. 2324. 2789. 3253. 3718. 0. 0. Iteration= 19 Flow Correction= 12300.130 Iteration= 2, Flow Correction= 4419.339 Iteration= 3, Flow Correction= 3541.741 Iteration= 4, Flow Correction= 1998.357 Iteration= 5, Flow Correction= 806.790 ItEration= 6, Flow Correction= 559,909 Iteration= 7, Flow Correction= 545.755 Iteration= 8, Flow Correction= 535.490 iteration= 11, Flow Correction= 3.612 Iteration= 12, Flow Correction= 1,422 Iteration= 13, Flow Correction- .255 Iteration= 14, Flow Correction= .010 PC NETWORK - BOYLENET NETP NETQ APRIL 19'87 Computer Services Department Copyright (C) 1986 Boyle Engineering Corporation. All rights reserved. Boyle gf7t7ineerinq Corporation CONTENTS INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . FEATURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 i SIGNCONVENTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 WORKFILE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 CONSIDERATIONSFOR PC DOS AND MS DOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 INSTALLATION AND DEMONSTRATION ON PC/XT AND PC/AT. . . . . . . . . . . . . . . . . . . . . .5 INSTALLATION AND DEMONSTRATION ON A TWO FLOPPY-DISK PC. . . . . . . . . . . . . . . . . 6 COMMAND DESCRIPTIONS— . . . . . . . . . . . . . . . . . . . . . . i . . . . . ... . . . . . . . . oo . 0 . 0 . 09 INPUT DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ] NET COMMAND AND INPUT DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 AREA DEMANDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 BEEP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 BOOSTERPUMPS. . . . oo . . . . . . o . . . o . . o . . . . . . . o . o . o . . . . oo . . o . . 00 . . . oo _ 12 CHECKVALVES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 COMMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 CONTOURS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 CONVERGENCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 COORDINATE NODES. . . . . . oo . 00 . 00 . o . . . . . . . . . 14 COORDINATE PIPES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 .CRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 DEBUG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 DELETECommands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 DELETE BOOSTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 DELETE CHECK. . . . o . . . o . . . . o . 000 . 0000 . 00 . . . o . o . 00 . . . . . . o . . o . o . . . . . . 15 DELETE NODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 DELETE PIPES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 DELETE PRV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 DELETE UNKNOWNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 DEMANDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 DOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 EDIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 ENDFILE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1F EXCLUDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : EXECUTE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l-i . I CONTENT EXIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 FACTORS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 FILE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 FIXED DEMANDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 HOLD. . . . o . . . . . . . . . . . . . . . . . . . . . o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 INCLUDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 INPUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 KEEP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 LIMITS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 LINES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 LIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 LONG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 MODIFY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 NEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 NODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 OLD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 OUTPUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 PIPES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PRN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 PRV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 PUMPCURVES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 QUIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 RUN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 SAVE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 SHORT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 SUBSTANCES— . . . . . . . . . . . . . . . . 7. . o . . . . . . . . . .7 . . o . . . . . . . . . . . . . . . . . .24 TEST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 TITLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 UNITS. . . . . . . . . . . i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 UNKNOWNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 NETPCOMMAND AND INPUT DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 ALL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 BASE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 CAPACITY— . . . . 0000 . . . . . oo . o , 000 . . . . . . . . . . . . . .26 CIRCLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 COLOR. . . oo . . o . 000 . . . . o . o . o . o . . . . . . . . . 000 . 0000 . . o . . . o . o . . . . . . . . . . .26 COMMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DEMAND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DEBUG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 DIAMETER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 DOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 EDIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ENDFILE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 EXCLUDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 EXECUTE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 EXIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 FLOW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 GROUND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 HEADLOSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 HIGHLIGHT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 HGL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 INCLUDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 INPUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 LDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 LEGEND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 NEWMAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 CONTENTS (Cont. , NODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 NORTHARROW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 OLD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ORIGIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 PIPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3- PRESSURE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 RESULTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 STARTPlot Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 WINDOW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 A DISCUSSION ABOUT NETWORK DRAWINGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 NETQ COMMAND AND INPUT DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 COMMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 CRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 DEBUG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 DOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 EDIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ENDFILE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 EXECUTE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 EXIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 INPUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 OLD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 OUTPUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 PRN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 RUN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 SUBSTANCES. . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 PREPARATION AND EVALUATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ? Unknowns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3_ PRVs and Check Valves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Common Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ERRORMESSAGES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . 39 WARNINGMESSAGES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 i INTRODUCTION ------------ Boyle Engineering Corporation's NET program is a comprehensive water distribution system analysis of steady-state pressurized flow conditions. Extensions have been included for plotting (program NETP , water quality (program NETQ , and hydraulic transients (program NETS) . This manual describes NET, NETP, and NETQ. NETS has its own manual. Although these program run interactively, they are not truly interactive. The programs are command driven to allow you to develop the bulk of the data with an editor and to declare file names for input with complete flexibility. For your convenience, EDIT, a data editor is provided with NET. The NET programs provide several data file manipulation capabilities which allow consolidation of data, specifying new data files, and keeping temporary files for plotting or re-analysis. The NET input would at a minimum consist of a description of each pipe -- length, diameter, friction coefficient, the beginning and ending points (called nodes) and the nodal elevations and demands. If the network is to be plotted, then coordinates for plotting would be entered. Reservoirs, pumps, pressure reducing valves and check valves are also part of the network description. If a water quality analysis is anticipated, substance concentrations can be included as NET input. Reports that can be produced include: a raw list of the input, a data check printout of connecting pipes, the analysis of balanced flows (either short or long) printout, schematic plots with NETP, and water quality distribution with NETQ. Limitations All programs are written in Microsoft FORTRAN for the IBM PC/XT, PC/AT, and most compatibles with an 8087 (80287 for PC/AT) . NETP supports the IBM color graphics adapter (CGA) , the IBM enhanced graphics adaptor (EGA) , the Hercules graphics monitor interface, HPGL plotters, and the Zeta 53 interface. . NET can support the following network descriptions: 1000 pipes, 1000 nodes (although the pipe/node numbers can be any value to 2000) , 40 reservoirs and source pumps, 30 booster pumps, 30 check valves and 30 pressure reducing valves. Acknowledgements ---------------- The analysis method used is supplied by Mr. A.G. Fowler, University of British Columbia. Mr. Fowler's system was first described in the paper "Efficient Code for Steady-State Flows in Networks" published in the Journal of the Hydraulics Division, ASCE, January, 1970. Mr. Fowler co-authored this paper with Mr. Robert Epp. Although enhanced with pre- and post-processors and the inclusion pump curves, Mr. Fowler' s 1978 version of the program is incorporated intact. This original program has had several years of successful operation on many different computers, literally all over the world. 1 FEATURES NET, NETP, and NETQ are run interactively. However they are not fully interactive, i.e. there is no detailed prompting for data nor is there any on-line 'help' capability. Each program has its own individual prompt: NET prompts with a NET?, NETP prompts with NETP?, and NETQ prompts with NETQ?. Input is freeform meaning that data elements need be separated only by a space. All programs are command oriented -- one, two or three word commands are used to tell the program accept certain data or to perform certain functions. The commands may be spelled out in full or abbreviated. Command abbreviations must have the same first letter as the command and must result in an abbreviation that is unique. Input forms are available for the majority of the input data (pipes, nodes, pumps, etc. ) Analysis is performed in any combination of units -- the English foot-pound system with flows of mgd, gpm, cfs, or Imperial mgd -- or the Systeme International (SI) system with flow in liter/second -- or in any combination of units of diameter, head, elevation, pressure, flow, length and velocity. Friction losses may be established using either Manning's equation or the Hazen-Williams formula. This makes NET especially useful for the analysis of domestic and fire protection water distributions systems. NET provides it's own loop generation. Check valves and PRV's are carefully included in loops to allow special analysis should flow reversal be encountered. Check valves and PRV's are removed from the system and loops are reanalyzed should reversal occur. Pumping stations are modeled by the use of a pump curve of several head/flow coordinates. Reservoirs are modeled as a static fixed head. Pumps can be either source pumps, such as wells, or as booster pumps that can occur in any pipe in the system. Pumps can be defined by up to eight pump coordinates and there can be 70 different pump curves in the file. These 70 curves can be specified for any source node or booster pump pipe, thus eliminating redundant input for common pumps. Demands on the system can be entered as peakable or as fixed demands. Peakable demands are subject to a peaking factor -- these would be the domestic and industrial demands consistant with land use or as determined by the agency to be their normal demands. Fixed demands are usually fire demands or an unusual industrial demand not subject to peaking. The input of demands can be included as part of the nodal input, as a separate demand per node input, or the input of an area and a demand coefficient. The program provides for analysis and reanalysis of a distribution network with intermediate editing. The same commands used to enter the network geometry and specific elements are used to modify the network description. Distribution of chemicals, impurities, or other measures of water quality can be evaluated as to their distribution within the network with the separate program NETQ. Substances and their sources can be 2 applied to a given flow analysis and the concentrations for each substance determined for each node. A distribution system geometry can be plotted along with its flows, heads and demands in the separate program NETP. Plotting can be windowed and the network can be skeletonized by either the elimination of pipes or including only those pipes necessary for illustration. Plotting can be such that only flows, heads and demands be plotted, thus allowing the generation of overlays for the various flow conditions investigated. To plot the system, coordinates must be entered for each node to be plotted. Pipes can be given coordinates to illustrate bends or even curves. Coordinates can be entered with the node and pipe descriptions or by using special coordinate entry commands. Plotting can be reviewed on a CRT if there is a color monitor or Hercules graphics adaptor attached to the machine. Network pipe capacities can be depicted in a schematic plot showing pipe capacity as a bar between nodes: the wider the bar, the greater the capacity. Network utilization can be illustrated on the same plot as a dash line or shading within the capacity bar. This 'capacity' plot is available as part of the NETP program. Printing of the network data can be the full analysis or summarized with a short form listing and allowing selection of only parts of the network to be printed. Full analysis printout includes the network geometry listing pipe and node descriptions. The short form lists only the hydraulic properties of the network. Extensive diagnostics are provided in the program for checking your data. A list of diagnostic error messages is contained in a later .chapter. A special testing command is provided to electively test network data in lieu of running an analysis. This function also provides a cross reference of pipes attached to each node which is a useful feature during the first evaluations of a network. Certain housekeeping commands are provided to ease the use of input files generated with EDIT, the included editor. These commands will assign a file as the input device or can output the data to an edit-like file. Additional commands will save and recover intermediate work files that the program generates and uses. These latter commands provide the ability of speeding up the analysis of previously established systems and eliminate the necessity of inputting the entire geometry. SIGN CONVENTION --------------- The sign convention for flows is as follows: Demands on the system, i.e. flows out of the network are negative. Positive flows come from sources (pumps, wells, and reservoirs) that provide flow into the system. All negative demands on the system must be satisfied by positive flows from sources. The flows must balance. J WORK FILE 3 The NET program requires a large (328, 000 byte) work file for operation. This file, if not specified on a NEW or OLD command will be a temporary file in your current directory. This large work file needs to be managed. When creating input for a network for analysis you should always consider using a permanent work file, i.e. always specified on a NEW or OLD command. A permanent work file will significantly speed up the run times for NET, especially on a floppy disk PC. CONSIDERATIONS FOR PC DOS AND MS DOS ------------------------------------ Although the IBM PC and similar machines have reached the masses, they are not simple. People too often think that because computers are available to the general public that they are easy to use and that they can be mastered with casual effort. This is not true. Personal Computers are complicated. Computers themselves are the most complicated thing Man has made. As a professional, understanding your computer is as important to you as trying to master a complex activity like Water Distribution Network Modeling. As a NET, NETP, and NETQ user, you will have to understand quite a bit about your operating system: PC DOS or MS DOS. We presume that you have a somewhat clear understanding of how your computer works, what a directory is, what a path is, how you can organize your disk space somewhat to your benefit, and that you will be able to understand this manual. You should put NET, NETP, and NETQ into a directory that is in your startup path. The next best thing is to create a location for NET, NETP, and NETQ and modify your path. Let's, for example, suppose that this is your first professional program. We'll assume that you have a hard disk After starting your computer, make a new directory called ENG by keyinc, MKDIR ENG on your PC keyboard. Enter the directory with a CHDIR command. COPY *.EXE from the distribution diskette(s) into this directory. Go back to your root directory with a CHDIR\ command. Use EDIT or other editor to modify your AUTOEXEC.BAT file to include the path to \ENG. It should look something like this: PATH C:\;C:\ENG. . . . . any other path information You should also include the VERIFY ON command in your AUTOEXEC.BAT. VERIFY ON will check every disk write to assure that the data was properly stored. NET, NETP, and NETQ make extensive use of your disk and you want to make sure that all your hard work is saved. Add this on a separate line somewhere in the same file "with your PATH statement: VERIFY ON When you've saved the AUTOEXEC.BAT file, simply key in AUTOEXEC.BAT and your new path will be incorporated along with disk verification. Let's talk about your CONFIG.SYS file. For NET, NETP, and NETQ you should have at least the minimum buffers and files suggested by your DOS manual. For the serious user, double these values. Again, using EDIT or another editor, create a CONFIG.SYS file with at least these two lines: BUFFERS=32 FILES=32 4 You should create new directories for each project. These working directories need not be in your startup path. The convenience of working within a directory with it's own set of NET, NETP, and NETQ files that are project specific will be well understood when you consider your backup procedures. . You have heard this before, and if not then carefully understand: you should backup your work every day. No day's work should be left on your computer without a floppy disk backup. INSTALLATION AND DEMONSTRATION ON PC/XT AND PC/AT ------------------------------------------------- 1) If you do not have a generic directory for all your general engineering programs, we suggest that you set one up called "ENG" . If you haven't already, create a new directory: MD ENG 2) Move to this directory by entering CD ENG 3) Copy both the diskettes using COPY COPY A: *. * [distribution diskette one: the only disk for PC/AT] COPY A: *. * [distribution diskette two] 4) Modify your PATH command in your AUTOEXEC.BAT file to include C:\ENG\ To test NET on a PC/XT or PC/AT: 1) Put yourself in the \ENG\ directory (CD ENG) and enter NET. 2) When the program prompts you with NET? enter INPUT NETESTI.DTA and the program will load your data. 3) When the program prompts you again with NET? enter RUN and the program will analyze the network described in NETESTI.DTA. 4) Repeat this process for NETEST2.DTA through NETEST5.DTA for samples of more complex water distribution networks. To test NETP on a PC/XT or PC/AT: 1) Execute the NET program and when prompted with NET? enter NEW NETESTI.OLD which will prepare an old-file named NETESTI.OLD. 2) When prompted again with NET? enter INPUT NETESTI.DTA and the program will ask you about whether you want to over write NETESTI.OLD -- respond with NO. NET will load the NETESTI data into the NETESTI.OLD file. 3) When prompted again with NET? enter E to end. 4) Run NETP by entering NETP at the C: prompt. 5) Specify the old file with OLD NETEST1.OLD. 5 6) You must have a color monitor, Hercules graphics controller, or or a graphics controller that simulates these devices. Enter START SCREEN to plot basic NETESTI geometry. The resolution is not good enough to read some of the characters but you can zoom to see the results. To test NETQ on a PC/XT or PC/AT: 1) Execute the NET program: when prompted with NET? enter NEW NETEST3 .OLD which will prepare an old-file named NETEST3 .OLD. 2) When prompted again with NET? enter INPUT NETEST3 .DTA and the program will ask you about whether you want to over write NETEST3 .OLD -- respond with NO. NET will load the NETEST3 data into the NETEST3 .OLD file. 3) When prompted again with NET? enter RUN. The network analysis will then be made and displayed on your monitor. You will be prompted again with a NET? -- enter E to end. 4) Run NETQ by entering NETQ at the C: prompt. 5) Specify the old file with OLD NETEST3 .OLD. 6) When prompted with the NETQ? prompt enter RUN -- the water quality analysis will be made and displayed on your monitor. INSTALLATION AND DEMONSTRATION ON A TWO FLOPPY-DISK PC ------------------------------------------------------ 1) Make two formatted diskettes with DOS systems -- perform the following step twice. 2) Put a DOS disk in drive A: and a blank unformated diskette in drive B: . Format with /S option which copies the IBM files and COMMAND.COM to this diskette: FORMAT B:/S Add any other files needed for your bootable disks (clock programs for example: ASTCLOCK) . 3) Replace the DOS diskette in drive A: with the "NET Master 1 of 211 . Leave one of the formatted diskettes in drive B.: . Copy the contents of A: to B: COPY A:*. * B: You can remove the READ.ME file and the five .DTA files if you wish. You can move the ED.EXE and .DEF files to another disk if you desire. 4) Mark this disk "NET Program Disk 1 of 211. 5) Put the second "NET Master 2 of 2" in drive A: . Put your second newly formatted diskette in drive B: and copy the contents: COPY A: *. * B: \ 6 6) Mark this disk "NETP and NETQ Program Disk 2 of 211 . 7) Put your original NET masters in a safe place. When running NET, always put your "NET Program Disk 1 of 2" in drive A: . For each new project, have an empty but formatted diskette and put it in drive B: . Always use the NEW command with a workfile name: NEW B:BASESYS.OLD which will build the necessary workfile on your B: drive. When running NET on subsequent runs or when using the NETP or NETQ programs, use the OLD command as your first instruction: OLD B:BASESYS.OLD which will use your the workfile built with the NEW command. To test NET on a two floppy-disk PC: 1) Put your "NET Program Disk 1 of 2" in drive a: and enter NET. 2) When the program prompts you' with NET? enter NEW B:NETESTI.OLD 3) When the program again prompts you with NET? enter INPUT NETESTI.DTA and the program will load your data. NETESTI.DTA must be on the disk with the NET program. You will be asked if it is alright to write over the old file; answer yes. 4) When the program prompts you again with NET? enter RUN and the program will analyze the network described in NETESTI.DTA. Save your workfile diskettes for NETESTI.OLD and NETEST3.OLD to test NETP and NETQ. 5) Repeat this process for NETEST2 .DTA through NETEST5.DTA for samples of more complex water distribution networks. To test NETP on a two floppy-disk PC: 1) If you have your NETESTI.OLD diskette, put it in drive B: and go to step 4. If you didn't save your NETESTI.OLD diskette from your NET test, put your "NET Program Disk 1 of 2" in drive A: and run NET -- when prompted with NET? enter NEW B:NETESTI.OLD which will prepare an old-file named NETESTI.OLD. 2) When prompted again with NET? enter INPUT NETESTI.DTA and the program will ask you about whether you want to over write NETESTI.OLD -- respond with YES. NET will load the NETESTI data into the NETESTI.OLD file. 3) When prompted again with NET? enter E to end. 4) Put your "NETP and NETQ Program Disk 2 of 2" in drive A: and run NETP by entering NETP at the A: prompt. 5) Specify the old file with OLD B:NETESTI.OLD. 7 6) You must have a color monitor, Hercules graphics controller, or or a graphics controller that simulates these devices. Enter START SCREEN to plot basic NETESTI geometry. The resolution is not good enough to read some of the characters but you can zoom see the results. To test NETQ on a two floppy-disk PC: 1) If you have your NETEST3 .OLD diskette, put it in drive B: and go to step 4. If you didn't save your NETEST3 .OLD diskette from your NET test, put your "NET Program Disk 1 of 2" in drive A: and run NET -- when prompted with NET? enter NEW B:NETEST3 .OLD which will prepare an old-file named NETEST3 .OLD. 2) When prompted again with NET? enter INPUT NETEST3 .DTA and the program will ask you whether you want to over write B:NETEST3 .OLD -- respond with YES. NET will load the NETEST3 data into the B:NETEST3 .OLD file. 3) When prompted again with NET? enter RUN. The network analysis will then be made and displayed on your monitor. You will be prompted again with a NET? -- enter E to end. 4) Put your "NETP and NETQ Program Disk 2 of 2" in drive A: -- run NETQ by entering NETQ at the A: prompt. 5) Specify the old file with OLD B:NETEST3 .OLD. 6) When prompted with the NETQ? prompt enter RUN -- the water quality analysis will be made and displayed on your monitor. 8 COMMAND DESCRIPTIONS -------------------- This table lists NET commands and brief descriptions of their function. Detailed descriptions are in the chapter titled INPUT DESCRIPTION. COMMAND DESCRIPTION ------------- ---------------------- AREA DEMANDS Compute demands with area and coefficient BEEP Sound the Beep on the PC BOOSTER PUMPS Enter booster pump pipe and pump numbers CHECK VALVES Enter check valve pipe numbers COMMENT Comments record - also a "*" may be used CONTOURS Keep the node information for contour plot CONVERGENCE Enter convergence factor COORDINATE NODES Enter node coordinates COORDINATE PIPES Enter pipe angle point or curve coordinates CRT Return the principle output to the screen DEBUG Set debug switch to .NOT.DEBUG DELETE . . . Delete nodes, pipes, boosters, prvs, etc. DEMANDS Enter peakable demands at nodes DOS Execute a DOS command from within NET EDIT Bring up the EDIT program to modify data ENDFILE End the input from a specified file EXCLUDE Enter pipes excluded from short output EXECUTE Execute another program from NET EXIT End the NET program FACTORS Enter peaking and multiply factors FILE Declare input to be from an EDIT file FIXED DEMANDS Enter fixed demands at nodes HOLD Keep the pipe analysis results in a file INCLUDE Enter pipes included in short output INPUT Declare input from an EDIT file KEEP Keep current network in EDIT file LIMITS Enter test and check limits LINES Enter lines count (page length for output) LIST List current network geometry LONG Set long format (default) MODIFY Set flag for modifying existing data NEW Begin a new job NODES Enter or modify node data OLD Old job work file OUTPUT Declare a disk file to be the output device PIPES Enter or modify, pipe data PRN Make 'PRN' the principle output device PRV Enter pry pipe numbers PUMP CURVES Enter pump curves QUIT End the NET program RUN Run analysis SAVE Save work file SHORT Set short format SUBSTANCES Enter substances and their sources TEST Test input data -- list pipes per node TITLE Enter title data UNITS Enter unit selection UNKNOWNS Enter unknown demand nodes 9 The plotter subsystem has several commands of its own which are independent of the analysis commands. Notice that some of these commands are the same as in the NET program: INPUT, OLD, etc. The other commands are not accepted unless the NETP program is run: NETP commands DESCRIPTION --------------- ---------------------- ALL Plot all BASE and RESULTS on map BASE Plot NODE, PIPE, GROUND, LDC options CAPACITY Plot capacity bargraph CIRCLE Enter the diameter of node circle COLOR Plot pipes and nodes with different colors COMMENT Comments record - also a "*" may be used DEMAND Plot demands at each node DOS Execute a DOS command from within NETP EDIT Bring up the EDIT program to modify data ENDFILE End the input from a specified file EXCLUDE Enter pipes to be excluded from plot EXECUTE Execute another program from NETP EXIT End the NETP program FILE Declare input to be from an EDIT file FLOW Plot analytic flow GROUND Plot ground elevation at each node HEADLOSS Plot headloss of each pipe HGL Plot HGL at each node HIGHLIGHT Mark out-of-limit elements with colored pen INPUT Declare input from an EDIT file INCLUDE Enter pipes to be included in plot LDC Plot pipe length, diameter and resistance LEGEND Plot a Legend of plot symbols NEWMAP Set data for a new plot NODE Plot node and its number NORTH ARROW Plot a north arrow OLD Old job work file OUTPUT Declare a disk file to be the output device ORIGIN Enter the coordinates for the origin PIPE Plot pipe lines labeled with its number PRESSURE Plot pressure at each node QUIT End the NETP program ORIGIN Enter the coordinates for the origin RESULTS Plot FLOW, HEADLOSS, DEMAND, HGL and PRESSURE SCALE Enter the scale START AUTOCAD Generate the plot file for AutoCAD. START HPGL Generate the plot file for HPGL plotters START SCREEN Start the display on the CRT START ZETA Generate the plot file for Zeta plotters WINDOW Enter coordinates for a plot window 10 The water quality subsystem, NETQ, has several commands of its own which are independent of the NET commands. These commands are similar to their counterparts in the NET program. NETQ commands DESCRIPTION --------------- ---------------------- CRT Makes the CRT the principle output device COMMENT Comments record - a "*" may also be used DEBUG Set debug switch to .NOT.debug DOS Execute a DOS command from within NEW EDIT Bring up the EDIT program to modify data ENDFILE End the- input from a specified file EXECUTE Execute another program from NETQ EXIT End the NETQ program FILE Declare input to be from an EDIT file INPUT Declare input from an EDIT file OLD Old job work file OUTPUT Declare a disk file to be the output device PRN Makes 'PRN' the principle output device RUN Produce NETQ report of substance distribution SUBSTANCES Enter substances and their sources Hydraulic transient problems may be analyzed by yet another subsystem called NETS (for NET-SURGE) . This program is so extensive that it has its own manual. INPUT DESCRIPTION ----------------- Input for NET, NETP, and NETQ consists of commands and data. Commands may be spelled out in full or abbreviated. Abbreviations must .have the same first letter as the command and must be unique. Some commands tell the programs which data is to be read in. Some input commands have data ,right on the command .record. When data is too extensive to be on the same record with the command, then the data will follow the command record. Other commands tell the program to do certain things and have no associated data. All data must be contained within 80 columns of the input record Input for all programs is free format, meaning that data items on the same line need only be separated a blank space. This free format convenience requires that all data be entered even if it is not needed. This rule applies wherever zero data items are embedded in a string of other items. Unneeded data items may be left blank if they are trailing items on the record. Data records cannot wrap over to the following record -- if the data is described as being on one record, then it must be given on one record. Analyses of a specific network normally take three forms -- basic system at average flows, basic system at peak flows, and some abnormal worst case situation such as a fire at the highest elevation. Various combinations of these are sometimes made for a future network. NET allows for input and subsequent editing of data. This eliminates duplication of input and gives you the ability to combine several runs into one input preparation. The commands for input of the network description are also used to modify an existing network. The user must tell the program whether the input is new or modification of existing data and this is done, with the MODIFY command. 11 r i NET COMMAND AND INPUT DESCRIPTION ----------------------------------- The NET program is the primary program for the description of the water distribution network and its subsequent analysis. This program must be run and the results saved before the other programs, NETP and NETQ, can be used. NET prompts you with a NET? prompt. AREA DEMANDS -- The AREA DEMANDS command signals the program that the data on the following records are demands to be computed from an area and a coefficient. This command is one of four commands that provide for demands input. NET * sign convention dictates that demands on the system are negative and sources of flow into the system are positive. Area demands will almost always be negative. The records following the command record will contain a node number at which the demand applies, an area and a coefficient. The area and coefficient can be any convenient units as long as their product is the in the specified flow units. Demands or flows out of the system must be negative so the product of the coefficient and the area would also be negative. Either the coefficient or the area should have a negative sign. Demands computed by this command are subject to peaking (see the peaking factor on FACTORS command in previous section) Area demands are additive, i.e. they add to any previous entered or computed demands. This allows for the accumulation of demands on a single node from several different land-use applications. Example: AREA DEMANDS 25 -3 .3 70 25 -. 6 20 -- accumulate the demands on node 25 as the products of -3 . 3*70 and -0. 6*20 -- add these to the demands already submitted for node 25. BEEP -- Sound the Beep function on the PC. Used to attract attention. BOOSTER PUMPS -- The BOOSTER PUMPS command indicates that the following records contain booster pump pipe data. Each record must contain the pipe number and the pump curve number. Booster pump pipes must also be declared on pipe description records (see PIPES command later in this section) . The direction of the pump flow is determined by the order of entry of the from-to node numbers on the pipe description record. There is a limit of 30 booster pump pipes in any analysis. Example: BOOSTER PUMPS 101 23 207 66 -- booster pump pipes occur in pipe 101, with pump curve number 23 , and pipe 207 using pump curve number 66. 12 CHECK VALVES -- This command provides for the entry of check valve pipes in the records that follow the command. Each record contains only one pipe number. The direction of flow through the check valve pipe is established by the from-to node numbers on the pipe description record (see PIPES command later in this section) . There is a limit of 30 check valve pipes per analysis. Example: CHECK VALVES 12 252 -- there are check valves in pipes 12 and 252 . COMMENT -- The COMMENT command does not cause any operation; in fact it is ignored. An asterisk, (*) can be used as the first character instead of the COMMENT command. The COMMENT command allows you to embed comments within the input data without effecting the result. Comments are contained on the same record as the COMMENT command or the asterisk. CONTOURS -- The CONTOURS commands contains the name of a file that will contain information that may be used in plotting contours. Thirty-two characters are available for disk drive, directory, file name, and extension. Coordinates, pressure, head, HGL, elevation and node number are written to this file. You will have to adjust this data for..your specific contour plot. Data is kept as a 80 column EDIT file. The named file may be new or old, and if old, the program asks if it is permited to delete the old file. Example: CONTOURS ah0007.con -- contour data will be stored in the file named AH0007 .con in the current directory. CONVERGENCE -- The CONVERGENCE command contains two values -- (1) the factor to be used in adjusting the Newton-method partial derivatives and (2) the number of iterations during which the factor is to be used. The convergence factor is used to force a steeper slope adjustment of unbalanced flows on networks that have a tendency to diverge or become flat. Such networks have configurations that, due to conduit properties or flow properties, cause conditions in the analysis that with a minor adjustment in the flow, the result is a major change in the analysis. The convergence factor can range from zero to two but the normal range is 0.3 to 0.9 depending on the network to be analyzed. Example: CONVERGENCE .85 20 -- a 0.85 convergence factor will be used for 20 iterations. 13 COORDINATE NODES -- Coordinates for nodes can be entered on records following this command.' Data for this command consists of one record per node containing a node number and the coordinates -- a X and Y. Coordinates are used only if plots are to be drawn. Coordinates can also be entered on the node description records. Example: COORDINATE NODES 65 1501 2344 -- node 65 is located at X=1501, Y=2344. COORDINATE PIPES -- Coordinates for pipes can be entered on records following this command. Coordinates are needed only if plots are to be drawn. Pipes are normally plotted as lines between nodes but there may be a need to plot pipes with other than a straight line, i.e. with angle points or curved lines. Input for the command consists of the pipe number followed by up to three coordinate pairs, each with a X and Y. These points are used with the coordinates of the nodes to delineate the line of the pipe. Input of more than one X,Y pair will require you to be aware which direction the original pipe description's from-to-node is given and to enter the X,Y pairs in the same from-to relationship. Example: COORDINATE PIPES 213 1010 2340 1050 2440 1001 10.2 18. 3 11.4 18.6 9.3 16.9 -- pipe '213 has two angle points 1010,2340 and 1050, 2440. Pipe 1001 has three angle points 10.2, 18.3, 11.4, 18. 6 and 9. 3, 16.9. CRT -- This command is the opposite of the PRN command described below. It directs the NET output to the screen on the PC. When NET is first executed, the CRT is the output device. DEBUG -- This command sets the debug facility "on" which will cause the program to print out a detailed and extensive sequence of the analysis including the loop coding and flow evaluation in each pipe during the analysis. This facility is used only by the programmers to analyze program faults. DELETE Commands DELETE commands are slightly different. DELETE commands cause the removal of network elements from the network description. DELETE commands have their data on the command record itself. Multiple commands may be used, of course, if there is not enough room on a single command record for the required number of elements to be deleted. Consecutive pipe or node numbers may be concatinated with dashes. Elements such as booster pumps, PRV's and check valves are elsewhere described as pipes. Likewise unknown demands are described elsewhere as nodes. Using the DELETE commands for these elements does 14 not remove their primary description from the network -- only their inclusion as a special element, i.e. deleted as a booster, prv, etc. If these special elements are to be removed from the basic network geometry,. then the DELETE PIPES and DELETE NODES commands must be used also. Deletin( of pipes and nodes however will remove those special element- that correspond to the deleted pipes and nodes -- i.e. remove a pipe that also is a booster pump will remove the booster pump pipe from the list of booster pumps. DELETE BOOSTER -- This command can contain as many booster pump pipe numbers that will fit in the 56 columns available after the command on the same record. Each booster pump pipe so specified will be deleted from the list of boosters. Example: DELETE BOOSTER 101 207 -- removes booster pumps in pipes lot and 207. These two pipes will still be in the geometry but they will not function as booster pumps. DELETE CHECK -- This command will delete check valves pipes from the list of check valve pipes. There can be as many pipe numbers as can fit in free format on the same record as the command. Example: DELETE CHECK 26 -- removes the check valve in pipe number 26. DELETE NODES -- This command will delete nodes from the network description. If the node is also an unknown demand node tha' will also be deleted. The whole record may be used to enter node numbers in free form immediately after the command. Example: DELETE NODE 11 14-22 65 201 -- nodes 11, 14 thru 22, 201. and 65 will be deleted. DELETE PIPES -- This deletes pipes from the network description. If the pipe is also a booster pump, PRV or check valve then that special feature will also be deleted. The whole record after the command is available for input. Example: DELETE PIPES 22 24-26 282 -- pipes 22, 24 thru 26 and 282 will be deleted. DELETE PRV -- This will delete the given PRV pipe numbers from the list of PRV pipes. The whole record after the command may be used of the input of pipe numbers. Example: DELETE PRV 66 -- PRV pipe 66 is deleted as a PRV. 15 DELETE UNKNOWNS -- This command will delete those unknown demand nodes listed on the record with the command. Example: DELETE UNKNOWNS 101 102 -- unknown demand nodes 101 and 102 are no longer unknown demand nodes. DEMANDS -- This command allows the entry of peakable demands -- up to three per record -- for any node in the system. Peakable demands are subject to the peaking factor given on the FACTORS record discussed in the previous section. Data is on the records following the command. NET sign convention is: flows coming out of the pipe -network are negative i.e. the demands on the system -- flows into the system such as reservoirs and wells are positive. Generally, peakable demands are negative. Example: DEMANDS 1 -2 .2 3 -4 . 1 4 -1. 1 5 -1. 1 .6 -2. 1 7 -.6 8 -1. 1 9 -2 -- peakable demands are given for nodes 1 and 3 thru 9. DOS -- Execute a DOS command while in the NET program -- returns you to NET. You may use any DOS command or any DOS program that will operate in the unused memory of your computer. You will be warned if the program is too large for your memory. Example: DOS dir d:*.dta -- a directory listing will be made of all files on the D: drive with the DTA extension and returns you the NET? prompt. EDIT -- The EDIT command is used to bring up the EDIT program which has been provided for your convenience. This allows you to text in your input file and make modifications without leaving the NET programs. Upon completion of editing, the program returns to the. NET? prompt. Example: EDIT sntriall.dta -- the edit program is invoked and will load file SNTRIALI.DTA for editing. If you omit the the file name, you will have a blank file to create new input data. EDIT program documentation is included on the distribution disk. ENDFILE -- The ENDFILE command is used to signal the end of your data file. The appearence of ENDFILE in a data file will close the data file and return input control to the standard input device -- the keyboard. Use of the ENDFILE command allows a flexible approach to data development -- geometry data in one file closed with an ENDFILE -- trial data in another file with operational commands entered at the keyboard. 16 EXCLUDE -- The EXCLUDE command works only with the SHORT format (see SHORT command in the section on "Operation Commands") Data for this command consists of several pipes numbers on the same record which will be excluded from the short format printout. Consecutive pipes can be joined with a dash (-) . Example: ' EXCLUDE 21 30 55-67 88-92 -- exclude pipes 21, 30, 55 thru 67 and 88 thru . 92 . These pipes will not appear on the short output. The EXCLUDE command is voided only by a LONG command. I EXECUTE -- Execute a program from the NET program -- the new program replaces NET. You may use any DOS command or any DOS program but the NET program is terminated at that point Example: EXECUTE NETP -- start the NETP program from within NET. When this program is finished you will be returned to the DOS prompt. EXIT, E, QUIT and Q -- These commands terminate the NET program. FACTORS -- The FACTORS command record contains two factors -- (1) the domestic/industrial peaking factor and (2) the friction coefficient multiply factor. The peaking factor is used to produce a peak flow from the average demands. The friction coefficient is used occasionally to observe the effect of modifying the entire network resistance to simulate a general increase of friction with time. Remember that Hazen-Williams "C" factors decrease with increased friction and Manning's "n" is directly proportional to friction. Default FACTORS data is 1. 0 for both factors. Example: FACTORS 3.6 .95 -- a 3 . 6 peaking factor will be applied to all peakable demands and a 0.95 multiply factor will apply to all friction coefficients on all pipes. FILE -- The FILE command contains the name of the data file that has the input data. Space for 32 characters is available so that different disk drives and/or directory may be declared. This command declares the input data file. Within the file itself the ENDFILE command can be used to end the input from that file. By using the FILE command to declare a file and the ENDFILE command in the input file to end the input from that file, combinations of files can be used as input to a NET analysis. Example: FILE A:LVWD0780.DTA -- input from the file named LVWD0780.DAT on the A drive will be used until the ENDFILE or EXIT commands are found in the file or until the actual end-of-file is encountered. 17 FIXED DEMANDS -- This command allows the entry of fixed demands i.e. demands not subject to the peaking factor. Data is contained on records that follow the command -- up to three node numbers and their fixed demands per record. NET sign convention is: flows coming out of the network are negative and flows into the system are positive. Generally fixed demands are fire flows applied to one or more nodes to model the effect of fire flows at strategic locations. Example: FIXED DEMANDS 100 0 203 -1500 -- node 100 has 0 fixed demand and node 203 has 1500 (a rather large demand) . The entry of a zero at node 100 is an example of the removal of a fixed demand from a previous run. HOLD -- The HOLD command contains the name of a file that the program will store the results of the analysis of the pipes only. Thirty-two characters are available for drive, direcotry and file. The stored information includes pipe number, connecting node numbers, pipe length, diameter, flow, velocity, head loss, and the first 12 characters of the pipe identification. Data is kept in a 80 column editor-like file. The named file may be new or old, and if old, the program asks if it is permitted to delete to old file. Example: HOLD a:cons001.hld -- pipe flow results will be stored in the file named CONSOOI.HLD on a diskette in the 'A' drive. INCLUDE -- The INCLUDE command is used only with the SHORT command and deliniates those pipes to be included in the short printout. Data consists of pipe numbers on the same record with the command -- these pipes will be the only pipes on the short report. The INCLUDE command is voided only by a LONG command.. Consecutive numbers can be concatinated by a dash. Example: INCLUDE 10 20-30 32 -- show only pipes 10, 20 thru 30 and 32 on the short report. INPUT -- This is the same as the FILE command. The INPUT command allows the entry of a file that has the input data. See the example under 'FILE' above. KEEP -- The KEEP command contains the name of a file, either old or new, that the program will make a consolidated input file. Space for 32 characters is available for the disk drive, directory and file name. The file will be kept as a 80 column editor-like file. All data as entered up to the KEEP command including all edits will be output to this 18 file. If the file is an old existing file, the programs ask permission to delete the old file. Example: KEEP rhwd001.kep -- the file RHWDOOI.KEP will contain a consolidated input of the current NET input. LIMITS -- The LIMITS command record contains two test and eight check values used in determining the limits of the analysis and the range of acceptable computed network properties. They are, left to right on the LIMITS record: 1. Maximum iterations to find a balanced solution (20 is the default) . 2. Minimum flow correction to be applied -- when flow correction is less than this value then the network is considered balanced (default is one unit of the flow).. 3 . Minimum and maximum (two values) of the velocity check -- any velocity above the maximum will be flagged "HI" on the LONG printout -- any velocity below the minimum will be flagged "Loll on the LONG printout. (defaults are 10 and 0) 4. Minimum and maximum (two values) of the headloss check -- any headloss in a pipe greater than the maximum will be flagged with a "HI" on the LONG printout -- any headloss less than the minimum is labeled "LO". (defaults: 10 & 0) 5. Minimum and maximum pressure check (two values) -- any pressure at a node greater than the maximum will be labeled "HI" on the LONG printout -- pressures less than the minimum are labeled "Loll . (defaults 100 and 0) 6. Static HGL for pressure drop check. This elevation is usually the maximum HGL on the system. If this item is entered as zero, than no pressure drop check is made. 7. Maximum percent drop from static -- headloss percent drop from Static HGL greater than given are flagged "HI". The philosophy of this check is to provide a range to check the total drop of the system from a static state much like a no-flow or low flow condition. (default 50%) Example: LIMITS 50 .5 0 12 0 15 30 110 -- process for 50 iterations or 0.5 flow units correction; min-max velocity check of 0 and 12 of velocity units; min-max headloss check of 0 and 15 of head units; min-max pressure of 30 and 110 of pressure units; no static check to be made. 19 LINES -- The LINES command sets the length of the page on the printer. Normal line printer (8 lines per inch, 8-1/2 inches high) has 68 lines -- the default. Six lines per inch on 8-1/2 inch high paper is 51 lines. Six lines per inch on 11 inch high paper is 66 lines and eight lines per inch on the same paper is 88 lines. Example -- LINES 51 -- this sets to page length to 51 lines. LIST -- This command causes the program to list the network geometry from the work file. This command would be used once when a new network was first being investigated, when a difficult to find geometry error has been given, or to list an OLD work file that is being reinstalled. LONG -- The LONG command turns on the long format. It would be used only if the SHORT format had been specified. The LONG command also resets those pipes specified for the SHORT command with either INCLUDE or EXCLUDE commands. MODIFY -- The MODIFY command does two things -- it stops checking input data for duplicate elements and it forces the program to recheck the network geometry before analysis. This command is used after an analysis but before entry of new data for subsequent analyses. NEW -- This command clears the work file and otherwise prepares for a new NET analysis. It should be the first command at the beginning of any input that enters complete network data for analysis. You can optionally specify the name of a work file on the same line with the NEW command. There is room for 32 characters for the work file name which will allow you to use a different disk. drive and/or directory. Example -- NEW a:ggmaster.net -- this establishes a new workfile named GGMASTER.NET on drive A. If the file exists, you will be asked if you want to write over the file. NODES -- The NODES command precedes the node description records. Node records require only the node number for each node in the pipe system. Each node record contains the following information: 1. Node number -- any value from 1 to 2000. This number is assigned arbitrarily but must be one end of at least one pipe description (see PIPE command below) -- either a "from" or "to" node. 20 2 . Peakable demand -- in the specified flow units. NET sign convention is flows are negative if they are leaving the pipe network and positive if entering the system. Peakable demands are usually negative. This item is optional but must be present, even if zero, if trailing data is included. 3 . Ground elevation -- that elevation which is. subtracted from the hydraulic grade to compute the pressure at the node. This item is not necessary but the pressure determination will be absolute instead of gage. 4 . Fixed demand -- in the specified flow units. Again, NET sign convention is negative for flow out of and positive for flow into the pipe network. This item is optional. 5. Coordinates for plotting -- X and Y -- optional. Coordinates are not needed if the network is not to be plotted. 6. Node identification -- any 20 character identification may be used -- must be preceded by an asterisk (*) . This identification is optional and appears only on the LONG format. Example: NODES 10 0 420 0 1025 2040 11 -1. 1 422 0 1145 1630 *Grand and Main 12 -2. 1 428 -1000 1205 1850 *proposed aptmnt site -- input of nodes 10, 11 and 12 are shown with coordinates for plotting and the optional identification. OLD -- The OLD command contains the name of an old workfile. This old workfile will be used instead of a temporary workfile. The old workfile named on the OLD command record must have been saved previously with a SAVE command or built previously with a NEW command. Thirty-two characters are provided for disk drive, directory, file name, and extension. The OLD command must appear before any other data, otherwise that data will not be available for the present analysis. The OLD command is provided specifically to speed up operations and to allow the recovery of the results of a NET analysis for plotting and water quality analysis. Example: OLD NRWDWORK.D -- use the old workfile named NRWDWORK.D. The current workfile is lost. 21 OUTPUT This command contains the name of the disk file that program output will be directed during the execution of NET. You can significantly improve NET program run times if output is directed to a disk file instead of to the screen or printer. Users can then review the output before printing. Example: OUTPUT LVWD0780.OUT -- output from NET is directed to LVWD0780.OUT and only progress messages will appear on the screen. PIPES The PIPES command leads the pipe description data. Pipe data records contain several items of information. 1. Pipe number -- any value from 1 to 2000. Pipe numbers are arbitrary and need not follow any rules of assignment. 2 . From node -- a node number at one end of the pipe. The assignment of "from" node is significant in dealing with Booster Pumps, Check Valves and Pressure Reducing Valves. For ordinary pipes, the assignment of this node number is arbitrary. All nodes must be described by a node description record following a NODES command. 3. To node -- the node number at the other end of the pipe. Like the "from" node number, the "to" node is significant for pipes that are also identified as either Booster Pumps, Check Valves or Pressure Reducing..Valves. This node must appear in a node description. 4. Pipe length -- in the units of length given. 5. Pipe Diameter -- in the units given for diameter. 6. Resistance coefficient -- either Hazen-Williams "C" or Manning's "n". These coefficients are mutually exclusive: either one or the other can be specified but must be consistant throughout the pipe network. 7. Pipe identification -- up to 20 alpha-numeric characters may optionally be entered for printout on the LONG format. This identification must be preceded by an asterisk (*) . Example: PIPES 101 10 11 425 12 120, 102 11 12 530 12 120 *C/L Bailey St. -- pipes 101 & 102 are described - 102 has an identification. PRN -- This command will cause the output to be directed to the 'PRN' device. This device is a DOS device and is reserved to the printer on the first parallel port. 22 PRV -- The PRV command signals the entry of pipe numbers that identify pipes that have pressure reducing valves. A PRV is described as a short pipe in the PIPES data. Input of PRV's consists of the pipe number, the downstream or operating HGL, the resistance k of the PRV and optionally the node number a reference reservoir. The reference reservoir is discussea in the next chapter, entitled "PREPARATION AND EVALUATION" . Non-active PRV's have a computed headloss of k*Q*Q. The direction of flow of a PRV is defined by the "from" and "to" nodes given when defining the pipe with the PIPES command. Example: PRV 77 412 .2 101 79 418 0 -- pipe 77 is a PRV with a operational (downstream) HGL of 412 , a friction coefficient loss of k=0.2 and its reference reservoir is at node 101. Pipe 79 is a PRV with an HGL of 418 with no loss. PUMP CURVES -- This command precedes the pump curve information. Pump curves are entered with a pump curve number and up to eight pairs of pump curve coordinates. Each curve is a separate record. The pump curve coordinate pairs consist of a flow and its respective head. There must be a cut-off head, i.e. a zero flow with its respective head. Pump curves must have a descending slope, which means that the flow..values must decrease for every increasing head. In other words, the flow/head curve starts at the cutoff head (zero flow) and each succeeding point must have greater flow with a lower head. The pump curve head for the computed flow is added to the given suction head on a source pump or the computed HGL of a booster pump. Pump numbers can be any arbitrary number from 1 to 70. Pumps are designated by entry under either the UNKNOWNS command or the BOOSTER PUMP command. Source pumps are unknown demands -- similar to a reservoir -- but the flow/head ratio is determined by the pump curve. Booster pumps are pipes that given the flow, a corresponding head is computed. Example: PUMP CURVES 1 0 450 2 445 5 440 11 435 25 400 50 350 2 0 460 1.5 440 3.5 390 6.0 300 -- pump curves 1 and 2 are defined by sets of coordinate pairs approximating the pump curve. QUIT, Q -- End the NET program RUN -- This command will run the analysis of the described network. Prior to analysis the program will check the geometry of the network for validity and to see if all necessary data has been inputted. 23 SAVE -- The SAVE command contains the name you want to give the workfile that will be permanently saved and later used with and OLD command. Thirty-two characters can be used for the file name, etc. A saved workfile is large -- 328, 000 bytes. A SAVEd file is actually copied from the current workfile thus using twice the disk space. It is better if you specify a workfile name on the NEW command and not use the SAVE command. Poor use of the SAVE command can use up your disk resource. The SAVE command is specifically provided to save a NET analysis workfile for NETP plotting, NETQ quality analyses, or NETS surge analyses. The SAVE command should be used only after the completion of the NET analysis, i.e. after the RUN command in order to save the results of the analysis. Example: SAVE NRWDWORK.SAV -- save the current workfile as NRWDWORK.SAV in the current directory. SHORT -- The SHORT command will cause the output to be printed in the short format. This format only describes the hydraulic properties of the network -- head, pressure, flow, velocity and inflow/outflow. The number of pipes so listed can be limited to those specified by an INCLUDE command or limited to pipes not expressly excluded by an EXCLUDE command. SUBSTANCES -- This command contains the labels for the substances and precedes the list of substances sources and their concentrations at these sources. The substance labels can be up to 10 characters long, are contained on the same line as the command, and each label must be contained within apostrophes ( ' ) . Source nodes and the concentrations for the substances at these nodes are on the lines that follow. There can be four substances and up to ten sources for these substances. This data is used by the NETQ program to determine their distribution throughout the network. Example: SUBSTANCES ' DS ppm ' , ' Nitrates' , 'Turbidity' 10 240 50 200 22 0 200 20 -- three substances are to be analyzed: disolved solids, nitrates and turbidity. Their concentrations are 240, 50, and 200 at node 10 followed by node 22 with 0, 200, and 20. TEST -- This command causes the program to test network validity. It also causes the printout of a node-to-pipe cross reference list which is helpful during data debugging operations. TITLE -- The TITLE command precedes up to three title lines. All three lines are used on the first page of the analysis. Only the first line is used on succeeding pages. The second and third lines can be used to clarify the analysis-- the first being used to identify the analysis. Each title line can have 80 characters. No titles are necessary. The first line is desirable. The second and third lines are optional. WARNING - because of the optional nature of the TITLE 24 command, you are required to use words in their titles other than the command words such as PIPE, NODE, PUMP etc. This only applies to the first word of the titles. Example: TITLE Rio Hondo WD -- Trial 22 -- Fire at Purcell and 5th Two pumps running at 16 - one at 24 Discharge pipe 27 is 18" UNITS -- The UNITS command contains seven codes that declare which units will be used in the NET analysis. Some of the units apply to the input units and the other apply to the units of computation. Defaults are supplied for the commonly used units so that the UNITS command need not be used if the defaults apply. The unit codes that appear on the UNITS command record, from left to right: 1. Length units: 0=feet, 1=1000 feet, 2=meters 2. Diameter units: 0=inches, 1=feet, 2=mm, 3=cm, 4=meters 3. Flow units: 0=gpm, 1=cfs, 2=mgd, 3=Imgd, 4=lps, 5=Cu.mps 4. Head units: 0=feet, 1=centimeters, 2=meters 5. Elevation units: 0=feet, 1=meters . 6. Pressure units: 0=psi, 1=gm/sgcm, 2=kilo-pascal 7. Velocity units: 0=fps, 1=meters/second Defaults are feet, inches, gpm, feet, feet, psi, fps -- all the units with a zero code. Example: UNITS 2 2 4 3 1 2 1 -- a typical SI analysis of meters, millimeters, 1/sec, meters, meters, Kpascal and mps for length, diameter, etc. UNKNOWNS -- This command is followed by the input of the nodes that have unknown demands or unknown HGL's. Unknown demand nodes will be either reservoirs or source pumps. Input consists of the node number, HGL or suction HGL, and the pump curve number if it's a source pump. An optional fourth input of percentage (percentage not fraction) of total unknown-demand can be included for troublsome networks. Example: UNKNOWNS 1 450 13 390 1 16 387 22 -- node 1 is a reservoir with a fixed head of 450; node 13 is a source pump with a suction head of 390 and pump. curve #1 is to be used; node 16 is a source pump with a suction head of 387 and uses pump curve #22. 25 NETP COMMAND AND INPUT DESCRIPTION ------------------------------------ The plotting program NETP functions independently from the NET analysis. However it does need the workfile that is built and saved during the analysis. The old saved workfile must be specified with an OLD command in NETP prior to any of the other plotting commands. Screen plotting are displayed directly on the CRT. Plotter and AutoCAD output is contained in a file. NETP will give you the name of this output file. You must then direct .this file to AutoCAD or the plotter. This file can- be sent directly to the plotter using the PC-DOS PRINT command, or it can be up-loaded to a host computer that has a plotter. ` NETP prompts you with a NETP? prompt. ALL -- The ALL command specifies that all the plot options are to be exercised -- BASE and RESULTS. BASE -- This command specifies that the base information will be plotted. This includes the GROUND, LDC, NODE and PIPE options. CAPACITY -- This command produces a bargraph-like diagram of the network capacity instead of a pipe schematic. Pipe capacities are depicted as a bar (double solid line) between nodes. Bar width is a function of the diameter of the pipe. Maximum capacity is the same size as the node circle, which may be changed by the CIRCLE command. You may also display the amount of capacity in use by this particular analysis with the UTILIZATION sub command._ The UTILIZATION can be displayed either as a shading (the default) of the pipe's capacity or as a dash line within the capacity bar (selected with a DASH sub Command) . The utilization value is a ratio of the computed velocity (from a RUN) to the maximum velocity check given on the LIMITS command. Pipe numbers are not plotted on capacity plots unless the PIPE command is executed. Example: CAPACITY UTILIZATION DASH -- plot pipe capacity showing the utilization with a dash line. CIRCLE -- This command allows you to specify a diameter of node circle used to plot the node instead of the default node circle of 0.311. The specified circle diameter can have any value, but a range of 0.3" to 1" is recommended. This allows a wide range of node numbers and capacities to be illustrated. COLOR -- The COLOR command can take two forms: COLOR NODE ### and COLOR PIPE ###: where ### is either BLACK, BLUE, GREEN or RED. This command allows you to specify that certain pipes and nodes can be plotted with different colors. Node or pipe numbers to be colored are contained on the command record. more than one record may be used and consecutive pipe numbers can be concatinated with a dash. Default color is BLACK. 26 Note: on color monitor plots, there are only three colors: yellow, green and red. Yellow substitutes for black and is the default color. Example: COLOR PIPE RED 20 10-18 COLOR NODE BLUE 35 -- pipes 20 and 10 thru 18 will be red and node 35 is blue. COMMENT -- This command allows you to embed comments within the input data without having any effect on the plot. An asterisk can also be used as the first character instead of the COMMENT command. This command is ignored. DEMAND -- This command specifies that the plot will show the demands at each node that is plotted. DEBUG -- This command sets the debug facility "on" which will cause the program to print out a detailed and extensive sequence of the analysis including the loop coding and flow evaluation in each pipe during the analysis. This facility is used only by the programmers to analyze program faults. DIAMETER -- This command specifies the diameter to be placed on the plot. This resets the LDC command to diameter only. DOS -- Execute a DOS command while in the NETP program -- returns you to NETP. You may use any DOS command or any DOS program that will operate in the unused memory of your computer. You will be warned if the program is too large for your memory. Example: DOS dir d: *.dta -- a directory listing will be made of all files on the D: drive with the DTA extension and returns you the NETP? prompt. EDIT -- The EDIT command is used to bring up the EDIT program which has been provided for your convenience. This allows you to text in your input file and make modifications without leaving the NETP programs. Upon completion of editing, the program returns to the NETP? prompt. Example: EDIT. sntriall.dta -- the edit program is invoked and will load file SNTRIALI.DTA for editing. If you omit the the file name, you will have a blank file to create new input data. EDIT program documentation is included on the distribution disk. ENDFILE -- The ENDFILE command is used to signal the end ,of an editor data file. The appearence of ENDFILE in a data file will close the data file and return input control to the standard input device -- the keyboard. 27 EXCLUDE -- This command will have one or more pipe numbers on the record with the command and will exclude those pipes from the plot. Consecutively numbered pipes can be concatinated by a dash. Example: EXCLUDE 30 34-45 58 -- pipes 30, 34 thru 45 and 58 are not to be plotted. EXECUTE -- Execute a program from the NETP program -- the new program replaces NETP. You may use any DOS command or any DOS program but the NETP program is terminated at that point Example: EXECUTE NET -- start the NET program from within NETP. When this program is finished you will be returned to the DOS prompt. EXIT, E, QUIT, Q -- These commands terminate the NET program. FLOW -- This command specifies that the flows in the pipes will be plotted. GROUND -- This specifies nodal ground elevations to be plotted. HEADLOSS -- Specifies headloss in each pipe to be plotted. HIGHLIGHT -- Specifies that those network properties outside the specified limits will be plotted with the fourth pen/layer or second color (red) . HGL -- Specifies the hydraulic grade line elevation at each node is to be plotted. INCLUDE -- This command causes the inclusion of only the given pipe numbers contained on the record with the command. More than one command can be used if necessary. Consecutive pipe numbers can be concatinated with a dash. Example: INCLUDE 48 51-88 -- only pipes 48 and 51 thru 88 are to be plotted. INPUT -- The INPUT command contains the name of the data file that has the input data. Space for 32 characters is available so that different directories and/or disk drives can be specified. Within the datafile, ENDFILE can be used to indicate the end of data and return control to the keyboard. LDC -- This specifies that pipe lengths, diameters and frictions will be plotted. 28 LEGEND -- This causes a legend to be plotted at the given location. The legend fits in an space that is 5. 6" by 2 .25" and the input location is for the lower left hand corner. The coordinates of the legend location are given in INCHES -- not in user units. Example: LEGEND 17 3 The legend is located 17" from the left edge and 3" up. NEWMAP -- This command clears the previous execution of EXCLUDE, INCLUDE, LEGEND, NORTH ARROW, WINDOW and ORIGIN commands. Each of these other commands functions such that the memory is flagged that the pipes and nodes will be plotted or are not to be plotted. The NEWMAP command essentially erases these commands and is used when a mistake has been made during entry of data interactively. NODE -- Specifies that the node symbol and number will be plotted. On Capacity plots, node numbers are not normally plotted unless this command has been executed. NORTH ARROW -- This causes a north arrow to be plotted at the given location. The north arrow fits in a circular space that has a 1.8" diameter. The input defines the center. The coordinates of the north arrow center are given in INCHES -- not user units. Example: NORTH ARROW 5 8 '. The north arrow is centered at 5" from the left edge and 8" up. OLD -- This command defines an old workfile 'SAVEed' after and NET analysis. WARNING, this command must be used prior to any reference to COLOR EXCLUDE, INCLUDE, WINDOW, ORIGIN, and START PLOTTER. It is best to use this command before any other plotting commands -- entered from the keyboard or as the first command in an input file. ORIGIN -- This command may optionally be used to specify the origin of your drawing and its rotation. Input consists of the X and Y (in user units) of the location of the lower left corner of the drawing and the angle from the new vertical axis to the old. The best way to visualize this input is to picture the area to be plotted with old Y straight up and then picture a window over the plot showing the outline of the finished plot. The input then is the X,Y of the new outline and the angle is the angle from 'the new Y axis to the old Y axis (positive to right and negative to left) . If you don't use this command, the origin will be placed at the intersection of the minimum X and Y coordinates without rotation. If you specify an angle only, (X and Y are zero) , your drawing will be rotated about its minimum rotated X and Y. Example: ORIGIN 800 1000 -90 -- the drawing origin is X=800, Y=1000 and the final plot will be rotated 90 degrees to the left. 29 PIPE -- Specifies that the pipe line and number will be drawn. PRESSURE -- Specifies that pressure at each node is to be annotated. RESULTS -- Executes the DEMAND, FLOW, HEADLOSS, HGL and PRESSURE options. START Plot Commands -- These four commands actually start the plot: START AUTOCAD scale, x length, y length START HPGL scale, x length, y length START SCREEN scale, x length, y length START ZETA scale, x length, y length With the exception of the START SCREEN command, each of the START commands requires at least a scale. The drawing dimensions (i.e. x length, y length) are optional and the program assumes some standard sizes. However the results are unpredictable if the sizes are left off the START HPGL and the assumed size is bigger than your plotter. If you leave all input off the START SCREEN command, the plot will "map" to the screen -- i.e. it will be sized to fit. If you describe a real drawing size (say 36" by 2411). for a START SCREEN, it too will be mapped. This way you can review your plotter or AutoCAD drawing as it will actually appear. The START SCREEN operation displays the network as described with LEGEND, NORTH ARROW, ORIGIN, and WINDOW commands. When the display is. complete, the program presents a ZOOM mode with the following message at the top of the screen: ZOOM - 1st pt & 2nd pt, or Esc to Finish A cross will be visible in the center of the window area. You can use the cursor control keys (arrows, Home, End, Pg Up, and Pg Dn) to position the first point for zooming. Enter any key (except Esc or q which finish the zoom) to pick the first zoom point. Using the cursor control keys again will display a window box which will contract or expand. Enter any key (except Esc or q) to zoom and replot the network based on the zoom box. If you want to pan back and see the full plot again, simply strike any key twice. The START HPGL and START ZETA options produce files that have to be plotted separately using a plot utility program or the DOS print command. The START AUTOCAD option produces an AutoCAD data exchange file (DXF file) . The scale is entered in units of the given coordinates per inch of scale on the finished drawing. Scale is always given as units per inch. For the English system the scale would be 100 for 1"=1001 . If coordinates are in the metric system then the units per inch are still required. A typical scale of 1: 25000, where the coordinates are in meters, would be 1"=635m and the scale entered would be 635. The two lengths are in inches. 30 Example: START HPGL 100 36 24 -- start the HPGL plot operation with a plot scale of 100 feet per inch on a sheet with a length of 36" and a height of 24" . A_ file will be produced that you will have to plot separately. WINDOW -- This command allows the entry of a plot window consisting of of the x and y dimensions of the window and x and y location of the window on the drawing -- IN USER UNITS -- i.e. the same units used for coordinates, not in inches. The location distances are optional and if left off, the window is placed at the lower left corner of the drawing. Please be aware of plot device limits that influence the overall size of the drawing and are dependent on the scale on the START command and your plot device: 9. 5" by 7" for the screen, 120" by 32" for a drum plotter, and the exact sheet size for HPGL plotters. Example: WINDOW 700 800 400 .200 -- the window has an x dimension of 700 units, y of 800 units, and the lower left corner of the window is located at x of 400 and y of 200. If the 400, 200 were left off, the window would be located at 0, 0. A DISCUSSION ABOUT NETWORK DRAWINGS Three commands can be used in combination to describe how the network is plotted on a drawing: ORIGIN which is used to define the location and rotation of the finished drawing, WINDOW which describes the boundary and location of the information on the drawing, and the START commands which describe the scale and outside dimensions of the drawing. Examples are the best way to illustrate the way these three commands work together. The sample data set NETESTI.DTA has an example NETP input that you can try: ORIGIN 600 -400 90 WINDOW 400 300 400 250 START SCREEN 50 26 24 In this sample, the network has coordinates that range from a low of 90, 20 (X,Y) to a high of 730,990 (X,Y) . The window is 400 by 300 units .and is located 400 units from the left edge of the drawing and 250 units up from the bottom edge. The finished drawing is rotated right 90 degrees and the origin of the finished drawing is 600 units to the right of 0, 0 and -400 (400 down) down from 0, 0. The best way to visualize this is to picture an outline of the finished drawing laying over the full network. Picture the window that you want displayed on the finished drawing. Measure the window and its location on the finished drawing -- these are the WINDOW command inputs. The lower left corner of the finished drawing is the origin and the rotation angle is measured from the finished vertical axis to the original vertical axis (positive to right and negative to left) -- these are the ORIGIN command inputs. The START command's input is the scale and the size of the finished drawing. WINDOW and ORIGIN inputs are in the same units as the coordinates. The START scale input is in user units per inch; the drawing size is in inches. 31 NETQ COMMAND AND INPUT DESCRIPTION ------------------------------------ The water quality analysis program, NETQ, is a separate program that runs independently from NET. It does require the workfile from the NET program and this workfile must be saved with the NET SAVE command after a NET analysis, i.e. after the RUN command in NET. 0 NETQ prompts you with a NETQ? prompt. COMMENT -- The COMMENT command does not cause any operation; in fact it is ignored. An asterisk, (*) can be used as the first character instead of the COMMENT command. The COMMENT command allows you to embed comments within the input data without effecting the result. Comments are contained on the same record as the COMMENT command or the asterisk. CRT -- This command is the opposite of the PRN command described below. It directs the NETQ output to the screen on the PC. When NETQ is first executed, the CRT is the output device. DEBUG -- This command sets the debug facility "on" which will cause the program to print out a detailed and extensive sequence of the analysis including the loop coding and flow evaluation in each pipe during the analysis. This facility is used only by the programmers to analyze program faults. DOS - Execute a DOS command while in the NETQ program -- returns you to NETQ. You may use any DOS command or any DOS program that will operate in the unused memory of your computer. You will be warned if the program is too large for your memory. Example: DOS dir d: *.dta -- a directory listing will be made of all files on the D: drive with the DTA extension and returns you the NETQ? . prompt. EDIT -- The EDIT command is used to bring up the EDIT program which has been provided for your convenience. This allows you to text in your input file and make modifications without leaving the NETQ programs. Upon completion of editing, the program returns to the NETQ? prompt. Example: EDIT sntriall.dta -- the edit program is invoked and will load file SNTRIALI.DTA for editing. If you omit the the file name, you will have a blank file to create new input data. EDIT program documentation is included on the distribution disk. ENDFILE -- The ENDFILE command is used to signal the end of. an editor data file. The appearence of ENDFILE in a data file will close the data file and return input control to the standard input device -- the keyboard. 32 1 EXECUTE -- Execute a program from the NETQ program -- the new program replaces NETQ. You may use any DOS command or any DOS program but the NETQ program is terminated at that point Example: EXECUTE NET -- start the NET program from within NETQ. When this program is finished you will be returned to the DOS prompt. EXIT, E, QUIT, Q -- These commands terminate the NETQ program. INPUT -- The INPUT command contains the name of the data file that has the input data. Space for 32 characters is available so that different disk drives and/or directory may be declared. Within the file itself the ENDFILE command can be used to end the input from that file. Example: INPUT A: irwdqula.dta -- input from the file named IRWDQUlA.DAT on the A drive will be used until the ENDFILE or EXIT commands are found in the file or until the actual end-of-file is encountered. OLD -- The OLD command contains the name of an old workfile. WARNING*** this command must be used prior to the SUBSTANCE and RUN commands. The old workfile named on the OLD command record must have been created previously in.. the NET program -- either built with a NEW command or saved.with a SAVE command. Thirty-two characters are provided for disk drive, directory, and file name. Example: OLD NRWDWORK.SAV -- use the old workfile named NRWDWORK.SAV. The current workfile is lost. OUTPUT -- This command causes program output to be directed to a specified disk file. This file's name may appear on the OUTPUT command line or the program will prompt for it. PRN -- This command will cause the output to be directed to the 'PRN' device. This device is a DOS device and is reserved to the printer on the first parallel port: RUN -- This command will run the quality analysis of the 'substances' within the water distribution network as previously analyzed by the NET program and saved in the 'old' file. The SUBSTANCE command and data must be entered prior to a RUN or NET's identical SUBSTANCE command and data must have been entered prior to the SAVE operation in the NET program. SUBSTANCES -- This command is identical to the SUBSTANCE command in the NET program. You can use it here or in the NET program. It contains the labels for the substances and precedes the list of substances sources and their concentrations at these sources. The substance labels can be up to 10 characters long, are contained on the same line as the command, and ea. 33 label must be contained within apostrophes ( ' ) . Source nodes and the concentrations for the substances at these nodes are on the lines that follow. There can be four substances and up to ten sources for these substances. This data is used by the NETQ program to determine their distribution throughout the network. Example: SUBSTANCES ' DS ppm ' , ' Nitrates' , 'Turbidity' 10 240 50 200 22 0 200 20 -- three substances are to be analyzed: disolved solids, nitrates and turbidity. Their concentrations are 240, 50, and 200 at node 10 followed by node 22 with 0, 200, and 20. 34 PREPARATION AND EVALUATION -------------------------- General Generally data preparation for a network description is fairly simple -- a schematic of the network is prepared, nodes and pipes are numbered, friction factors are determined, details of each pipe and nodal point are marked on the schematic, pump curves and reservoirs are studied -- . you then fill out the input forms. The vast bulk of any NET input is the pipe and node descriptions. Data is then entered in the computer and the program is run. The results of the program are then evaluated. The data is modified and the analysis repeated for the types of problems- that are to be evaluated. These are the normal steps to a NET run. Complications can arise in systems with multiple pressure zones, multiple source pumps, large or small pressure differentials, complex networks, networks operating at their limits, cross-connected networks or other unusual features. The symptom normal encountered is that the iterative technique diverges or refuses to close to the selected flow correction in the number of iterations desired. A similar condition is called "thrashing" -- the repetition of a flow correction or a series of flow corrections and will not converge. Even when complications are encountered, the bulk of the input -- pipe and node descriptions -- are not effected unless of course there was some error in the original geometry. Difficulties are usually surmounted by careful evaluation of the ancillary descriptions -- pump curves, PRV's, check valves, unknowns, boosters and their integration into the network description. A word of caution -- if an analysis fails to close or there is an abnormal "Maximum Unbalanced Head" as printed at the end of the analysis, then the results of the analysis are unpredictable -- even worse, the results are absolutly unreliable and cannot be used for any purpose except to evaluate what flows were present during the last iteration. Unknowns The term "unknown" is used to define nodes in the network that have unknown demands or sources of water. There must be at least one unknown in an analysis. Unknowns take two forms: Nodes with fixed heads and unknown, in or out, quantity of flow. Source pumps with carefully defined flow/head relationships A fixed head node can supply water to the system as a resevoir or it can also be a negative source or demand on the system and take water under some head conditions like a filling reservoir. A fixed head cannot also , have a known flow -- the program ignores inputed demands at unknowns. Generally a fixed head reservoir will not be a cause of the inability of a network analysis to converge. 35 Source pumps curves must have decreasing head for increasing flows. This may not be the actual condition, especially if a pump curve is the combination of curves from two or more pumps. However, the program requires the curve to be ever decreasing head for increasing flows, otherwise there will be more than one flow for a given head. During analysis, the program can extrapolate beyond the ends of the pump curve in order to statisfy the conditions of the analysis. Pumps operating at or near their limits can cause analysis thrashing. For this reason, a summary of pump parameters is given at the end of the analysis so that you can evaluate the pump operation. Analysis of networks with multiple source pumps, usually wells, may thrash because there may be multiple solutions to the given flow conditions. Corrections of this problem may take two forms -- treat one or more of the source pumps as a fixed head unknown or fictitiously tie the pump nodes together with long-small pipes (10, 000 feet, 1 inch diameter) . Another problem encountered when there are many sources is the -overflow of the matrix. The matrix size is calculated from the size of the longest-loop times the total number of loops. When you encounter an "A Matrix Overflow" error, examine your source pumps and combine those contained in one pump station. Also, make sure all .your source nodes are dead-end node, i.e. only one pipe is connected to a source. This may reduce your matrix size. You can assign a percentage of the total unknown demand to each of the unknowns, fixed head or source pump, in order the reduce the number of iterations or to attempt to improve a thrashing analysis. This will only apply to the first iteration but it has proved helpful in some stubborn analyses. The NET program may take a long time when one or more unknow• demands are negative, i.e. reservoirs are filling. This assignment of percentage of total unknown demand can have a negative sign and will significantly speed up the analysis. At least one unknown must have a fixed head. If the system is entirely derived from pump sources, one of the source .pumps should be converted to a fixed head unknown with a booster pipe in series. This fixed head unknown is called the "reference unknown" and should be the first unknown entered following the UNKNOWNS command. PRV's and Check Valves ---------------------- PRV's and check valves "operate", i.e. a PRV operating means the downstream head is being held to its given HGL and the valve is partially closed. A operating check valve is totally closed. PRV's are assumed to be check valves if the flow goes backwards. Check valve pipes are removed from the network if they are operating. PRV's remain in the network if operating but will be removed just like check valves it backward flow is indicated. In order to confirm if check valves and PRV's are operating, the network has to be almost solved (largest unbalanced flow at any node is less than five times the specified flow correction) . This is achieved by not allowing check valves and PRV's to be operated until the flows approacl- the solution. 36 PRV' s, in order to operate properly, must have a pathway (be part of a loop) from their upstream nodes to `some unknown. You can specify which unknown to be used for reference, otherwise the reference unknown will be used. An error indicating that a PRV is "probably in, backwards" can occur when the PRV is obviously correctly described. This is caused by the program finding the path between the PRV and the reference unknown to be through the PRV, i.e. the reservoir is downstream from the PRV. You are cautioned to check that the reference unknown is indeed the first unknown. If this is still the case, you should break up the PRV pipe into several small downstream pipes (1 foot) until the error no longer occurs. Common Problems --------------- Booster pumps, PRV's and check valves are described as pipes in the network. The direction of normal flow for these devices is given when the pipe geometry is described. A common mistake is the misdirection of these appurtenances. Occasionally a system has several pressure zones and reservoirs within each zone. The program may not converge under these conditions. There is a fourth element on the PRV input called "reference reservoir", which can be used to specify an unknown demand node that is immediately upstream from the PRV or actually is in between the PRV and the highest unknown. The entry of tha;.node number will aid the loop generation so that the PRV is in a loop with its unknown demand and not one that is too far removed. Another common problem is 'the use or declaration of the wrong units. This can be confusing when the units are similar in magnitude such as mgd and cfs. Users inexperienced with the metric system can also be confused particularly when working with mixed units or when converting from English to metric and vice versa. Some confusion -comes about when pump curve heads are being determined and as to what suction head might apply. When problems are encountered, it might pay to review pump curves and the inputed suction heads. The head given on the node description is the elevation at which a reference head is computed and, is not necessarily the suction head. .Users often give the ground elevation of a reservoir as. its fixed head -- a not too costly mistake but one that can cause some embarassment or some confusion particularly with determination of reservoir filling rates. Although the NET program can evaluate rather large networks (1000 pipes) the matrix can overflow under certain conditions at somewhat less than the maximum limit of pipes. The size of the matrix is determined by the longest loop and the total number of loops. For complex systems, the longest loop is usually the one that connects the unknown nodes together. The trick of fictitiously connecting all unknowns nodes together with long/small (10,000 feet, 1 inch diameter) pipes has sometimes reduced the bandwidth and hence the size of the matrix. Make sure all your sources are connected to the system with only one pipe. This also will reduce the matrix size. 37 occasionally a system is encountered that is difficult to analyze at peak flows. This condition is extremely frustrating because convergence occurs with other peaking factors but not with the one desired. There is no simple solution to this problem -- a minor alteration in something as simple as changing one friction factor or one pipe diameter might produce convergence at the desired peak factor. The problem is best described as a system saturation, i.e the approximate or actual overload of the water distribution network with flows that no longer can be modeled with the theory used to develop the program. In a similar situation, convergence might occur but because 'of the large flows negative pressures appear at several nodes. Negative flows are indications of inadequate distribution but in no way can the actual value of a negative pressure be used in any form other than to indicate that a problem exists. The analysis is said to have failed if large negative heads result. The most common mistake encountered with the use of the NET program is not in the divergence or thrashing but rather in the misuse of the output, the overuse of the program and the disregard for the value of the model. Just because the computer prepares a table of flows and pressures for a distribution system, it should not be taken as gospel. Good Engineering judgment must still be applied to the analysis to properly evaluate the results. NET users inexperienced in water distribution realities will attempt to produce so much variety in analyses that they spend all their time on the computer and there is little time left for the report phase of the project. Prior to any use of NET, you should determine exactly how many analyses are to be made -- average flow, peak flow, fire flow, off hou• flow, etc. These should be specified exactly, prior to input preparation, checked off when completed and unless questions arise they should not be run again. Proper determination of what conditions are to be modeled is a prerequisite to successful analysis. Lastly, NET output is a mathematical model of a real entity. The true test of the model is its proper validation to the real network if possible. There are so many assumptions made as to friction factors, domestic demands, elimination or ignoring of small losses, even lengths and diameters of pipes, that the results of any analysis if within five percent of the real network should be. adequate. All too often analyses are made for conditions that are not warranted within the measure of accuracy of the input. Remember the computer adage "garbage-in, garbage-out". 38 ERROR MESSAGES -------------- ------E R R 0 R M E S S A G E --------- ------DESCRIPTION-------- ***ERROR*** "A" MATRIX OVERFLOW Too big a system ***ERROR*** DIDN'T FIND ENOUGH NODES Nodes missing ***ERROR*** DIDN'T FIND ENOUGH PIPES Pipes missing ***ERROR*** DUPLICATE UNKNOWN DEMAND NODE Duplicate unknown ***ERROR*** EXCEEDS NPIPE SIZE PRV in too big a loop ***ERROR*** INVALID 'COORDINATES' COMMAND Neither PIPE or NODE ***ERROR*** INVALID HGL AT UNKNOWN DEMAND HGL <= zero ***ERROR*** INVALID NODE NUMBER 1 > Node number > 2000 ***ERROR*** INVALID PIPE NUMBER 1 > Pipe number > 2000 ***ERROR*** INVALID UNIT Unit number not valid ***ERROR*** MORE THAN 100% FOR UNKNOWNS Sum of percentages > 100 ***ERROR*** MORE THAN 1000 NODES More than 1000 nodes ***ERROR*** MORE THAN 1000 PIPES it of 1000 pipes ***ERROR*** NETWORK FRAGMENTED Network in pieces ***ERROR*** NO MATCH ON COMMAND Command can't be decoded ***ERROR*** NO PIPES CONNECTED TO NODE Spurious node, no pipes .***ERROR*** NODE MISSING FOR PIPE Node doesn't exist ***ERROR*** NODE MISSING FOR UNKNOWN " if if ***ERROR*** PIPE MISSING FOR BOOSTER Pipe doesn't exist ***ERROR*** PIPE MISSING FOR CHECK VALVE of it of ***ERROR*** PIPE MISSING FOR PRV " to to ***ERROR*** PUMP HEAD INCREASING Pump curve wrong ***ERROR*** PUMP MISSING FOR BOOSTER Pump curve missing ***ERROR*** PUMP MISSING FOR UNKNOWN '!14 ***ERROR*** PUMP MUST HAVE ZERO Q Curve must start with 0 ***ERROR*** PUMP NUMBER OUT OF RANGE 1 > Pump number > 70 ***ERROR*** PUMP Q DECREASING Pump curve wrong ***ERROR*** TOO MANY UNKNOWNS More than 40 unknowns WARNING MESSAGES ---------------- Warning messages tend to be more self-explanitory, therefore there is no description for the message given here. -------- W A R N I N G M E S S A G E --------- ***WARNING*** DELETING BOOSTER DOESN'T EXIST ***WARNING*** DELETING CHECK VALVE: DOESN'T EXIST ***WARNING*** DELETING NODE DOESN'T EXIST ***WARNING*** DELETING PIPE DOESN'T EXIST ***WARNING*** DELETING PRV DOESN'T EXIST ***WARNING*** DELETING UNKNOWN DOESN'T EXIST ***WARNING*** DIAMETER IS ZERO ***WARNING*** DUPLICATE BOOSTER PIPE ***WARNING*** DUPLICATE CHECK VALVE PIPE ***WARNING*** DUPLICATE NODE COORDINATES ***WARNING*** DUPLICATE NODE DATA ***WARNING*** DUPLICATE PIPE COORDINATES ***WARNING*** DUPLICATE PIPE DATA ***WARNING*** DUPLICATE PRV PIPE ***WARNING*** DUPLICATE PUMP CURVE ***WARNING*** EXCLUDING PIPE DOESN'T EXIST 39 1 ***WARNING*** FIXED/SUCTION HEAD <=0 ***WARNING*** FRICTION IS <=0 ***WARNING*** FRICTION TOO BIG ***WARNING*** INCLUDING PIPE DOESN'T EXIST ***WARNING*** INVALID BOOSTER PIPE OR PUMP NUMB ***WARNING*** INVALID CHECK VALVE. PIPE NUMB ***WARNING*** INVALID NODE DEMANDS ***WARNING*** INVALID NODE NUMB (COOR) ***WARNING*** INVALID PIPE NUMB (COOR) ***WARNING*** INVALID PIPE/NODE NUMB ***WARNING*** INVALID PRV PIPE NUMBER ***WARNING*** LENGTH IS ZERO ***WARNING*** NET FLOW AT NODE NOT ZERO ***WARNING*** NO CONVERGENCE AFTER n ITERATIONS ***WARNING*** NO DATA -- COMMAND a ***WARNING*** NO FILE NAME ON 'KEEP' COMMAND ***WARNING*** NODE ELEVATION <=0 ***WARNING*** NOT ENOUGH ROOM IN KEEP FILE ***WARNING*** ONE COORDINATE IS ZERO ***WARNING*** OVER 30 BOOSTER PUMPS ***WARNING*** OVER 30 CHECK VALVE PIPES ***WARNING*** OVER 30 PRV PIPES ***WARNING*** PRV PROBABLY IN BACKWARDS 40 OPERATION Program operation is best accomplished by building the bulk of the input data with an editor and declaring. the file with an INPUT or FILE command. NET runs interactively, however the program is not truly interactive. For example, diagnostics are not given during input but rather just before the network is analyzed. Also, there is no on-line help facility. You can use separate input files for various pieces of the data and interactively use the INPUT or FILE command to declare the name of the input file. By having a ENDFILE command at the end of the data file, the program will return to the interactive mode after reading each data file. You can also use a previously SAVE'd binary file by using the OLD command to declare the file name. Although this will speed the operation of the program, it requires a rather large. file to be saved on the disk and should be used with care as it does require disk resource. Typically, you will build an input file of the basic network description using some editor, and include an ENDFILE command at the end. The program can be run and the input file declared with an INPUT or FILE "filename" entry when prompted. At the end of the input file, the program -will again prompt and you can enter any other command or even declare another input file to be edited to the first. At any point you can RUN, LIST, or use any other.. operation command._ The plotting program NETP plots to the screen but does not directly plot on the plotter, but rather produces a "plot-file" containing the plotter output.=:ems plot-file must be directed to the plotter either with the PC-DOS PRINT commapd._or up-1,oadq!A to a host that supports a plotter. This plot-fil.e 'can B4 plotted as many times as desired. The quality analysis program NETQ can be run anytime after NET has been used to complete the water distribution analysis (NET RUN command) and the workfile saved (SAVE command) . Substance concentrations can be. entered in NET prior to the SAVE operation and/or NETQ has the identical command capability. You can obtain- several combinations of substance distributions from the same NET analysis by using successive SUBSTANCES and RUN commands in NETQ. There are several sample data files on the distribution disks.You are encouraged to TYPE or PRINT these files and run the NET program with the data in these files. The series of data files for examples are named "NETEST#.DT1A"*fi&e. # is a number. Some of the sample files have data for NETP plottii3q,. ETaQ qual-itp-,-,,.and NETS the surge analysis. 41 HEMATIC PLOT -.o M !• 40 N• a � �;y0? W V i 00 * w �i• rr tit~ � of N� • • tt �w a t0 + N 9 arww - ar+a-�w sew •1m 120 _ •l11 N N t2 - Ir N 13 M A r �w �w Al A tl - M tw 1G3 W w tN wr�.tw or S di 30 -2! N 1l tt WO -0 1w t!!1 tai�w W AZO Iw 1�Nw WOP i -1030 40 a e 4ONW y 7 u+ tt � �wt•tw Wtatw CAPAM _ I tot I I I t ---------- st —--—————— so --------1 I I e a to I I I I I I I I • t to I I I I I � I I I I tot sot soa I I � I f I I I I I i I I I I NETWORK date Account NEW username/password TITLE length diameter flow head eleva. pressure velocity UNITS Peaking C/n FACTORS max iter min flow vel. ck H loss ck Pres. ck static % drop LIMITS UNKNOWNS BBOOSTER PUMPS Node # HGL Pump % Pipe # Pump # PRY PIPE$ CHECK VALVE Pipe # Cutoff HGL H loss Pipe # �e� s �■o■� sue■ . TTII 1111111� _ 1111111� 111111111111118 1111111� � 1111111�� """""""� 11111110 � 111 iiiiii�'ii����� 1111� �� ���e 110 1111111� ,������„��„�� =111111� Illlllla ��������������� ���IN��������A 111111111111119 ��������� ���8 ����1�11������� �����������1��0 11111111111111111@ . „„����������� : . IIIIIIIIIIIIIIIIIO . """""""� IIIIIIIIIIIIIII� ��������������� ��������������a by date Account username/password COORDINATE PIPES Pipe 0 Xl YI X2 Y2 •.3 Y3 COORDINAT19• N00E8 Rode / X Coord t Coord X C Coord Asimth ORIGIN Length Heicht X Dist Y Dist wIND0 W ' Scale START PLOTTER